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Abstract—Compositional verification is essential to address
state explosion in model checking. Traditionally, an over-
approximate context is needed for each individual componernin 0
a system for sound verification. This may cause state explasi
for the intermediate results as well as inefficiency for absaction
refinement. This paper presents an opposite approach, a corop
sitional reachability method, that constructs the state spce of
each component from an under-approximate context graduayl
until a counter-example is found or a fixpoint in state space
is reached. This method has an additional advantage in that
counter-examples, if there are any, can be found much earlig
thus leading to faster verification. Furthermore, this moduar ] ) S
verification framework does not require complex compositimal ~ Using abstraction, the state space of each individual coeno
reasoning rules. The experimental results indicate that tts of a system needs to be blown up first, and then reduced

method is promising. gradually. The state space of a component generated with
Index Terms—formal verification, model checking, composi- different contexts is illustrated in Fig. 1. The differeritotes
tional verification, logic verification, circuit verificati on, abstrac- characterize the component state space obtained usiegatiff
tion refinement. contexts. CircleU refers to the state space resulting from
an under-approximate context where the input behavior is
I. INTRODUCTION more restricted than that of the exact context, while ci@le
refers to the state space resulting from an over-approrimat
Although tremendous progresses have been made, m text that includes extra input behavior. Between these t

chef:klng still faces the state-explosmn probllem [7,]', CoMsircie E refers to the state space of a component resulting from
positional approaches address this problem in a d|V|de—aqu exact context as if it is embedded in the whole system.

conquer manner, and verify the individual components Withoq i gty the state space outside cirdeis unreachable.
considering the whole system. When checking each indVidyg e " existing modular verification approaches, the ihitia

compone_nt, it is necessary to obtain its appropriate Contey,;e space of each component is constructed as indicated
Wwhere 't_ IS expected. to operate correctly. The purpose of 89 circle O. The goal of abstraction refinement is to shrink
appropriate context is used to remove from each compongfitie o 1o be as close to circlg as possible by reducing the
the behaviors that do not exist in the complete system.  nreachable state space. If the unreachable state spaeeyis v
In the existing compositional approaches [31], [18], [15}5 46 initially, which can be the case in many situations, th
[4], [23], [14], [38], [39], an over-approximate context-ab , ocess of this reduction can take a lot of time. In addittba,
;tracuon or assumption Is US‘?‘?‘ fo_r each .component to f'egmplexity of each component needs to be controlled during
Its state space for s_ound ver|f|c_:at|on. This context abStrapﬁ‘artitioning because the size of the single largest compone
tion or assumption is needed in order to avoid any falgfoiates if the whole system can be verified. To accommo-
pos_|t|ve resul_ts. Ideally, this context should be accutate date this requirement, fine-grained partitioning is desioe
avoid excessive number of false counter-examples. HOWeVRy jireq in the existing approaches. However, this mayltresu
manually finding such an context with higher accuracy is Vefy fnctionally unnatural partitioning that may cause some
difficult, if not impossible, and very time-consuming if thenegative effects, such as more false counter-examples. In
component interfaces are complex. Lately, some rese&Chgiqition to the excessive peak size problem, verification is
proposed automated approaches [9], [3], [1] to generate coRaved in the above approach because refinement continues
text assumptions guided by local counter-examples. even though failures are found hoping that these failureg ma

Although impossible behavior due to abstract contexts mg% removed later by refinement. This paper refers to this kind
be reduced by abstraction refinement, some obvious shortcQ§pgiaie space construction skate space contraction

ings of these approaches can be pointed out as follows.

Fig. 1. U, E, and O represent the state space generated using under-
approximate, exact, and over-approximate contexts, c&sply.

B)Ll'o address the above problems, this paper presents a dif-
Hao Zheng is with the CSE dept. of the Univ. of South Floridampa, ferent approachstate Space expa_nsmiﬁhe basic 'dea is that
FL 33620. This material is based upon work supported by théohal the state space of a component is constructed using an under-

findings, and conclusions or recommendations expressdusmtaterial are

those of the author(s) and do not necessarily reflect thesvafvthe National is restricted. Start"_]g frpm the initial S.tate Spe}ce ded'Ote.
Science Foundation. as U, components iteratively exchange information on their
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N=Nyl TN, and the last section concludes the paper, and points out some
# future improvements.
‘ Model generation ‘
¢ Il. RELATED WORK
4‘ Abstraction refinement ‘ Compositional reasoningnd abstractionare essential to
¢ verifying large systems. Compositional reasoning, brpadl
I Success referring to compositional verification or compositionainm
Verificat }—»Done L : ! .
‘ erfication imization, takes advantage of the given design hierarchy. A
‘ Real general compositional verification method is basedssume-
‘ Check counter-examples }—»Report guaranteestyle reasoning, and verifies global properties by
verifying local properties of each component in a systenj,[28
False [22], [17], [18], [26]. It has been applied to the verificatiof

timed circuits [35]. In a compositional verification framesk,
each component of a system is considered separately. During
verification, assumptions about the environment with which
the componentinteracts are made; then these assumptiets ne
interfaces to loosen their input behavior, and this allowesi to be discharged later. Assumptions are typically gendrate
to gradually expand their state spaces. This processateraty hand. If the component has complex interactions with its
until the state space of each component reaches a fixpointarironment, it can be difficult to make accurate assump-
a counter-example is found. At the end, the component st#itens. Recently, there is some work on deriving assumptions
space is still an abstraction of the concrete one if noneahth automatically. In [21], an automated approach is described
contains counter-examples. However, the experimentaltsesto generate the assumptions for compositional verification
show that the resulting component state space is much closbis approach starts with a set of the weakest assumptions
to the concrete one leading to shorter verification time.  for a component, and iteratively refines these assumptions.
Fig. 2 shows a compositional verification flow. It takes aBlthough the approach guarantees that the iteration textedn
input a parallel composition of a set of components desdribié is not clear how efficient the approach would be in terms
in some high level modeling formalism. In general, an alestraof iterations necessary to generate a set of assumptions to
model needs to be generated for each component for soymdve the properties. Also, this approach can only handle
verification. However, an abstract model typically incladesafety properties. In addition, global specification netedise
impossible behavior that may not occur when the componenbiken down to local properties defined on the interfaces of
embedded in the whole system. Abstraction refinement is thign@ components, which can be very difficult. Similar work is
applied before verification to eliminate the impossibledebtr also described in [3], [1], [2], [32].
as much as possible to avoid large number of false counterAbstraction produces the reduced model of a system by
examples, which can be very expensive to check if they agbstracting away certain details that are unnecessary when
real. After verification, if all components are correct, thdire reasoning about the system [6], [11]. In [20], a hierarchica
system is claimed to be correct. On the other hand, if aapproach similar to that in [12] is presented. In this apphoa
counter-example is found to be real, it is reported. Othsewi an abstraction for each module in a system is found and
the false counter-examples are used in the next iterationwfification is applied to the composition of those abstoaxst
model refinement and verification. In [24], a constraint oriented proof methodology is applied
The method presented in this paper focuses on model gem-verify infinite systems. Constraints on infinite systems a
eration step in Fig. 2. There are rich literatures on abstiac broken into an infinite number of simple constraints on finite
refinement, and discussing and comparing this work with a{/stems, then these constraints are grouped into finitea&qui
of them in detail is out of scope of this paper. Since othégnt classes. However, this methodology is not completean t
compositional reasoning approaches, to our best knowledtie reduction of infinite systems is not guaranteed. In [49],
either do not consider model generation or do not support theftware model checking method utiliziigzy abstractionis
similar method to the one presented in this paper, this papgesented to improve performance by adding information dur
compares this work with one previous abstraction refinement abstraction refinement only when necessary. This method
method for modular verification to show its effectiveness. and [8], [5] fall into a category called “Counter-Example
This paper is organized as follows: section Il gives aBuided Abstraction Refinement” (CEGAR). In general, these
overview of the previous work on compositional verificatiomethods build an abstract model where verification is agplie
and abstraction refinement. Section Ill gives a brief back-an abstract counter-example is found, it is checked on the
ground review. The next three sections describe the neencrete model. If there is a corresponding concrete counte
method proposed in this paper. Section IV describes oexample, then a true violation is found. Otherwise, theralost
modular verification framework. Section V introduces the-co counter-example is false due to information loss in therabst
cepts of interface constraints, and describes the conpuait model. And the abstract model is refined using the false
reachability method using the constraints. Section VI@nés abstract counter-example, and then verification repedts. T
experimental results on several large asynchronous dgsignethod presented in this paper is orthogonal to those CEGAR

Fig. 2. A compositional verification flow.



IEEE TRANSACTIONS ON CAD, VOL. XXX, NO. XXX, OCTOBER 2008 3

approach in that this method builds abstract models froActions are used to model dynamic behavior of systems. For
under-approximations, while the CEGAR approaches refinasSG, A = A’ U A9 U AX where A! is the set of actions
over-approximate models with the false counter-exampies.controlled by an environment of a system such that the system
addition, this method is proposed by verifying individuatan only observe and react® is the set of actions controlled
components in a design, while the CEGAR approaches drg a system responding to its environment, a4l is the set
applied to verifying the entire designs. On the other handf actions controlled by a system internally. Each actiois
CEGAR approaches can be used following this method &ssociated with two sets of propositions, denote®@asnd
check if counter-examples in any component is real. ae, respectively. For example, in asynchronous circuitsheac

In [16], an approach is presented to construct a model framire w has two actionsy+ andw—, while ew+ = {-w} and
under-approximation similar to our method. It graduallylad w+e = {w}, andew— = {w} andw—e = {—w}. Execution
more execution traces into an under-approximated modei afof an actiona results in a new state by removing from
it is checked correctly. However, that approach is for bathdand addingue into the labellings of the existing state. Given
model checking to find counter-examples while ours is fag,a,s’) € R,
proving correctness. Again, that approach considers eentir
designs, while ours belongs to compositional verification.

Several tools have been developed for asynchronous circliiis paper useésy, a, s2) € R andR(s1, a, s2) to denote that
verification [13], [33], [29]. [13] uses a hierarchical veri (s1,a, s2) is a state transition of a S&. We assume that the
fication approach similar to [12]. It checks safety as wetitate transition seR is total such that every state has some
as liveness properties. In [33], asynchronous circuits asdccessor.
the specification modeled in Petri-nets are represented byFig.3(a) shows a simple asynchronous circuit as the running
BDDs, and verification is performed by symbolic traversaéxample to illustrate the ideas presented in this paper. The
Compared to this method, both approaches are inherently noamponent labeled withC” is a C-element whose output is
compositional. In [38], [39], a modular approach is presdnt high when both inputs are high, low when both inputs are low,
to verify timed asynchronous designs using abstractiorhmebr remains unchanged otherwise. This circuit is partittbne
ods based on Petri-net reductions. These methods simpliffo three componentsy/;, M, and Ms. Fig.3(b), (c) and
Petri-net models of asynchronous designs either followleg (d) show the corresponding SGs for the components
design partitions or directed by the properties to be vetifieMs, and M where their inputs are set to be totally free,
Although these methods are very effective for a particuiadk meaning they can change to high or low in any state. For
of Petri-nets, they are not sufficient for the Petri net medetlarity, only the labellings of the initial states are shown
used in our method. In the figure, labellings of multiple actions on a single arc

indicate multiple state transitions with the same start end
[1l. PRELIMINARIES states but on different actions. For example, in Fig. 3(d),

This section introduces basic notations and definitions 1€ arc fromsi, to = denotes two different state transitions:
state graphs and their relative operators. It also presevs (51{175”+’7;) and (s14,y+, 7). In particular, forMs, its input
the correctness of safety properties is formulated andkdmbcacot'O”SA = {e+,2—,y+,y-}, and its output actions
in this framework. A% = {2+, z— ut, u—}. _

A path of M is a sequence of alternating states and
actions of M, p = (s, ao, 1, a1, S2, - - -) such thatsy = init,

A. State Graphs si € 8,a;, € A andVi > 0 : (s;,a;,8+1) € R. A state

State graphsre used to model the behavior of concurrent ¢ g s reachable froma states € S if there exists a path
systems. A state graph is a vertex-labeled and edge-labeled (5 4, ..., s,) such thats = sy ands’ = s,. A state
digraph. Vertices represent states, labeled with proposit ¢ js reachable inMf if s is reachable from the initial state

that hold. Edges represent state transitions, labeled adth ;¢ The trace of pattp, denoted byo(p), is the sequence

L(s') = (L(s) — sa) Uae.

tions whose executions cause the movemen'F from one stgfesctions (ag,ay,---). Two tracesoc = (ao,a1,---) and

to anothgr..More formally, a state graph (S®)is a 6-tuple , _— (ah,d},---) are equivalent denoted bys = o, iff

(P, A, S, init, R, L) where Vi > 0:a; = a; The set of all paths ol forms the language
1) P is a finite set of atomic state propositions, of M, denoted byL(M).
2) A is a finite set of actions, In some cases, not all actions of a component are used
3) S is a finite set of states, in a larger design. These unused actions are converted to
4) init € S is the initial state, invisible actions. Since only the interface behavior istérest
5) RC S x Ax S is the set of state transitions, and to verification, the information on states and state traomsit
6) L:S — 2F is a state-labeling function. related to invisible actions are abstracted away with aiapec

In the above definitionS includes a special state which action¢. For ¢, e¢ = (e = ). The projection of a SG/ by
denotes thdailure stateof a SGM, and represents violationshiding a subset of4,; C A is defined as follows.
of various safety properties. How a system behaves does noPefinition 3.1: Let M be a SG, and4; C A. The projec-
matter after it enters the failure state. Therefore, forngvetion of M onto A;, denoted byM’ = M[A,], is a SG such
a € A, there is a(m,a,7) € R. Each non-failure state is that
labeled with a non-empty set of propositions. Fod.(7) = (. 1) P'=P —Uyacu_a,(saUae).
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2) A =A. M is denoted asF(M) such thatF(M) C L(M) holds. A

3) 8'={s"|VseS3s €S :L'(s)=L(s)NP'}. system is correct ifF (M) = 0.

4) L'(init") = L(init) N P’ According to the definition of SGg,a, ) € R for every

5) For each(s,a,s’) € R, there is a(s,(,s’) € R if a € A. Therefore, a failurep, = (sg,a0,- -, si,ai,m, ")
ag A, or(s,a,s") € R, otherwise. corresponds to a set of traces, denoted>4s;). Given a

6) Vse S:L'(s)=L(s)NP. failure p = (so,a0,- -, 8i,a;,7,--), the non-failure prefix

Similarly, given a tracer = (ag, a1, . . .), its projection onto Of p is (so, a0, -+, s;,a;). If another tracep’ has the same

a subset of visible actionst’ C A4, denoted bys[ 4], is non-failure prefix ofp, p’ is also regarded as a failure. In such
obtained by removing fron all the actionss ¢ A’. 5[A’] is case,p andp’ are calledfailure equivalent

defined recursively as follows. Definition 3.2: Given two pathp = (so,ao,...) andp’ =
, " . (s0,a0,---), and3j > 0 : 8§ = m, p and p’ are failure
g[A] = { g ., Nao # A" orag =, equivalent, denoted gs~y o/, iff YO <i < j. a; = a/.
(ao) oo otherwise With the equivalence between paths being defined, the

wheres’ = (a1, ...)[4A], ando is the concatenation operatorabstraction relation between two SGs is defined as follows.

Given two paths) = (so, ao,...) andp’ = (s}, aj, ...) of M, Definition 3.3: Given SGsM andM’, M’ is an abstraction

p andp’ are equivalent, denoted as~ p/, iff o(p) = o(p'). of M, denoted as\/ < M/, iff the following conditions hold:
The SG of a system is obtained by composing the com-1) A4 = A’

ponent SGs. Parallel composition is defined as follows. This2) For every pathp € L(M), there exists a path’ €

definition is very similar to the traditional definition in L(M") such thatp ~ p’ or p ~p p'.

[2] except that more rules are included for cases involv- Intuitively, the abstraction relation defines that any path

ing m. Given My = (P, Ay, S1, Ri,initi, L1) and Mz = ) is also a path of\f’. For any failure in)M, there exists an

(Py, Ag, S, Ry, inity, L), if AP N A = 0, the parallel equivalent failure in/’. In other words, the language accepted

composition ofM; and Ma, M;[|Mz = (P, A, S, R,init, L), by M is also accepted by/’. Hence,F(M) = () if F(M') =

is defined as follows. (. Therefore, the following property holds.

g - 2%1}2’, M=M andFOM)=0 = FO=0. (1)
3) S C S1 x Sy such that for each(si,s2) € S, the Intuitively, the above property states that the concreteleho
following conditions hold M is correct if the abstract/’ is correct.
a) Ll(Sl) NP, = LQ(SQ) N Py.
b) (s1=m=s2=m)A(s2 =7 = 51 =m). IV. M ODULAR VERIFICATION
4) R C SxAxS suchthatforeack(si, s2),a, (51, 53)) € In general, a system description is typically given in some
R, if 51 # m ands; # 7, then the following conditions hjgh level modeling formalism. A finite state model is ex-
hold. tracted from such a description for verification. This paper
a) (sh=r=sh=mA(sh=m=s|=m) assumes that a system is described in a high level modeling
b) Va € A1 — Ay : Ri(s1,a,8)) A (52 = sb) formalism asN = Ny|...||N, where the system is the
C) Va € Az — Ay : Ra(s2,a,85) A (s1 = s)), parallel composition of component§;(1 < i < n), and
d) Va € Ay N As : Ri(s1,a,s]) A Ra(s2,a,sh). the parallel operatolf is well defined for such a formalism.
Otherwise,s; = s} = sy = s, = « for everya € Flat verification approaches find the S for N where
A U As. verification is applied. Due to state explosion, it is often
5) V(s1,52) € S : L((s1,52)) = L1(s1) U La(s2). impossible to verifyN as a whole.

In the above definition, the composite state is the failure 10 deal with the high complexity, modular verification
state if either module state is the failure state. When sévefonsiders the componenf§;(1 < i < n) separately. First,
modules execute concurrently, they synchronize on theeghafach componend; is composed with a contexi; defining
actions, and proceed independently on their invisibleoasti 2Ctions inA7, and a typical reachability algorithm based on
If either individual SG makes a state transition to the failu d€Pth first search is applied to find the reachable state space
state, there is a corresponding state transition to theréail Mi SUch thathf; = Reach(N;||&;). FunctionReach shown in
state in the composite SG. The behavior of the composite $¢gorithm 1 is a simplified version of the one in [30].

captures the interaction between two individual SGs. When considering a componeny;, its context is the
composition of all components iV exceptN;. The SG of

o N; embedded in such a context is referred to M$’. It
B. Correctness Definition is straightforward to see thatd < i < n : F(MF) =
The failure stater is used to represent various safetyy = F(M) = (). However, the complexity oM/ may be
violations that a system is not expected to produce. Liveness high as that of the SG @¥. Therefore, it is necessary to
properties are not considered in this paper. A system fiad a M/ for componentV; such thatM ¢ < M and the
regarded as being correctf is not reachable in its SG. A complexity of M should be much lower than that af¢ .
path is referred to as failure if a SG contains the failure By the definition of the abstraction relation and propdty,
state reachable via such path. The set of the failures W0 <i <n:F(MA) =0 = F(M)=0.
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Fig. 3. (a) Block digram of a simple asynchronous circui). {lfd) The SGs for modulé/;, Ms, and M3 where the inputs of the components are set to
be completely free.

Algorithm 1: Reach (N;||&;) components. Then, it presents a compositional reachabilit
— — - analysis method where components coordinate with each othe
1 8S=0,R=10; X - )
to expand their SGs gradually within under-approximate-con

2 Select an actiom from enable(init);

3 Push(init, enable(init) — {a}, a) onto stack; texts.

4 S = {init};

5 while stack is not emptgo A. Concepts of Constraints

6 Execute actior:, and find a new state’; An action a is enabled in a state if there is a states’

7 R=RU{(s,a,s)}; such thatR(s,a,s’) holds. Recall that each state is labeled
8 if s €S then with a set of propositions. An action is also regarded to be
9 Select another actiom from enable(s); enabled in a state only when all the labeled propositiond.hol
10 else Let conj : S — 2% be a function that maps a non-failure state
1 S=8Su{s'} to a Boolean conjunction o, and it is defined as follows.

12 else if enable(s) on top of stack is emptthen

13 Pop stack: conj(s /\ L(s) for s # 7.

14 else _ ) Specifically, funct|onconj(s) returns a Boolean conjunction
15 Select an actiom from enable(s"); over the propositions labeled in state if it is not the

16 Push(s’, enable(s’) — {a}, a);

failure state. An action is enabled inif conj(s) evaluates
to true. This definition relates each enabled action with a
Boolean formula. Therefore, we can characterize the en-
Traditionally, an over-approximate contegf needs to be abling conditions of actions with Boolean formulas, dedote
found for V; such that the S@/; for N; includes all essential as constraints Given a SGM = (P, A, S,init, R, L), let
behavior inN; to avoid false positive results. Howeve¥]  f: 2P — {false, true} be a Boolean function defined over
may include extra behavior that is not supposed to happen A constraintC = {(a, f)|a € A} of M is a set of pairs of
in real operation, and may lead to false counter-examples. dctions ofM and their assigned Boolean functions. The rest of
reduce false counter-examples, abstraction refinemergeid uthe paper used(a) to denote the reference focorresponding
to identify and remove extra behavior froM;, and refines to a such that(a, f) € C. Additionally, if C; and C, are
it to be M;* such thatM* < M/. There are several seriousdefined on the same set of, C; = C, is used to denote
issues in this approach as pointed out in the introductiothé  va € A : C;(a) = Ca(a). Constraints can also be regarded
remainder of this paper, a different method is presentetl thg the characteristic function of the excitation region dar
works in the 0pp05|te direction and meA for N; from M;"  action as in [10]
such that\}’ < M{" by expanding it with more behavior, ‘and This section assumes that constraints are defined for all
MA =< MA actions of SGs to simplify presentation. When a constraint i
imposed on actions, it may restrict how actions are enabled,
V. COMPOSITIONAL REACHABILITY ANALYSIS therefore causing some state transitions to become invalid
This section first shows the basic concepts of constrairsste transition(s,a,s’) € R such thats # = is valid with
which can be used to exchange interface information amoregpect to a constraiigt iff conj(s) = C(a) holds.
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By the above definition, a constraiGtof a SGAM on an outputs. Then, the output constraints df, are found by
actiona corresponds to a set of valid state transitions defindahction Ext r act . Since the outputs of\/; may be the
as follows. inputs of another component;, the output constraints from
. M; become the input constraints fdd;. If the new input
Re() = 1{(s,0,5") € R | conj(s) = C(a) N s # 7} constraints are weaker than they were éefMg,may produce
It can be seen thaRc) becomes smaller if a strongersome more state transitions on its outputs, resulting in new
constraintC on a is imposed. Intuitively, a stronger constraintnput constraints forM;. If the new constraints are weaker
implies that the enabling conditions for actions becomeemothan before, new states may be found for some components.
restricted, and more state transitions may not be valid angm In other words, this process alternates between two phases:
This observation is reflected in the following property. expanding the component state spaces and exchanging con-
straints. It iterates until the output constraints produbg
Vae A: ((Cl(a) = C3(a)) & (Re,(a) C RCz(a))) () each component do not change anymore, or failures are found
where(C; andC, are two different constraints. This propertyn & component SG.
states that the behavior in a SG regarding an actiois
reduced when a stronger constraint is imposedaprand ~Algorithm 2: Expand(N = Ni||... | N,,)
vice versa. For exampléyc, ) includes all state transitions
(s,a,s") € Rin a SG ifCy(a) = true, and Re, 4y C Re,(a
for all otherC;(a). This example illustrates Er(ma)rue iszt(h)e 2 forealch a/e A do )
weakest constraint for any action of a SG, and the SG remaihg & = © U {(a, false)};
the same with such a constraint. 4 foreach 1 < i < n do ]
As seen above, a constraint corresponds to a set of stgtg Le.t M; be an empty SG forV;;
transitions of a SG. Therefore, the constraint of a given S&~ ~ b ,
can also be extracted. Le¥/ be a SG such thaf/ = ' while € # C* do

1 Let A be all actions inV;

_ /.
(P, A, S,init, R, L). The constrainC extracted from}M sat- ¢=Ch )
S 9 for 1 <i<ndo
isfies - .
10 C; = findConstraint(C, M;) ;
) 11 M; = Reach(Nl-, Mi, Cz) )
Vae A: | C(a) = \/ conj(s) 1 if F(M;)# 0 then
R(s,a,s')As#£m 13 return F(M;);

Where\V/ ;. o vyneir ConG(s) is the disjunction ofconj(s) 14 CP = Extract(M;);
for all state transitiongs,a,s’) € R such thats is not the 15 ¢’ =c'ucy;

failure state.

Let M; and M, be two SGs such that/; < M,, and
C; andC, two constraints derived by/;(C1) and M2 (Cs),
respectively. According to the definition of the abstractio
relation, the behavior of\/; is more restricted than that of
M,. This implies that the enabling condition of an action i
more restricted inV/; than in M,. Consequently, this indicates
that a stronger constraint may be derived from the refined S8

as shown by the following property ¢l = {(a,f') | Vae Al : f' = C(a)[P]}
(Ml = MQ) = (Cl = CQ) (3)

Next, the functions used in Algorithm 2 are explained with
more detail. Functiorii ndConst r ai nt takes the union of
the output constraints from all components, finds a subset of
ghese constraints for the input actiod$ of component/;,
and project these constraints onto the interfacé/ff More
ecifically,f i ndConst r ai nt (C, M;) returnsC! such that

whereC(a)[P;] denotes the projection @&f(a) onto P;.
FunctionReach(N, M, C) used in Algorithm 2 is modified
from Reach in Algorithm 1, and it is shown in Algorithm 3
This section presents a compositional method that cortstrughereC is a constraint defined for input actions M. This
the state space of each component using an under-apprexingghstraint specifies the conditions that input actions need
environment, and expands it to include all states and st@te t to satisfy to become enabled. Additionally, partial SE&
sitions allowed by its neighboring Componentswith constsa generated during the expansion process are also used by
introduced in the last subsection. To simplify the pres@ma this function to avoid redundant work, and only new states
N; denotes a component where all its inputs are completelid state transitions found under constrairare added into
free. M. In Algorithm 3, new actions enabled in a statainder
The expansion-based method is described in Algorithm @anstraintsC are defined by two functionsnable’(N, s,C)
Intuitively, constraints determine which state transiioare andenable(N, s,C). enable’ (N, s,C) is used only once at the
allowed in a state. As shown in the algorithm, the initiagheginning every time wheReach(N, M, C) is called, and it

constraints for the inputs of each component are s¢utee,  only includes input actions actions enabled in statederC.
which indicates that the inputs remain stable, and no staigs defined as follows.

transitions on inputs are allowed. With stable inputs, some
componentM; may produce some state transitions on its  enable’(N,s,C) = {a | a € A" A conj(s) = C(a)}

B. Model Generation
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Algorithm 3: Reach (N, M,C)

Algorithm 4: Extract (M)

1

foreach s € S do
E = enable’(N, s,C);
Select an actiom from F;
Push(s, E — {a},a) onto stack;
while stack is not emptgo
Execute actioru, and find a new state’;
R=RU{(s,a,8")};

1 P =0

2 foreacha € AT U A° do

3 P=PUeaq;

4 P = PUae;

5 foreach (s,a,s') € R; ands # 7 anda € AY do
6 Let ¢ be conj(s) projected ontaP;

7 Replace(a, f) € C; with (a, f V ¢);

© O N o g b~ W N

if s’ €S then 8 return C;;
if £ on top of stack is emptihen
10 Pop stack;
E elseSeIect another action. and removes from path of the complete SG projected to a component has a
I ' corresponding path in the component SG. To prove the above
13 else ' claim, we show that every action enabled in a path of the
14 S=85U{s}: complete SG p_rojected to the component is also enabled in
15 E = enable(N, s',C); the corresponding path of that component SG.
16 Select an action from E: Theorem 5.1:Let M be the SG forNV,||...||N,. Also let
17 Push(s’, E — {a}, a); M; be component SGs correspondingNpfor all 1 <i<n

after calling Expand(Vq]| ... ||V,). The following property
holds.
VI<i<n:M[A]= M,

The reason why this function is necessary at the beginning of o
Reach(N, M, C) is to avoid redundant work. Notice that noProof: To prove M[A;] < M;, it is necessary to show that
actions inA° U AX in any state inM can be enabled underfor everyp € L(M[A;]), there existsp; € L(M;) such that
the previous constraints. Whé&each(V, M, C) is called, the £ ~ pi OF p ~F pi- _ _
new constraint may be weaker, and only new input actionslLetq, s, andp denote states in/[.A;], M;, M;, respectively.
may become enabled under the new constraint. If non-ing¥g0 let p = (qo,a0,...) € L(M[A]) where L(qo) =
actions are also considered, the enabled action set ma;d'ﬂnclL(mit) nF;.
a large number of non-input actions that have been considere First, we partition each path in/[.4;] according to actions
previously, and time would be spent without finding new statéh ;. Notice that for every(¢;, a;,gi+1) on p, L(q;) =
or state transitions. L(qi+1) if a; &€ A;. Therefore,p can be partitioned by

On the other handinable(N, s, C) is used in the rest of the @0: @1, - - - € A; INt0 @0, 1, ... such that

algorithm, and it is defined as follows. p=pooayop odo...

enable(N, s,C) = enable(N, s) U enable'(N, s,C) whereo denotes the concatenation operator, ahe- aj, for

where functionenable(N, s) returns actions ind® U AX SOmeax € A; on p, and

enabled ins. Obviously,enable’ (N, s,C) C enable(N, s,C).

This function is defined as such because new states may be

found by executing the input actions imable’(N,s,C), and WhereL(g,n) = L(q;) for 0 < h,j < m. In particular, for

actions include input and non-input actions may be enabl@ll go.» in wo, L(qon) = Li(init;) = L(M) N P;. Note that

in these new states. From the above description, inputrectiee: may be a single state instead of a path segment.

are enabled subject to constrathivhile non-input actions are  Next, we show that every action id; enabled inp is also

enabled subject to the behavioral descriptiom\af enabled in a path ifi/;. Consider actiomy, first. It is enabled
Function Ext r act derives constraints for outputs of ain M[A;] after . To prove thaty is also enabled ininit;,

component from its SG. Each component updates its behavip cases need to be handled.

on its output actions, while its input actions are defined by Case 1:a} € A?. This means that actioa) is controlled

the environment. Therefore, given a SG of a component, only by M;. As shown in Algorithm 3, actions 49

the constraint for non-input actions are extracted. Howeve are enabled independent of any external constraints.

the behavior on internal actiodX of a SG is invisible to Therefore,q, is enabled ininit;.

other SGs, and the constraints for the internal actions areCase 2:aj, € A!. This means that actioa;, is controlled

meaningless to other modules. Therefore, the constraiets a by another SGV/;. Similar to Case 1¢{ is enabled

extracted only for the output actions as shown in Algorithm 4 in init; of M,. Next, we need to show thaf) is
Theorem 5.1 below proves the soundness of the compo- also enabled innit;. According to Algorithm 2, a

sitional reachability method described above. It showd tha constraintc for ag is extracted frominit;, which

each component SG generated at the end of expansion is is projected toP; N P; for it to be applied tol)/;.

an abstraction of the SG of the entire system projected to Since the entire design has a single initial state,

the component. To prove the theorem, we show that every L;(init;) N P; = L;(init;) N P;, indicating that the

o1 =(01,0,¢,q,1:Cs - - Qim)-
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labellings of the initial states of/; and M; agree M, M,
on the shared propositions. Therefore, the projecte
constraint of a;, extracted fromnit; holds ininit;, @
and consequently it implies thaf, is also enabled
in nit;.
From both cases, it can be concluded that there exist (@)
(init;, ap,81) In M; corresponding topg o af, o ¢1 such M M
that L;(s;) = L(q) N P; and for all ¢ in ;. Since a), ! ?
is on the interface betweefi/; and M, there also exists
(initj,ap,p1) in M, according to the definition of the SG =+ o+
parallel composition, and;(s1) N P; = L;(p1) N P;. After GD GD
executinga(,, L(q1,n) = Li(s1) for all statesq; j, in ¢;. o -
Similarly, the above argument can be appliedfdrom ¢, GO O
in p and froms; in M;, and the same conclusion can be drawn. y+ x+
By induction, it can be concluded that there ex{stsa’, si+1) ) (s9)
in M; corresponding te; oa)op;4+1. This is equivalent to that
there existsp; € L(M;) for everyp € L(M[A;]). Therefore,
MIA;] = M;. ] M,
On the other hand, this method is incomplete in that fals
counter-examples may exist in some component SGs. This IS,
due to the limitation of the constraints, which do not givg an
information about the internal states of a component. Tlag m ..
cause extra input behavior introduced when the constrain
are applied to expand component SGs. Therefore, refineme
is needed after the model generation step to further remove ()
extra behavior. This subject is out of scope of this paper.

C. Example Fig. 4. (a)-(d) Snapshots of partial SGs generated duringpositional
. L . . reachability analysis.
This section illustrates the idea of the compositional heac

ability method using the example shown in Fig.3. Initiahyj,
signals are low. For SG&/; and M, no actions are enabled M,
because none of these actions satisfies the initial constrai
For M3, the initial constraint allows action+ to be enabled.
After executing this action, a new state is reached. The SGSZ;/
after the first iteration is shown in Fig. 4(a).

Now, signal z has changed, and new constraint can be |-
derived wherez is high. This allows input actior+ in M;
and M, to be enabled. After executing this action, the invisible
actionsv— and w— also become enabled. Executing these”
actions lead to new states if; and M. In these new states,
output actiong/+ andz+ become enabled. Again, executinq:, 5 Final SGs aft ional habil avsi
these output actions result in new states where constri@ints '9. 5. Final SGs after compositional reachability anaiys|
actions onz andy can be derived foiM/3. Meanwhile, M3
remains stable in this iteration since the constraints fidmn
and M, from the last iteration have not changed. The S@states/transitions) in the SGs in Fig. 3(b)-(d) are 9/4449
after the second iteration is shown in Fig. 4(b). and 17/38, respectively, while the numbers of states and sta

Since the new constraints for actions anand y allow transitions in the SGs in Fig. 5 are 6/6, 6/6, and 10/12,
actionsz+ and y+ in M3 to be enabled)M; is expanded respectively. For larger examples, the savings may be more
with new states and state transitions after executing thesgnificant as shown by the experimental results.
actions. The updated/s is shown in Fig. 4(c) wheré\l; In [36], an abstraction refinement approach is presented
and M, remain unchanged. Repeating this process eventuhere constraints are used to reduce state transitions in a
ally results in SGs for componemt/;, M,, and M3 as componentnot allowed by its neighbors. In the above example
shown in Fig. 4(d). Compared to SGs shown in Fig. 3(b)-(dinal SGs by the abstraction refinement and this method are
where they are constructed with over-approximate contextise same. However, the next example in Fig. 6 shows that the
the SGs obtained by the compositional reachability methwd dbstraction refinement is incapable of reducing the exate st
not contain unreachable states and transitions includires o transitions introduced by over-approximate contexts,ciwhi
causing failures. The numbers of states and state tramsitionay conceal the actual enabling conditions of actions.
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—a,—b)

is more interesting for experimenting our methods. The last
example is a pipeline controller for an asynchronous prsaes
TITAC2 [37]. All these five examples are failure free, and all
of them are too large for the non-compositional approaches.
In the experiments, DME, arbiter, and FIFO examples
are partitioned according to their natural structures. threp
words, each cell is a component. For the tag unit circuit, it
is partitioned into three components, where the middle five
blocks form a component, and gates on the sides of the
component in the middle form the other two. The pipeline

(b)
Fig. 6. SGs of two components communicating wiandb. (a) M where controller is partitioned into ten component, each of which
a is output andb is input. (b) M2 wherea is input andb is output. (c) The contains five gates.

SG of My || Ma.
B. Results and Analysis
In Fig.6, M, in Fig. 6(a) has input actions+ and b—, The experimental results are shown in Table I. To show
and output actions+ and a—, while M, in Fig. 6(b) has the effectiveness of this compositional reachability roeth
input actionsa+ and a—, and output actiong+ and b—, it is compared with an abstraction refinement method as

respectively. Fig 6(c) shows the SG bf, || M. According to described in [36]. This abstraction refine method alsozetsli
M, || My, transitions(s0, b—, 7) and (s1,a—, s0) in M;, and the constraints. However, the initial component state lysape
(s1,a—,s4), (s4,b+,s5), and (s5,b—,s0) in M, are extra constructed using over-approximate contexts, and canttra
since they do not exist i/, ||M,. The constraints fou+ are derived and applied to reduce states and transitiorecim e
and a— from M, areC(a+) = —a A —b andC(a—) = a, COmponent SG not allowed by its neighboring components
and constraints fob+ and b— from M, are C(b+) = —b iteratively. The results obtained by state space contmacti
and C(b—) = —a A b, respectively. Using these constraintyith abstraction are shown in columns in Table | under
cannot remove any of these extra state transitions. Howeve@rer-Approximatewhile the results by state space expansion
using the state space expansion method described in the p&lgscribed in this paper are shown in columns in the tablerunde
avoids generating these extra state transitions in theplimse. Under-Approximate

This example demonstrates an important advantage of theéAll experiments are performed on a Linux workstation with

expansion-based method over abstraction refinement. a Intel Pentium Dual-Core CPU and GB memory. In the
table, column#Cells shows the number of components in
VI. EXPERIMENTAL RESULTS a design after partitioning, colump4| shows the number

A prototype of the compositional reachability method deqf actions in a design. Columd/em and Time are the

. A L . maximal memory and the total time taken for verifying each
scribed in this paper is incorporated into an asynchrongsis Sdesi n, respectively. The last columir shows the number of
tem verification tooP! at o, an explicit model checker, which gn, resp Y-

L . components containing failures at the end of each verifinati
can perform non-compositional and compositional verifiorat L T
. The memory is in MBs and the time is in seconds.

The asynchronous designs are described using an varian{ucirl. t thing t tice f the table is that th d
Petri-nets (PN) which are augmented with Boolean guards Irst thing fo notice from fhe table IS that theé memory an

for the PN transitions [27]. The tool also supports absipact runtime usage requrllrtled b);hthe n;]etthod base(_j odn bstattr? Srf[a(t:e
refinement for SGs constructed using over-approximate: engjpansion aré much 1ess than what are required by the state

: ce contraction-based one for all designs. The savirgs ar
ronment. Experiments have been performed on several largs' 9 Y

asynchronous circuit designs, and results are comparédd wi sults of not generating unreachable state space for each

those obtained by using abstraction refinement. components_ n th? first place and therc_afore avoiding time
for abstraction refinement. Next, all designs except PC are

free of failures after using methddnder-ApproximateEven
A. Examples for PC, the number of components containing failures is less
In our method, asynchronous systems are specified inby using the state space expansion-based method. It is more
high level description. To verify a design, all componenmts iinteresting when ARB is examined more closely. Although
that high level description are converted to SGs first. Thhe results in the table shows all components in ARB
first three designs are a self-timed FIFO [25], a tree arbit8i, and63 free of failures undeOver-Approximatethey are
of multiple cells [12], and a distributed mutual exclusiombtained by composing several smaller components together
element consisting of a ring of DME cells [12]. Despite alto form larger ones so that more state space reduction can
these designs having regular structures to be scaled ghsly be applied to lead to stronger constraints and consequently
regularity is not exploited in our method, and all the modulestronger refinement. Otherwise, more than half of all com-
are treated as black boxes. The fourth example is a tag yminents in ARB 15, 31 and 63 would contain failures. This
circuit in the Intel's RAPPID asynchronous instructiondém indicates that more accurate constraints that can be derive
decoder [34]. This example is an unoptimized version of theecause a lot of unreachable state space is not generated in
actual circuit used in RAPPID with higher complexity, whichthe first place in the state space expansion-based method,
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TABLE |
EXPERIMENTAL RESULTS AND COMPARISON WITH THE CONTRACTIONBASED METHOD.

Over-Approximate Under-Approximate
Design | # Cells | [A] Mem | Time | #r | Mem | Time [ #n

100 804 30 18
200 1604 80 41
FIFO 400 3204 | 237 102
600 4804 | 471 184
800 6404 | 781 290

[FIFOx | 800 [ 6404 [ 772 | 273 |
20 | 440 | 35 | 43

0

0

0

0

0

1

0

50 1100 88 113 0
DME 100 2200 191 249 0 41 83

0

0

1

0

0

0

1

0

200 | 4400 | 446 | 600
300 | 6600 | 771 | 1044
[DMEx | 300 [ 6600 | 748 | 990 |
15| 244 | 7 6
ARB 31 500 | 33 | 47
63 | 1012 | 262 | 088

| [ 63 [ 1012 [ 255 | 912 |

[ TU | 3 ] 96 ] 117 | 103 | [ 12 [ 77 ]

| [ 10 [ 100 | 23 | 4 [ 4 [ 1 [ 15 ]
* — one of cells Is injected with failures.

| O] R S S S| || O S O S| | || O O O O] ©

therefore these constraints characterize the enablingjtooms Petri-net reductions are effective only on a certain type of
of actions more precisely. On the other hand, in the sta®etri-nets, and it does not support abstraction refinement
space contraction-based method, constraints repregethtin described in this paper. Therefore, a lot of false counter-
true enabling conditions of actions may be concealed by thgamples may be produced if the context for a component
unreachable states caused by the over-approximate centeberived by these reductions is not accurate. Since these
as shown by the second example in the previous sectidtetri-net reductions are not effective on the specification
This consequently leads to the unreachable state space foonalism used in this method, little or no reduction is
being able to be identified and removed. Therefore, stateespachieved when deriving context for each component, and
expansion brings double advantages of reducing runtime aratification for each component is like verifying the entire
memory usage as well as introducing less number of faldesign. 1 GB memory is exhausted when verifying the first
failures, which contributes to further savings of avoidihg component in all experiments, therefore the runtime and
expensive counter-examples confirmation step. memory usage results obtained by usiAACS on these
For designs followed with« in Table I, one of cells is examples are not shown in Table I.

intentionally injected with failures. As shown by the redsul To compare the work in this paper aATACS, the behav-

in. the table, this method_is much more efficient compgrqgral descriptions of FIFO, DME, and ARB are modeled in
with method Ov_er—Apprommate As explalneq before,. this petri-nets acceptable fokTACS and used for experiments.
method stops ”%ht _awayh_\lxvhen r;]\d;?/llure IS fo_undd;n Mhe results are shown in Table Il. Notice that these new
component in a design while met e_r-Appro_X|mat N8S  descriptions do not model the actual circuits, instead they
to keep refining compo_nent SGs containing failures in ho%%scribe the circuits’ behavioral specification. It can bers
that e\./en'.[ually.these fallures.may be removeq after tthHe)qEFom the table that the memory usageAyACS is far less than
behﬁwgr 'Sd refined away, yvh||ch takes mf?_r(_a t|mfe. 'ghe_refort@],at by this method while the runtime is much longer. This is
metho .Un fe_rl—Approxmates also more efficient for designsy e 5, seaTACS produces a very small Petri-net description for
containing failures. each component, and the resulting SG is small too. Moreover,

TABLE Il only the SG for a single component is generated at a time.

EXPERIMENTAL RESULTS AND COMPARISON WITH THEATACS. However, reduction needs to be performed on the whole
ATACS Under-Approximate design descriptions for each component, therefore takiogm
Design | # Cells | Mem | Time | #n | Mem | Time | #n time. Even thoughATACS shows some advantage over this
[FIFO-s] 800 [ 75 [ 1783 [ 0 [ 164 [ 255 | 0 ]  method, the effectiveness ATACS depends on if the design
[DMEs[ 300 | 61 | 678 [ 0 | 123 [ 320 | O |  descriptions are appropriate for the reductions availaile
[ARB-s | 63 [ 11 [ 104 [ 0 [ 15 [ 12 [ 0 |  ATACS. These experiments also show that this method is more

general in terms of formalisms describing designs.

The same experiments are also performed usingTable Ill shows the comparison of the largest SGs en-
ATACS [29], the closest relative to our methodTACS countered during the verification process using metbvdr-
supports a similar modular verification framework as in thi&pproximateandUnder-ApproximateThe largest SGs for the
paper. However, modular verification is made possible somponents produced by meth@Ver-Approximateoccur at
ATACS by Petri-net reduction based abstraction, and thiee beginning of the verification process when the SGs for
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TABLE IlI
LARGESTSGS FOUND BY Over-ApproximateaND Under-Approximate

Over-Approximate| Under-Approximate

Design | Cells ST T 1R [ST ] [R]
[FIFO | Al [ 57 | 188 [ 20 | 28 |
[ DME | AT [ 329 | 1100 | 152 | 272 |
[ARB | Al [ 673 | 3760 | 52 | 84 |

Cell 1 181 474 101 149

TU Cell 2 | 17481 | 108376 | 9410 43635

Cell 3 1081 3624 236 447

11

constraints extracted from a component’s neighbors tordete
mine the enabling conditions of its inputs, and construags t
component state space by gradually loosening the enabling
conditions for inputs allowed by its neighbors. Initial ex-
periments show that this method is very effective to avoid
generating large portion of unreachable state space inrste fi
place, therefore leading to big savings in memory and rusmtim
usage.

The method presented in this paper is based on an explicit
representation. Such an explicit representation is moxéfte
for asynchronous designs, and can be easier to be adopted

some components are produced with maximal environmepyy nybrid system verification with appearance of continsiou

For all examples, the SGs for all components in each eyiables. Additionally, the performance of explicit mode
ample are refined to the ones whose numbers of states gRgcking is more predictable. However, since implicit epr
transitions are the same as the corresponding entries unggitations such as BDDs are widely used in many application
Under-ApproximateHowever, these entries show the size fomains, it would be interesting to investigate if the prise
the largest SGs produced by methodder-Approximateat method can be modified for these implicit representations.
the fixpoint of reachability analysis. These SGs also happgfyreover, it is also necessary to find a better representafio

to be the SGs produced from the corresponding componegistraints to characterize the enabling conditions dbast

The next set of experiments tries to show the impact of

design partitioning on the performance of these two methods
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