
IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 1

Compositional Reachability Analysis for Efficient
Modular Verification of Asynchronous Designs

Hao Zheng,Member, IEEE

Abstract—Compositional verification is essential to address
state explosion in model checking. Traditionally, an over-
approximate context is needed for each individual component in
a system for sound verification. This may cause state explosion
for the intermediate results as well as inefficiency for abstraction
refinement. This paper presents an opposite approach, a compo-
sitional reachability method, that constructs the state space of
each component from an under-approximate context gradually
until a counter-example is found or a fixpoint in state space
is reached. This method has an additional advantage in that
counter-examples, if there are any, can be found much earlier,
thus leading to faster verification. Furthermore, this modular
verification framework does not require complex compositional
reasoning rules. The experimental results indicate that this
method is promising.

Index Terms—formal verification, model checking, composi-
tional verification, logic verification, circuit verificati on, abstrac-
tion refinement.

I. I NTRODUCTION

Although tremendous progresses have been made, model
checking still faces the state-explosion problem [7]. Com-
positional approaches address this problem in a divide-and-
conquer manner, and verify the individual components without
considering the whole system. When checking each individual
component, it is necessary to obtain its appropriate context
where it is expected to operate correctly. The purpose of an
appropriate context is used to remove from each component
the behaviors that do not exist in the complete system.

In the existing compositional approaches [31], [18], [15],
[4], [23], [14], [38], [39], an over-approximate context ab-
straction or assumption is used for each component to find
its state space for sound verification. This context abstrac-
tion or assumption is needed in order to avoid any false
positive results. Ideally, this context should be accurateto
avoid excessive number of false counter-examples. However,
manually finding such an context with higher accuracy is very
difficult, if not impossible, and very time-consuming if the
component interfaces are complex. Lately, some researchers
proposed automated approaches [9], [3], [1] to generate con-
text assumptions guided by local counter-examples.

Although impossible behavior due to abstract contexts may
be reduced by abstraction refinement, some obvious shortcom-
ings of these approaches can be pointed out as follows. By

Hao Zheng is with the CSE dept. of the Univ. of South Florida, Tampa,
FL 33620. This material is based upon work supported by the National
Science Foundation under Grant No. 0546492 and 0930510. Anyopinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

Fig. 1. U , E, and O represent the state space generated using under-
approximate, exact, and over-approximate contexts, respectively.

using abstraction, the state space of each individual component
of a system needs to be blown up first, and then reduced
gradually. The state space of a component generated with
different contexts is illustrated in Fig. 1. The different circles
characterize the component state space obtained using different
contexts. CircleU refers to the state space resulting from
an under-approximate context where the input behavior is
more restricted than that of the exact context, while circleO
refers to the state space resulting from an over-approximate
context that includes extra input behavior. Between these two,
circle E refers to the state space of a component resulting from
the exact context as if it is embedded in the whole system.
Obviously, the state space outside circleE is unreachable.
In the existing modular verification approaches, the initial
state space of each component is constructed as indicated
by circle O. The goal of abstraction refinement is to shrink
circle O to be as close to circleE as possible by reducing the
unreachable state space. If the unreachable state space is very
large initially, which can be the case in many situations, the
process of this reduction can take a lot of time. In addition,the
complexity of each component needs to be controlled during
partitioning because the size of the single largest component
dictates if the whole system can be verified. To accommo-
date this requirement, fine-grained partitioning is desired or
required in the existing approaches. However, this may result
in functionally unnatural partitioning that may cause some
negative effects, such as more false counter-examples. In
addition to the excessive peak size problem, verification is
delayed in the above approach because refinement continues
even though failures are found hoping that these failures may
be removed later by refinement. This paper refers to this kind
of state space construction asstate space contraction.

To address the above problems, this paper presents a dif-
ferent approach,state space expansion. The basic idea is that
the state space of a component is constructed using an under-
approximate context where input behavior for each component
is restricted. Starting from the initial state space denoted
as U , components iteratively exchange information on their

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 2

Fig. 2. A compositional verification flow.

interfaces to loosen their input behavior, and this allows them
to gradually expand their state spaces. This process iterates
until the state space of each component reaches a fixpoint or
a counter-example is found. At the end, the component state
space is still an abstraction of the concrete one if none of them
contains counter-examples. However, the experimental results
show that the resulting component state space is much closer
to the concrete one leading to shorter verification time.

Fig. 2 shows a compositional verification flow. It takes as
input a parallel composition of a set of components described
in some high level modeling formalism. In general, an abstract
model needs to be generated for each component for sound
verification. However, an abstract model typically includes
impossible behavior that may not occur when the component is
embedded in the whole system. Abstraction refinement is then
applied before verification to eliminate the impossible behavior
as much as possible to avoid large number of false counter-
examples, which can be very expensive to check if they are
real. After verification, if all components are correct, theentire
system is claimed to be correct. On the other hand, if any
counter-example is found to be real, it is reported. Otherwise,
the false counter-examples are used in the next iteration of
model refinement and verification.

The method presented in this paper focuses on model gen-
eration step in Fig. 2. There are rich literatures on abstraction
refinement, and discussing and comparing this work with all
of them in detail is out of scope of this paper. Since other
compositional reasoning approaches, to our best knowledge,
either do not consider model generation or do not support the
similar method to the one presented in this paper, this paper
compares this work with one previous abstraction refinement
method for modular verification to show its effectiveness.

This paper is organized as follows: section II gives an
overview of the previous work on compositional verification
and abstraction refinement. Section III gives a brief back-
ground review. The next three sections describe the new
method proposed in this paper. Section IV describes our
modular verification framework. Section V introduces the con-
cepts of interface constraints, and describes the compositional
reachability method using the constraints. Section VI presents
experimental results on several large asynchronous designs,

and the last section concludes the paper, and points out some
future improvements.

II. RELATED WORK

Compositional reasoningand abstractionare essential to
verifying large systems. Compositional reasoning, broadly
referring to compositional verification or compositional min-
imization, takes advantage of the given design hierarchy. A
general compositional verification method is based onassume-
guaranteestyle reasoning, and verifies global properties by
verifying local properties of each component in a system [28],
[22], [17], [18], [26]. It has been applied to the verification of
timed circuits [35]. In a compositional verification framework,
each component of a system is considered separately. During
verification, assumptions about the environment with which
the component interacts are made; then these assumptions need
to be discharged later. Assumptions are typically generated
by hand. If the component has complex interactions with its
environment, it can be difficult to make accurate assump-
tions. Recently, there is some work on deriving assumptions
automatically. In [21], an automated approach is described
to generate the assumptions for compositional verification.
This approach starts with a set of the weakest assumptions
for a component, and iteratively refines these assumptions.
Although the approach guarantees that the iteration terminates,
it is not clear how efficient the approach would be in terms
of iterations necessary to generate a set of assumptions to
prove the properties. Also, this approach can only handle
safety properties. In addition, global specification needsto be
broken down to local properties defined on the interfaces of
the components, which can be very difficult. Similar work is
also described in [3], [1], [2], [32].

Abstraction produces the reduced model of a system by
abstracting away certain details that are unnecessary when
reasoning about the system [6], [11]. In [20], a hierarchical
approach similar to that in [12] is presented. In this approach,
an abstraction for each module in a system is found and
verification is applied to the composition of those abstractions.
In [24], a constraint oriented proof methodology is applied
to verify infinite systems. Constraints on infinite systems are
broken into an infinite number of simple constraints on finite
systems, then these constraints are grouped into finite equiva-
lent classes. However, this methodology is not complete in that
the reduction of infinite systems is not guaranteed. In [19],a
software model checking method utilizinglazy abstractionis
presented to improve performance by adding information dur-
ing abstraction refinement only when necessary. This method
and [8], [5] fall into a category called “Counter-Example
Guided Abstraction Refinement” (CEGAR). In general, these
methods build an abstract model where verification is applied.
If an abstract counter-example is found, it is checked on the
concrete model. If there is a corresponding concrete counter-
example, then a true violation is found. Otherwise, the abstract
counter-example is false due to information loss in the abstract
model. And the abstract model is refined using the false
abstract counter-example, and then verification repeats. The
method presented in this paper is orthogonal to those CEGAR

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 3

approach in that this method builds abstract models from
under-approximations, while the CEGAR approaches refines
over-approximate models with the false counter-examples.In
addition, this method is proposed by verifying individual
components in a design, while the CEGAR approaches are
applied to verifying the entire designs. On the other hand,
CEGAR approaches can be used following this method to
check if counter-examples in any component is real.

In [16], an approach is presented to construct a model from
under-approximation similar to our method. It gradually adds
more execution traces into an under-approximated model after
it is checked correctly. However, that approach is for bounded
model checking to find counter-examples while ours is for
proving correctness. Again, that approach considers entire
designs, while ours belongs to compositional verification.

Several tools have been developed for asynchronous circuit
verification [13], [33], [29]. [13] uses a hierarchical veri-
fication approach similar to [12]. It checks safety as well
as liveness properties. In [33], asynchronous circuits and
the specification modeled in Petri-nets are represented by
BDDs, and verification is performed by symbolic traversal.
Compared to this method, both approaches are inherently non-
compositional. In [38], [39], a modular approach is presented
to verify timed asynchronous designs using abstraction meth-
ods based on Petri-net reductions. These methods simplify
Petri-net models of asynchronous designs either followingthe
design partitions or directed by the properties to be verified.
Although these methods are very effective for a particular kind
of Petri-nets, they are not sufficient for the Petri net models
used in our method.

III. PRELIMINARIES

This section introduces basic notations and definitions for
state graphs and their relative operators. It also presentshow
the correctness of safety properties is formulated and checked
in this framework.

A. State Graphs

State graphsare used to model the behavior of concurrent
systems. A state graph is a vertex-labeled and edge-labeled
digraph. Vertices represent states, labeled with propositions
that hold. Edges represent state transitions, labeled withac-
tions whose executions cause the movement from one state
to another. More formally, a state graph (SG)M is a 6-tuple
(P,A, S, init, R, L) where

1) P is a finite set of atomic state propositions,
2) A is a finite set of actions,
3) S is a finite set of states,
4) init ∈ S is the initial state,
5) R ⊆ S ×A× S is the set of state transitions, and
6) L : S → 2P is a state-labeling function.
In the above definition,S includes a special stateπ which

denotes thefailure stateof a SGM , and represents violations
of various safety properties. How a system behaves does not
matter after it enters the failure state. Therefore, for every
a ∈ A, there is a(π, a, π) ∈ R. Each non-failure state is
labeled with a non-empty set of propositions. Forπ, L(π) = ∅.

Actions are used to model dynamic behavior of systems. For
a SG,A = AI ∪ AO ∪ AX whereAI is the set of actions
controlled by an environment of a system such that the system
can only observe and react,AO is the set of actions controlled
by a system responding to its environment, andAX is the set
of actions controlled by a system internally. Each actiona is
associated with two sets of propositions, denoted as•a and
a•, respectively. For example, in asynchronous circuits, each
wire w has two actions,w+ andw−, while •w+ = {¬w} and
w+• = {w}, and•w− = {w} andw−• = {¬w}. Execution
of an actiona results in a new state by removing•a from
and addinga• into the labellings of the existing state. Given
(s, a, s′) ∈ R,

L(s′) = (L(s) − •a) ∪ a • .

This paper uses(s1, a, s2) ∈ R andR(s1, a, s2) to denote that
(s1, a, s2) is a state transition of a SGM . We assume that the
state transition setR is total such that every state has some
successor.

Fig.3(a) shows a simple asynchronous circuit as the running
example to illustrate the ideas presented in this paper. The
component labeled with “C” is a C-element whose output is
high when both inputs are high, low when both inputs are low,
or remains unchanged otherwise. This circuit is partitioned
into three components,M1, M2 and M3. Fig.3(b), (c) and
(d) show the corresponding SGs for the componentsM1,
M2, and M3 where their inputs are set to be totally free,
meaning they can change to high or low in any state. For
clarity, only the labellings of the initial states are shown.
In the figure, labellings of multiple actions on a single arc
indicate multiple state transitions with the same start andend
states but on different actions. For example, in Fig. 3(d),
the arc froms14 to π denotes two different state transitions:
(s14, x+, π) and (s14, y+, π). In particular, forM3, its input
actions AI = {x+, x−, y+, y−}, and its output actions
AO = {z+, z−, u+, u−}.

A path of M is a sequenceρ of alternating states and
actions ofM , ρ = (s0, a0, s1, a1, s2, · · ·) such thats0 = init,
si ∈ S, ai ∈ A, and ∀i ≥ 0 : (si, ai, si+1) ∈ R. A state
s′ ∈ S is reachable froma states ∈ S if there exists a path
ρ = (s0, a0, . . . , sn) such thats = s0 and s′ = sn. A state
s is reachable inM if s is reachable from the initial state
init. The trace of pathρ, denoted byσ(ρ), is the sequence
of actions (a0, a1, · · ·). Two tracesσ = (a0, a1, · · ·) and
σ′ = (a′

0, a
′
1, · · ·) are equivalent, denoted byσ = σ′, iff

∀i ≥ 0 : ai = a′
i The set of all paths ofM forms the language

of M , denoted byL(M).
In some cases, not all actions of a component are used

in a larger design. These unused actions are converted to
invisible actions. Since only the interface behavior is of interest
to verification, the information on states and state transitions
related to invisible actions are abstracted away with a special
action ζ. For ζ, •ζ = ζ• = ∅. The projection of a SGM by
hiding a subset ofA1 ⊂ A is defined as follows.

Definition 3.1: Let M be a SG, andA1 ⊆ A. The projec-
tion of M ontoA1, denoted byM ′ = M [A1], is a SG such
that

1) P ′ = P −
⋃

∀a∈A−A1
(•a ∪ a•).

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 4

2) A′ = A1.
3) S′ = {s′ | ∀s ∈ S∃s′ ∈ S′ : L′(s′) = L(s) ∩ P ′}.
4) L′(init′) = L(init) ∩ P ′.
5) For each(s, a, s′) ∈ R, there is a(s, ζ, s′) ∈ R′ if

a 6∈ A′, or (s, a, s′) ∈ R′, otherwise.
6) ∀s ∈ S : L′(s) = L(s) ∩ P ′.

Similarly, given a traceσ = (a0, a1, . . .), its projection onto
a subset of visible actionsA′ ⊆ A, denoted byσ[A′], is
obtained by removing fromσ all the actionsa 6∈ A′. σ[A′] is
defined recursively as follows.

σ[A′] =

{

σ′ if a0 6∈ A′ or a0 = ζ,

(a0) ◦ σ′ otherwise.

whereσ′ = (a1, ...)[A′], and◦ is the concatenation operator.
Given two pathsρ = (s0, a0, . . .) andρ′ = (s′0, a

′
0, . . .) of M ,

ρ andρ′ are equivalent, denoted asρ ∼ ρ′, iff σ(ρ) = σ(ρ′).
The SG of a system is obtained by composing the com-

ponent SGs. Parallel composition is defined as follows. This
definition is very similar to the traditional definition in
[2] except that more rules are included for cases involv-
ing π. Given M1 = (P1,A1, S1, R1, init1, L1) and M2 =
(P2,A2, S2, R2, init2, L2), if AO

1 ∩ AO
2 = ∅, the parallel

composition ofM1 andM2, M1‖M2 = (P,A, S, R, init, L),
is defined as follows.

1) P = P1 ∪ P2,
2) A = A1 ∪ A2,
3) S ⊆ S1 × S2 such that for each(s1, s2) ∈ S, the

following conditions hold

a) L1(s1) ∩ P2 = L2(s2) ∩ P1.
b) (s1 = π ⇒ s2 = π) ∧ (s2 = π ⇒ s1 = π).

4) R ⊆ S×A×S such that for each((s1, s2), a, (s′1, s
′
2)) ∈

R, if s1 6= π ands2 6= π, then the following conditions
hold.

a) (s′1 = π ⇒ s′2 = π) ∧ (s′2 = π ⇒ s′1 = π)
b) ∀a ∈ A1 −A2 : R1(s1, a, s′1) ∧ (s2 = s′2)
c) ∀a ∈ A2 −A1 : R2(s2, a, s′2) ∧ (s1 = s′1),
d) ∀a ∈ A1 ∩A2 : R1(s1, a, s′1) ∧ R2(s2, a, s′2).

Otherwise,s1 = s′1 = s2 = s′2 = π for every a ∈
A1 ∪ A2.

5) ∀(s1, s2) ∈ S : L((s1, s2)) = L1(s1) ∪ L2(s2).

In the above definition, the composite state is the failure
state if either module state is the failure state. When several
modules execute concurrently, they synchronize on the shared
actions, and proceed independently on their invisible actions.
If either individual SG makes a state transition to the failure
state, there is a corresponding state transition to the failure
state in the composite SG. The behavior of the composite SG
captures the interaction between two individual SGs.

B. Correctness Definition

The failure stateπ is used to represent various safety
violations that a system is not expected to produce. Liveness
properties are not considered in this paper. A system is
regarded as being correct ifπ is not reachable in its SG. A
path is referred to as afailure if a SG contains the failure
state π reachable via such path. The set of the failures in

M is denoted asF(M) such thatF(M) ⊆ L(M) holds. A
system is correct ifF(M) = ∅.

According to the definition of SGs,(π, a, π) ∈ R for every
a ∈ A. Therefore, a failureρ1 = (s0, a0, · · · , si, ai, π, · · ·)
corresponds to a set of traces, denoted asΣ(ρ1). Given a
failure ρ = (s0, a0, · · · , si, ai, π, · · ·), the non-failure prefix
of ρ is (s0, a0, · · · , si, ai). If another traceρ′ has the same
non-failure prefix ofρ, ρ′ is also regarded as a failure. In such
case,ρ andρ′ are calledfailure equivalent.

Definition 3.2: Given two pathρ = (s0, a0, . . .) and ρ′ =
(s′0, a

′
0, . . .), and ∃j > 0 : s′j = π, ρ and ρ′ are failure

equivalent, denoted asρ ∼F ρ′, iff ∀0 ≤ i ≤ j. ai = a′
i.

With the equivalence between paths being defined, the
abstraction relation between two SGs is defined as follows.

Definition 3.3: Given SGsM andM ′, M ′ is an abstraction
of M , denoted asM � M ′, iff the following conditions hold:

1) A = A′.
2) For every pathρ ∈ L(M), there exists a pathρ′ ∈

L(M ′) such thatρ ∼ ρ′ or ρ ∼F ρ′.

Intuitively, the abstraction relation defines that any pathof
M is also a path ofM ′. For any failure inM , there exists an
equivalent failure inM ′. In other words, the language accepted
by M is also accepted byM ′. Hence,F(M) = ∅ if F(M ′) =
∅. Therefore, the following property holds.

M � M ′ andF(M ′) = ∅ ⇒ F(M) = ∅. (1)

Intuitively, the above property states that the concrete model
M is correct if the abstractM ′ is correct.

IV. M ODULAR VERIFICATION

In general, a system description is typically given in some
high level modeling formalism. A finite state model is ex-
tracted from such a description for verification. This paper
assumes that a system is described in a high level modeling
formalism asN = N1‖ . . . ‖Nn where the system is the
parallel composition of componentsNi(1 ≤ i ≤ n), and
the parallel operator‖ is well defined for such a formalism.
Flat verification approaches find the SGM for N where
verification is applied. Due to state explosion, it is often
impossible to verifyN as a whole.

To deal with the high complexity, modular verification
considers the componentsNi(1 ≤ i ≤ n) separately. First,
each componentNi is composed with a contextEi defining
actions inAI

i , and a typical reachability algorithm based on
depth first search is applied to find the reachable state space
Mi such thatMi = Reach(Ni‖Ei). FunctionReach shown in
Algorithm 1 is a simplified version of the one in [30].

When considering a componentNi, its context is the
composition of all components inN exceptNi. The SG of
Ni embedded in such a context is referred to asMC

i . It
is straightforward to see that∀0 ≤ i ≤ n : F(MC

i) =
∅ ⇒ F(M) = ∅. However, the complexity ofMC

i may be
as high as that of the SG ofN . Therefore, it is necessary to
find a MA

i for componentNi such thatMC
i � MA

i and the
complexity of MA

i should be much lower than that ofMC
i .

By the definition of the abstraction relation and property(1),
∀0 ≤ i ≤ n : F(MA

i) = ∅ ⇒ F(M) = ∅.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 5

(a) (b) (c) (d)

Fig. 3. (a) Block digram of a simple asynchronous circuit. (b) - (d) The SGs for moduleM1, M2, andM3 where the inputs of the components are set to
be completely free.

Algorithm 1 : Reach (Ni‖Ei)

S = ∅, R = ∅;1

Select an actiona from enable(init);2

Push(init, enable(init)− {a}, a) onto stack;3

S = {init};4

while stack is not emptydo5

Execute actiona, and find a new states′;6

R = R ∪ {(s, a, s′)};7

if s′ ∈ S then8

Select another actiona from enable(s);9

else10

S = S ∪ {s′};11

else if enable(s) on top of stack is emptythen12

Pop stack;13

else14

Select an actiona from enable(s′);15

Push(s′, enable(s′) − {a}, a);16

Traditionally, an over-approximate contextE ′
i needs to be

found forNi such that the SGM ′
i for Ni includes all essential

behavior inNi to avoid false positive results. However,M ′
i

may include extra behavior that is not supposed to happen
in real operation, and may lead to false counter-examples. To
reduce false counter-examples, abstraction refinement is used
to identify and remove extra behavior fromM ′

i , and refines
it to be MA

i such thatMA
i � M ′

i . There are several serious
issues in this approach as pointed out in the introduction. In the
remainder of this paper, a different method is presented that
works in the opposite direction and findMA′

i for Ni from M ′′
i

such thatM ′′
i � MA′

i by expanding it with more behavior, and
MA′

i � MA
i .

V. COMPOSITIONAL REACHABILITY ANALYSIS

This section first shows the basic concepts of constraints
which can be used to exchange interface information among

components. Then, it presents a compositional reachability
analysis method where components coordinate with each other
to expand their SGs gradually within under-approximate con-
texts.

A. Concepts of Constraints

An action a is enabled in a states if there is a states′

such thatR(s, a, s′) holds. Recall that each state is labeled
with a set of propositions. An action is also regarded to be
enabled in a state only when all the labeled propositions hold.
Let conj : S → 2P be a function that maps a non-failure state
to a Boolean conjunction onP , and it is defined as follows.

conj(s) =
∧

L(s) for s 6= π.

Specifically, functionconj(s) returns a Boolean conjunction
over the propositions labeled in states if it is not the
failure state. An action is enabled ins if conj(s) evaluates
to true. This definition relates each enabled action with a
Boolean formula. Therefore, we can characterize the en-
abling conditions of actions with Boolean formulas, denoted
as constraints. Given a SGM = (P,A, S, init, R, L), let
f : 2P → {false, true} be a Boolean function defined over
P . A constraintC = {(a, f)|a ∈ A} of M is a set of pairs of
actions ofM and their assigned Boolean functions. The rest of
the paper usesC(a) to denote the reference tof corresponding
to a such that(a, f) ∈ C. Additionally, if C1 and C2 are
defined on the same set ofA, C1 ⇒ C2 is used to denote
∀a ∈ A : C1(a) ⇒ C2(a). Constraints can also be regarded
as the characteristic function of the excitation region foran
action as in [10]

This section assumes that constraints are defined for all
actions of SGs to simplify presentation. When a constraint is
imposed on actions, it may restrict how actions are enabled,
therefore causing some state transitions to become invalid. A
state transition(s, a, s′) ∈ R such thats 6= π is valid with
respect to a constraintC iff conj(s) ⇒ C(a) holds.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 6

By the above definition, a constraintC of a SGM on an
actiona corresponds to a set of valid state transitions defined
as follows.

RC(a) = {(s, a, s′) ∈ R | conj(s) ⇒ C(a) ∧ s 6= π}

It can be seen thatRC(a) becomes smaller if a stronger
constraintC on a is imposed. Intuitively, a stronger constraint
implies that the enabling conditions for actions become more
restricted, and more state transitions may not be valid anymore.
This observation is reflected in the following property.

∀a ∈ A :
(

(C1(a) ⇒ C2(a)) ⇔ (RC1(a) ⊆ RC2(a))
)

(2)

whereC1 andC2 are two different constraints. This property
states that the behavior in a SG regarding an actiona is
reduced when a stronger constraint is imposed ona, and
vice versa. For example,RC2(a) includes all state transitions
(s, a, s′) ∈ R in a SG if C2(a) = true, andRC1(a) ⊆ RC2(a)

for all other C1(a). This example illustrates thattrue is the
weakest constraint for any action of a SG, and the SG remains
the same with such a constraint.

As seen above, a constraint corresponds to a set of state
transitions of a SG. Therefore, the constraint of a given SG
can also be extracted. LetM be a SG such thatM =
(P,A, S, init, R, L). The constraintC extracted fromM sat-
isfies

∀a ∈ A :



C(a) =
∨

R(s,a,s′)∧s6=π

conj(s)





where
∨

R(s,a,s′)∧s6=π conj(s) is the disjunction ofconj(s)
for all state transitions(s, a, s′) ∈ R such thats is not the
failure state.

Let M1 and M2 be two SGs such thatM1 � M2, and
C1 and C2 two constraints derived byM1〈C1〉 and M2〈C2〉,
respectively. According to the definition of the abstraction
relation, the behavior ofM1 is more restricted than that of
M2. This implies that the enabling condition of an action is
more restricted inM1 than inM2. Consequently, this indicates
that a stronger constraint may be derived from the refined SG
as shown by the following property

(M1 � M2) ⇒ (C1 ⇒ C2) (3)

B. Model Generation

This section presents a compositional method that constructs
the state space of each component using an under-approximate
environment, and expands it to include all states and state tran-
sitions allowed by its neighboring components with constraints
introduced in the last subsection. To simplify the presentation,
Ni denotes a component where all its inputs are completely
free.

The expansion-based method is described in Algorithm 2.
Intuitively, constraints determine which state transitions are
allowed in a state. As shown in the algorithm, the initial
constraints for the inputs of each component are set tofalse,
which indicates that the inputs remain stable, and no state
transitions on inputs are allowed. With stable inputs, some
componentMi may produce some state transitions on its

outputs. Then, the output constraints ofMi are found by
function Extract. Since the outputs ofMi may be the
inputs of another componentMj , the output constraints from
Mi become the input constraints forMj . If the new input
constraints are weaker than they were before,Mj may produce
some more state transitions on its outputs, resulting in new
input constraints forMi. If the new constraints are weaker
than before, new states may be found for some components.
In other words, this process alternates between two phases:
expanding the component state spaces and exchanging con-
straints. It iterates until the output constraints produced by
each component do not change anymore, or failures are found
in a component SG.

Algorithm 2 : Expand(N = N1‖ . . . ‖Nn)

Let A be all actions inN ;1

foreach a ∈ A do2

C′ = C′ ∪ {(a, false)};3

foreach 1 ≤ i ≤ n do4

Let Mi be an empty SG forNi;5

C = ∅;6

while C 6= C′ do7

C = C′;8

for 1 ≤ i ≤ n do9

Ci = findConstraint(C, Mi) ;10

Mi = Reach(Ni, Mi, Ci) ;11

if F(Mi) 6= ∅ then12

return F(Mi);13

CO
i = Extract(Mi);14

C′ = C′ ∪ CO
i ;15

Next, the functions used in Algorithm 2 are explained with
more detail. FunctionfindConstraint takes the union of
the output constraints from all components, finds a subset of
these constraints for the input actionsAI

i of componentMi,
and project these constraints onto the interface ofMi. More
specifically,findConstraint(C, Mi) returnsCI

i such that

CI
i = {(a, f ′) | ∀a ∈ AI

i : f ′ = C(a)[Pi]}

whereC(a)[Pi] denotes the projection ofC(a) onto Pi.
FunctionReach(N, M, C) used in Algorithm 2 is modified

from Reach in Algorithm 1, and it is shown in Algorithm 3
whereC is a constraint defined for input actions inN . This
constraint specifies the conditions that input actions need
to satisfy to become enabled. Additionally, partial SGsMi

generated during the expansion process are also used by
this function to avoid redundant work, and only new states
and state transitions found under constraintC are added into
M . In Algorithm 3, new actions enabled in a states under
constraintsC are defined by two functionsenable′(N, s, C)
andenable(N, s, C). enable′(N, s, C) is used only once at the
beginning every time whenReach(N, M, C) is called, and it
only includes input actions actions enabled in states underC.
It is defined as follows.

enable′(N, s, C) = {a | a ∈ AI ∧ conj(s) |= C(a)}

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 7

Algorithm 3 : Reach (N, M, C)

foreach s ∈ S do1

E = enable′(N, s, C);2

Select an actiona from E;3

Push(s, E − {a}, a) onto stack;4

while stack is not emptydo5

Execute actiona, and find a new states′;6

R = R ∪ {(s, a, s′)};7

if s′ ∈ S then8

if E on top of stack is emptythen9

Pop stack;10

else11

Select another actiona, and removea from12

E;
else13

S = S ∪ {s′};14

E = enable(N, s′, C);15

Select an actiona from E;16

Push(s′, E − {a}, a);17

The reason why this function is necessary at the beginning of
Reach(N, M, C) is to avoid redundant work. Notice that no
actions inAO ∪AX in any state inM can be enabled under
the previous constraints. WhenReach(N, M, C) is called, the
new constraint may be weaker, and only new input actions
may become enabled under the new constraint. If non-input
actions are also considered, the enabled action set may include
a large number of non-input actions that have been considered
previously, and time would be spent without finding new states
or state transitions.

On the other hand,enable(N, s, C) is used in the rest of the
algorithm, and it is defined as follows.

enable(N, s, C) = enable(N, s) ∪ enable′(N, s, C)

where functionenable(N, s) returns actions inAO ∪ AX

enabled ins. Obviously,enable′(N, s, C) ⊆ enable(N, s, C).
This function is defined as such because new states may be
found by executing the input actions inenable′(N, s, C), and
actions include input and non-input actions may be enabled
in these new states. From the above description, input actions
are enabled subject to constraintC while non-input actions are
enabled subject to the behavioral description ofN .

Function Extract derives constraints for outputs of a
component from its SG. Each component updates its behavior
on its output actions, while its input actions are defined by
the environment. Therefore, given a SG of a component, only
the constraint for non-input actions are extracted. However,
the behavior on internal actionAX of a SG is invisible to
other SGs, and the constraints for the internal actions are
meaningless to other modules. Therefore, the constraints are
extracted only for the output actions as shown in Algorithm 4.

Theorem 5.1 below proves the soundness of the compo-
sitional reachability method described above. It shows that
each component SG generated at the end of expansion is
an abstraction of the SG of the entire system projected to
the component. To prove the theorem, we show that every

Algorithm 4 : Extract(M)

P = ∅;1

foreach a ∈ AI ∪ AO do2

P = P ∪ •a;3

P = P ∪ a•;4

foreach (s, a, s′) ∈ Ri and s 6= π and a ∈ AO
i do5

Let c be conj(s) projected ontoP ;6

Replace(a, f) ∈ Ci with (a, f ∨ c);7

return Ci;8

path of the complete SG projected to a component has a
corresponding path in the component SG. To prove the above
claim, we show that every action enabled in a path of the
complete SG projected to the component is also enabled in
the corresponding path of that component SG.

Theorem 5.1:Let M be the SG forN1‖ . . . ‖Nn. Also let
Mi be component SGs corresponding toNi for all 1 ≤ i ≤ n

after callingExpand(N1‖ . . . ‖Nn). The following property
holds.

∀1 ≤ i ≤ n : M [Ai] � Mi.

Proof: To proveM [Ai] � Mi, it is necessary to show that
for every ρ ∈ L(M [Ai]), there existsρi ∈ L(Mi) such that
ρ ∼ ρi or ρ ∼F ρi.

Let q, s, andp denote states inM [Ai], Mi, Mj, respectively.
Also let ρ = (q0, a0, . . .) ∈ L(M [Ai]) where L(q0) =
L(init) ∩ Pi.

First, we partition each path inM [Ai] according to actions
in Ai. Notice that for every(qi, ai, qi+1) on ρ, L(qi) =
L(qi+1) if ai 6∈ Ai. Therefore,ρ can be partitioned by
a′
0, a

′
1, . . . ∈ Ai into ϕ0, ϕ1, . . . such that

ρ = ϕ0 ◦ a′
0 ◦ ϕ1 ◦ a′

1 ◦ . . .

where◦ denotes the concatenation operator, anda′
l = ak for

someak ∈ Ai on ρ, and

ϕl = (ql,0, ζ, ql,1, ζ, . . . , ql,m).

WhereL(ql,h) = L(ql,j) for 0 ≤ h, j ≤ m. In particular, for
all q0,h in ϕ0, L(q0,h) = Li(initi) = L(M) ∩ Pi. Note that
ϕl may be a single state instead of a path segment.

Next, we show that every action inAi enabled inρ is also
enabled in a path inMi. Consider actiona′

0 first. It is enabled
in M [Ai] after ϕ0. To prove thata′

0 is also enabled ininiti,
two cases need to be handled.

Case 1:a′
0 ∈ AO

i . This means that actiona′
0 is controlled

by Mi. As shown in Algorithm 3, actions inAO
i

are enabled independent of any external constraints.
Therefore,a′

0 is enabled ininiti.
Case 2:a′

0 ∈ AI
i . This means that actiona′

0 is controlled
by another SGMj . Similar to Case 1,a′

0 is enabled
in initj of Mj. Next, we need to show thata′

0 is
also enabled ininiti. According to Algorithm 2, a
constraintc for a′

0 is extracted frominitj, which
is projected toPi ∩ Pj for it to be applied toMi.
Since the entire design has a single initial state,
Li(initi) ∩ Pj = Lj(initj) ∩ Pi, indicating that the

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 8

labellings of the initial states ofMi and Mj agree
on the shared propositions. Therefore, the projected
constraintc of a′

0 extracted frominitj holds ininiti,
and consequently it implies thata′

0 is also enabled
in initi.

From both cases, it can be concluded that there exist
(initi, a

′
0, s1) in Mi corresponding toϕ0 ◦ a′

0 ◦ ϕ1 such
that Li(s1) = L(q) ∩ Pi and for all q in ϕ1. Since a′

0

is on the interface betweenMi and Mj , there also exists
(initj, a

′
0, p1) in Mj according to the definition of the SG

parallel composition, andLi(s1) ∩ Pj = Lj(p1) ∩ Pi. After
executinga′

0, L(q1,h) = Li(s1) for all statesq1,h in ϕ1.
Similarly, the above argument can be applied toa′

1 from ϕ1

in ρ and froms1 in Mi, and the same conclusion can be drawn.
By induction, it can be concluded that there exists(si, a

′
i, si+1)

in Mi corresponding toϕi◦a′
i◦ϕi+1. This is equivalent to that

there existsρi ∈ L(Mi) for everyρ ∈ L(M [Ai]). Therefore,
M [Ai] � Mi.

On the other hand, this method is incomplete in that false
counter-examples may exist in some component SGs. This is
due to the limitation of the constraints, which do not give any
information about the internal states of a component. This may
cause extra input behavior introduced when the constraints
are applied to expand component SGs. Therefore, refinement
is needed after the model generation step to further remove
extra behavior. This subject is out of scope of this paper.

C. Example

This section illustrates the idea of the compositional reach-
ability method using the example shown in Fig.3. Initially,all
signals are low. For SGsM1 andM2, no actions are enabled
because none of these actions satisfies the initial constraint.
For M3, the initial constraint allows actionz+ to be enabled.
After executing this action, a new state is reached. The SGs
after the first iteration is shown in Fig. 4(a).

Now, signal z has changed, and new constraint can be
derived wherez is high. This allows input actionz+ in Mi

andM2 to be enabled. After executing this action, the invisible
actionsv− and w− also become enabled. Executing these
actions lead to new states inM1 andM2. In these new states,
output actionsy+ andx+ become enabled. Again, executing
these output actions result in new states where constraintsfor
actions onx and y can be derived forM3. Meanwhile,M3

remains stable in this iteration since the constraints fromM1

and M2 from the last iteration have not changed. The SGs
after the second iteration is shown in Fig. 4(b).

Since the new constraints for actions onx and y allow
actionsx+ and y+ in M3 to be enabled,M3 is expanded
with new states and state transitions after executing these
actions. The updatedM3 is shown in Fig. 4(c) whereM1

and M2 remain unchanged. Repeating this process eventu-
ally results in SGs for componentM1, M2, and M3 as
shown in Fig. 4(d). Compared to SGs shown in Fig. 3(b)-(d)
where they are constructed with over-approximate contexts,
the SGs obtained by the compositional reachability method do
not contain unreachable states and transitions including ones
causing failures. The numbers of states and state transitions

(a)

(b)

(c)

Fig. 4. (a)-(d) Snapshots of partial SGs generated during compositional
reachability analysis.

Fig. 5. Final SGs after compositional reachability analysis.

(states/transitions) in the SGs in Fig. 3(b)-(d) are 9/14, 9/14,
and 17/38, respectively, while the numbers of states and state
transitions in the SGs in Fig. 5 are 6/6, 6/6, and 10/12,
respectively. For larger examples, the savings may be more
significant as shown by the experimental results.

In [36], an abstraction refinement approach is presented
where constraints are used to reduce state transitions in a
component not allowed by its neighbors. In the above example,
final SGs by the abstraction refinement and this method are
the same. However, the next example in Fig. 6 shows that the
abstraction refinement is incapable of reducing the extra state
transitions introduced by over-approximate contexts, which
may conceal the actual enabling conditions of actions.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 9

(a) (b) (c)

Fig. 6. SGs of two components communicating viaa andb. (a) M1 where
a is output andb is input. (b)M2 wherea is input andb is output. (c) The
SG of M1‖M2.

In Fig.6, M1 in Fig. 6(a) has input actionsb+ and b−,
and output actionsa+ and a−, while M2 in Fig. 6(b) has
input actionsa+ and a−, and output actionsb+ and b−,
respectively. Fig 6(c) shows the SG ofM1‖M2. According to
M1‖M2, transitions(s0, b−, π) and (s1, a−, s0) in M1, and
(s1, a−, s4), (s4, b+, s5), and (s5, b−, s0) in M2 are extra
since they do not exist inM1‖M2. The constraints fora+
and a− from M1 are C(a+) = ¬a ∧ ¬b and C(a−) = a,
and constraints forb+ and b− from M2 are C(b+) = ¬b

and C(b−) = ¬a ∧ b, respectively. Using these constraints
cannot remove any of these extra state transitions. However,
using the state space expansion method described in the paper
avoids generating these extra state transitions in the firstplace.
This example demonstrates an important advantage of the
expansion-based method over abstraction refinement.

VI. EXPERIMENTAL RESULTS

A prototype of the compositional reachability method de-
scribed in this paper is incorporated into an asynchronous sys-
tem verification toolPlato, an explicit model checker, which
can perform non-compositional and compositional verification.
The asynchronous designs are described using an variant of
Petri-nets (PN) which are augmented with Boolean guards
for the PN transitions [27]. The tool also supports abstraction
refinement for SGs constructed using over-approximate envi-
ronment. Experiments have been performed on several large
asynchronous circuit designs, and results are compared with
those obtained by using abstraction refinement.

A. Examples

In our method, asynchronous systems are specified in a
high level description. To verify a design, all components in
that high level description are converted to SGs first. The
first three designs are a self-timed FIFO [25], a tree arbiter
of multiple cells [12], and a distributed mutual exclusion
element consisting of a ring of DME cells [12]. Despite all
these designs having regular structures to be scaled easily, the
regularity is not exploited in our method, and all the modules
are treated as black boxes. The fourth example is a tag unit
circuit in the Intel’s RAPPID asynchronous instruction length
decoder [34]. This example is an unoptimized version of the
actual circuit used in RAPPID with higher complexity, which

is more interesting for experimenting our methods. The last
example is a pipeline controller for an asynchronous processor
TITAC2 [37]. All these five examples are failure free, and all
of them are too large for the non-compositional approaches.

In the experiments, DME, arbiter, and FIFO examples
are partitioned according to their natural structures. In other
words, each cell is a component. For the tag unit circuit, it
is partitioned into three components, where the middle five
blocks form a component, and gates on the sides of the
component in the middle form the other two. The pipeline
controller is partitioned into ten component, each of which
contains five gates.

B. Results and Analysis

The experimental results are shown in Table I. To show
the effectiveness of this compositional reachability method,
it is compared with an abstraction refinement method as
described in [36]. This abstraction refine method also utilizes
the constraints. However, the initial component state graphs are
constructed using over-approximate contexts, and constraints
are derived and applied to reduce states and transitions in each
component SG not allowed by its neighboring components
iteratively. The results obtained by state space contraction
with abstraction are shown in columns in Table I under
Over-Approximate, while the results by state space expansion
described in this paper are shown in columns in the table under
Under-Approximate.

All experiments are performed on a Linux workstation with
a Intel Pentium Dual-Core CPU and1 GB memory. In the
table, column#Cells shows the number of components in
a design after partitioning, column|A| shows the number
of actions in a design. ColumnMem and T ime are the
maximal memory and the total time taken for verifying each
design, respectively. The last column#π shows the number of
components containing failures at the end of each verification
run. The memory is in MBs and the time is in seconds.

First thing to notice from the table is that the memory and
runtime usage required by the method based on state space
expansion are much less than what are required by the state
space contraction-based one for all designs. The savings are
results of not generating unreachable state space for each
components in the first place and therefore avoiding time
for abstraction refinement. Next, all designs except PC are
free of failures after using methodUnder-Approximate. Even
for PC, the number of components containing failures is less
by using the state space expansion-based method. It is more
interesting when ARB is examined more closely. Although
the results in the table shows all components in ARB15,
31, and63 free of failures underOver-Approximate, they are
obtained by composing several smaller components together
to form larger ones so that more state space reduction can
be applied to lead to stronger constraints and consequently
stronger refinement. Otherwise, more than half of all com-
ponents in ARB 15, 31 and 63 would contain failures. This
indicates that more accurate constraints that can be derived
because a lot of unreachable state space is not generated in
the first place in the state space expansion-based method,

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 10

TABLE I
EXPERIMENTAL RESULTS AND COMPARISON WITH THE CONTRACTION-BASED METHOD.

Over-Approximate Under-Approximate
Design # Cells |A| Mem Time #π Mem Time #π

100 804 30 18 0 16 15 0
200 1604 80 41 0 36 34 0

FIFO 400 3204 237 102 0 74 78 0
600 4804 471 184 0 124 126 0
800 6404 781 290 0 183 177 0

FIFO∗ 800 6404 772 273 1 28 31 1

20 440 35 43 0 6 10 0

50 1100 88 113 0 18 30 0

DME 100 2200 191 249 0 41 83 0

200 4400 446 600 0 92 199 0

300 6600 771 1044 0 147 383 0

DME∗ 300 6600 748 990 1 29 41 1

15 244 7 6 0 2 2.1 0

ARB 31 500 33 47 0 6 5 0

63 1012 262 988 0 16 12 0

ARB∗ 63 1012 255 912 1 11 9 1

TU 3 96 117 103 0 12 7.7 0

PC 10 100 23 47 4 1 1.5 1
∗ − one of cells is injected with failures.

therefore these constraints characterize the enabling conditions
of actions more precisely. On the other hand, in the state
space contraction-based method, constraints representing the
true enabling conditions of actions may be concealed by the
unreachable states caused by the over-approximate contexts
as shown by the second example in the previous section.
This consequently leads to the unreachable state space not
being able to be identified and removed. Therefore, state space
expansion brings double advantages of reducing runtime and
memory usage as well as introducing less number of false
failures, which contributes to further savings of avoidingthe
expensive counter-examples confirmation step.

For designs followed with∗ in Table I, one of cells is
intentionally injected with failures. As shown by the results
in the table, this method is much more efficient compared
with method Over-Approximate. As explained before, this
method stops right away when a failure is found in any
component in a design while methodOver-Approximatehas
to keep refining component SGs containing failures in hope
that eventually these failures may be removed after the extra
behavior is refined away, which takes more time. Therefore,
methodUnder-Approximateis also more efficient for designs
containing failures.

TABLE II
EXPERIMENTAL RESULTS AND COMPARISON WITH THEATACS.

ATACS Under-Approximate
Design # Cells Mem Time #π Mem Time #π

FIFO-s 800 75 1783 0 164 255 0

DME-s 300 61 678 0 123 320 0

ARB-s 63 11 104 0 15 12 0

The same experiments are also performed using
ATACS [29], the closest relative to our method.ATACS
supports a similar modular verification framework as in this
paper. However, modular verification is made possible in
ATACS by Petri-net reduction based abstraction, and the

Petri-net reductions are effective only on a certain type of
Petri-nets, and it does not support abstraction refinement
described in this paper. Therefore, a lot of false counter-
examples may be produced if the context for a component
derived by these reductions is not accurate. Since these
Petri-net reductions are not effective on the specification
formalism used in this method, little or no reduction is
achieved when deriving context for each component, and
verification for each component is like verifying the entire
design. 1 GB memory is exhausted when verifying the first
component in all experiments, therefore the runtime and
memory usage results obtained by usingATACS on these
examples are not shown in Table I.

To compare the work in this paper andATACS, the behav-
ioral descriptions of FIFO, DME, and ARB are modeled in
Petri-nets acceptable forATACS and used for experiments.
The results are shown in Table II. Notice that these new
descriptions do not model the actual circuits, instead they
describe the circuits’ behavioral specification. It can be seen
from the table that the memory usage byATACS is far less than
that by this method while the runtime is much longer. This is
becauseATACS produces a very small Petri-net description for
each component, and the resulting SG is small too. Moreover,
only the SG for a single component is generated at a time.
However, reduction needs to be performed on the whole
design descriptions for each component, therefore taking more
time. Even thoughATACS shows some advantage over this
method, the effectiveness ofATACS depends on if the design
descriptions are appropriate for the reductions availablein
ATACS. These experiments also show that this method is more
general in terms of formalisms describing designs.

Table III shows the comparison of the largest SGs en-
countered during the verification process using methodOver-
ApproximateandUnder-Approximate. The largest SGs for the
components produced by methodOver-Approximateoccur at
the beginning of the verification process when the SGs for

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 11

TABLE III
LARGESTSGS FOUND BY Over-ApproximateAND Under-Approximate.

Over-Approximate Under-Approximate
Design Cells |S| |R| |S| |R|

FIFO All 57 188 20 28

DME All 329 1100 152 272

ARB All 673 3760 52 84

Cell 1 181 474 101 149

TU Cell 2 17481 108376 9410 43635

Cell 3 1081 3624 236 447

some components are produced with maximal environment.
For all examples, the SGs for all components in each ex-
ample are refined to the ones whose numbers of states and
transitions are the same as the corresponding entries under
Under-Approximate. However, these entries show the size of
the largest SGs produced by methodUnder-Approximateat
the fixpoint of reachability analysis. These SGs also happen
to be the SGs produced from the corresponding components
embedded within the exact contexts. These results demonstrate
the tightness of the SGs generated by this method.

The next set of experiments tries to show the impact of
design partitioning on the performance of these two methods.
In these experiments, FIFO with 100 cells (FIFO-100), ARB
with 31 cells (ARB-31), and DME with 20 cells (DME-20)
are selected. For FIFO-100, five cells are grouped into a single
component while the other components still have a single cell.
For ARB-31 and DME-20, one component contains two cells
while the others have a single cell. The results from using both
methods are shown in Table IV. Comparing the entries in this
table and the corresponding ones in Table I shows that design
partitioning impacts much more dramatically on methodOver-
Approximatewhere both memory usage and runtime increase
significantly. While the memory usage and runtime increase
too in methodUnder-Approximate, the magnitude of increase
is much smaller and proportional to the size of SGs of the
largest partition in the designs. Again, the largest SGs found
in methodOver-Approximateare much larger than those found
in method Under-Approximate, which are the final results
after refinement is done in methodOver-Approximate. In this
compositional method, the complexity of the largest partition
determines if the whole design can be verified. Therefore, it
is desirable that all partitions are created with about similar
complexities, and smaller partitions are better in terms of
higher verification performance and less memory requirement.

Failures found at the end of verification can be determined
using the approach described in [39]. However, in the above
experiments, such approach is not used to show the capability
of this method to avoid the false counter-examples in the first
place. Since the component SGs constructed using this method
contain far less unreachable state space leading to less failures
to consider, time needed to determine the truth of the failures
in the state space expansion-based method can be much less
than that in the state space contraction-based method.

VII. C ONCLUSIONS

This paper describes a state space expansion method to
construct component state space compositionally. It uses the

constraints extracted from a component’s neighbors to deter-
mine the enabling conditions of its inputs, and constructs the
component state space by gradually loosening the enabling
conditions for inputs allowed by its neighbors. Initial ex-
periments show that this method is very effective to avoid
generating large portion of unreachable state space in the first
place, therefore leading to big savings in memory and runtime
usage.

The method presented in this paper is based on an explicit
representation. Such an explicit representation is more flexible
for asynchronous designs, and can be easier to be adopted
for hybrid system verification with appearance of continuous
variables. Additionally, the performance of explicit model
checking is more predictable. However, since implicit repre-
sentations such as BDDs are widely used in many application
domains, it would be interesting to investigate if the presented
method can be modified for these implicit representations.
Moreover, it is also necessary to find a better representation of
constraints to characterize the enabling conditions of actions
more accurately, therefore making the constructed state space
to be as close the exact one as possible.

REFERENCES

[1] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verifi-
cation by learning assumptions. InProc. Int. Conf. on Computer Aided
Verification, volume 3576 ofLNCS, pages 548 – 562. Springer-Verlag,
2005.

[2] M. Bobaru, C. Pasareanu, and D. Giannakopoulou. Automated assume-
guarantee reasoning by abstraction refinement. InProc. Int. Conf. on
Computer Aided Verification. LNCS, 2008.

[3] S. Chaki, E. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee
reasoning for simulation conformance. InProc. Int. Conf. on Computer
Aided Verification, LNCS, pages 534 – 547. Springer-Verlag, 2005.

[4] S. Cheung and J. Kramer. Context constraints for compositional
reachability analysis.ACM Trans. Softw. Eng. Methodol., 5(4):334–377,
1996.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking.JACM,
50(5):752–794, 2003.

[6] E. Clarke, O. Grumberg, and D. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, 1994.

[7] E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press,
Cambridge, Mass., 2001.

[8] E. Clarke, A. Gupta, J. Kukula, and O. Shrichman. Sat based abstraction-
refinement using ilp and machine learning techniques. InProc. Interna-
tional Workshop on Computer Aided Verification, pages 265–279, 2002.

[9] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. Learning assump-
tions for compositional verification. InProc. Int. Conf. on Tools and
Algorithms for Construction and Analysis of Systems (TACAS), volume
2619 ofLNCS, pages 331–346. Springer-Verlag, 2003.

[10] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Logic Synthesis of Asynchronous Controllers and Inter-
faces. Springer Series in Advanced Microelectronics, 2002.

[11] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems.ACM Transactions on Programming Languages and Systems,
19(2):253–291, 1997.

[12] D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed
Independent Circuits. PhD thesis, Carnegie Mellon University, 1988.

[13] J. Ebergen and R. Berks. VERDICT: A verifier for asynchronous
circuits, Aug. 1995.

[14] D. Giannakopoulou, C. Pasareanu, and H. Barringer. Assumption
generation for software component verification. InProceedings of
ASE’02, pages 3–12. IEEE Computer Society, 2002.

[15] S. Graf and B. Steffen. Compositional minimization of finite state
systems. InProc. Int. Conf. on Computer Aided Verification, pages
186–196, 1990.

IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 12

TABLE IV
IMPACT OF PARTITIONING ONOver-ApproximateAND Under-Approximate.

Over-Approximate Under-Approximate
Design Mem Time |S| |R| Mem Time |S| |R|

FIFO-100 115 183 48505 256348 53 46 20276 79644

DME-20 62 92 23671 112768 11 17 8768 27152

ARB-31 57 86 9837 31074 6 6 444 1054

[16] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems.SIGPLAN
Not., 40(1):122–131, 2005.

[17] O. Grumberg and D. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems, 16(3):843–
871, May 1994.

[18] T. Henzinger, S. Qadeer, and S. Rajamani. You assume, weguarantee:
methodology and case studies. InProc. Int. Conf. on Computer Aided
Verification, pages 440–451. Springer, 1998.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In The 29th Symposium on Principles of Programming Languages, pages
58–70, Jan. 2002.

[20] H. E. Jensen, K. G. Larsen, and A. Skou. Scaling up uppaalautomatic
verification of real-time systems using compositionality and abstraction.
In FTRTFT, pages 19–30, 2000.

[21] J. M. Jensen, D. Giannakopoulou, and C. S. Pasareanu. Learning
assumptions for compositional verification. InLNCS, volume 2619,
pages 331–346, 2003.

[22] C. Jones. Tentative steps toward a development for interfering programs.
ACM TOPLAS, 5(4):596–619, 1983.

[23] J. Krimm and L. Mounier. Compositional state space generation from
lotos programs. InProc. Int. Conf. on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), pages 239–258, London,
UK, 1997. Springer-Verlag.

[24] K. Larsen, B. Steffen, and C. Weise. A constraint oriented proof
methodology. InFormal Systems Verification, volume 1169 ofLNCS,
pages 405–435. Springer-Verlag, Nov. 1996.

[25] A. J. Martin. Self-timed fifo: An exercise in compiling programs into
vlsi circuits. Technical Report 1986.5211-tr-86, California Institute of
Technology, 1986.

[26] K. L. Mcmillan. A methodology for hardware verificationusing
compositional model checking. Technical report, Cadence Berkeley
Labs, 1999.

[27] E. Mercer. Correctness and Reduction in Timed Circuit Analysis. PhD
thesis, University of Utah, 2002.

[28] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE
Trans. on Software Eng., SE-7(4):417–426, 1981.

[29] C. Myers, W. Belluomini, K. Killpack, E. Mercer, E. Peskin, and
H. Zheng. Timed circuits: A new paradigm for high-speed design. In
Proc. of Asia and South Pacific Design Automation Conference, pages
335–340, Feb. 2001.

[30] C. J. Myers.Asynchronous Circuit Design. Wiley Inter-Science, 2001.
[31] A. Pnueli. In transition from global to modular temporal reasoning about

programs. pages 123–144, 1985.
[32] C. S. Păsăreanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and

H. Barringer. Learning to divide and conquer: applying the l* algorithm
to automate assume-guarantee reasoning.Form. Methods Syst. Des.,
32(3):175–205, 2008.

[33] O. Roig, J. Cortadella, and E. Pastor. Hierarchical gate-level verification
of speed-independent circuits. pages 129–137, May 1995.

[34] K. Stevens, R. Ginosar, and S. Rotem. Relative timing. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 208–218, 1999.

[35] S. Tasiran and R. K. Brayton. Stari: A case study in compositional
and hierarchical timing verification. InInternational Conference on
Computer Aided Verification, volume 1254 ofLNCS. Springer-Verlag,
1997.

[36] H. Yao and H. Zheng. Automated interface refinement for compositional
verification. IEEE Transactions on COMPUTER-AIDED DESIGN of
Integrated Circuits and Systems, 27(3):433–446, 2009.

[37] T. Yoneda and T. Yoshikawa. Using partial orders for trace theoretic
verification of asynchronous circuits. InProc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, Mar. 1996.

[38] H. Zheng, E. Mercer, and C. Myers. Modular verification of timed
circuits using automatic abstraction.IEEE Transactions on Computer-
Aided Design of Integrate Circuits and Systems, 22(9):1138–1153, 2003.

[39] H. Zheng, C. Myers, D. Walter, S. Little, and T. Yoneda. Verification of
timed circuits with failure directed abstractions.IEEE Transactions on
Computer-Aided Design of Integrate Circuits and Systems, 25(3):403–
412, 2006.

PLACE
PHOTO
HERE

Hao Zheng Hao Zheng received the M.S. and Ph.D
degrees in Electrical Engineering from the Univer-
sity of Utah, Salt Lake City, UT, in 1998 and 2001,
respectively. He worked as a research scientist for
IBM Microelectronics Division from 2001 to 2004 to
help make model checking a standard step in a ASIC
design flow. Currently, he is an assistant professor of
the Computer Science and Engineering department
of the University of South Florida. His research
interests include formal methods in computer sys-
tem design and verification, parallel and distributed

computing and its applications in design automation, and reconfigurable
computing. His recent research includes development algorithms and methods
that make model checking scalable to large systems. Zheng received an NSF
CAREER award in 2006, and an USF Outstanding Research Achievement
award in 2007.

