Temporal Logic

Hao Zheng Dept. of Computer Science & Eng. Univ. of South Florida

Propositional Logic

- A proposition = statement that is true/false
 Ex.: 5+5 = 10, today is Tuesday, etc
- Proposition formulas are constructed:
 - True/false, atomic propositions are formulas;
 - Formulas connected are still formulas.

 $\forall \neg$ (not), \land (and), \lor (or), \rightarrow (imply), \leftrightarrow (equivalent).

 $- Ex.: (\neg A \lor B) \leftrightarrow C$

• Truth of formulas are evaluated bottom-up.

Natural Deduction

- $f, g \Rightarrow f \land g$
- $f \land g \Rightarrow f, g$ $\forall \neg \neg f \Rightarrow f$
- $f, f \rightarrow g \Rightarrow g$
- $f \rightarrow g, \neg g \Rightarrow \neg f$
- Question: $f \rightarrow g \rightarrow h \Leftrightarrow f \rightarrow h$?

Predicate Logic

- Need richer language constructs.
 - For all, there exist some, etc.
- Predicates enclose propositions with those constructs.
 S(Andy) = Andy is *a* student.
- $\forall \ \forall x \ S(x)$
- $\forall \exists x S(x)$
- $\forall \ \forall x \ (S(x) \land T(x)) = \forall x \ S(x) \land \forall x \ T(x))$ $\forall \ \exists x \ (S(x) \lor T(x)) = \exists x \ S(x) \lor \exists x \ T(x))$

Model of Computation

State transition graph Kripke Structure

Model of Computation (cont'd)

- Kripke Structure M = (S, R, L, I)
 - S: finite set of states;
 - $R \subseteq S \times S$: transition relations;
 - *L*: labeling functions;
 - $I \subseteq S$: Initial states.
- A path = an infinite sequence of states.

$$-\pi = s_0, s_1, s_2, \ldots$$

- Suffix $\pi^1 = s_1, s_2, \ldots$

Computational Tree Logic

- Path qualifiers:
 - *A*: for every computation path
 - *E*: for some computation paths
- Temporal qualifiers: *G*, *F*, *X*, and *U*.
- Basic Operators: *AG*, *AF*, *AX*, *A*(p *U* q), *EG*, *EF*, *EX*, *E*(p *U* q),

Examples

• *AG* p

Examples (cont'd)

• *AF* p

Examples (cont'd)

• *AX* p

Examples (cont'd)

• *A*(p *U* q)

Some CTL Formulas

- It is possible to reach a state where *start* but *ready* does not hold.
 - $EF(start \land \neg ready)$
- It is always true that if a *request* occurs, it will be eventually *acknowledged*.
 - -AG (request $\rightarrow AF$ acknowledged)
- It is always true that if a *request* occurs, it will hold until it is *acknowledged*.

-AG (request $\rightarrow A$ (request U acknowledged))

Standard Abbreviation

- $A(f) = \neg E(\neg f)$
- $G(f) = \neg F(\neg f)$
- F(f) = (true U f)

More on CTL Formulas

- $AX p = \neg EX \neg p$
- $AG p = \neg EF \neg p$
- $AF p = \neg EG \neg p$
- $A(p U q) = (\neg EG \neg q) \land (\neg E(\neg q U \neg p \land \neg q))$
- All CTL formulas can be expressed using *EX*, *E(U)*, *EG*.

CTL Model Checking

• Given a M and a CTL formula f, g, M, $s \models f$ -M, $s \models f$ iff f is atomic proposition and $f \in L(s)$. $-M, s \models \neg f \text{ iff } M, s \not\models f.$ $-M, s \models f \lor g$ iff $M, s \models f$ or $M, s \models g$ $-M, s \models f \land g$ iff $M, s \models f$ and $M, s \models g$ -M, $s \models AX f$ iff for all s_1 such that $R(s, s_1)$ and $M, s_1 \models f$ -M, $s \models \mathbf{EX} f$ iff for some s_1 such that $R(s, s_1)$ and

 $M, s_1 \models f$

CTL Model Checking (cont'd)

- Given a *M* and a CTL formula *f*, *g*, *M*, $s \models f$
 - $M, s \models \mathbf{AG} f$ iff for <u>all</u> paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ such that $s = s_0$ and $M, s_i \models f$ for <u>all</u> $i = 0, 1, 2, \dots$
 - $M, s \models \mathbf{EG} f$ iff for some paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ such that $s=s_0$ and $M, s_i \models f$ for all $i = 0, 1, 2, \dots$
 - $M, s \models \mathbf{AF} f$ iff for all paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ such that $s = s_0$ and $M, s_i \models f$ for some $i = 0, 1, 2, \dots$
 - $M, s \models \mathbf{EF} f$ iff for some paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ such that $s = s_0$ and $M, s_i \models f$ for some $i = 0, 1, 2, \dots$

CTL Model Checking (cont'd)

- Given a *M* and a CTL formula *f*, *g*, *M*, $s \models f$
 - $M, s \models \mathbf{A}[f \mathbf{U} g]$ iff for all paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ such that $s=s_0$ and $M, s_i \models g$ for some $i = 0, 1, 2, \dots$ and for all $0 \le k \le i M, s_k \models g$.
 - $M, s \models \mathbf{E}[f \mathbf{U} g]$ iff for some paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ such that $s=s_0$ and $M, s_i \models g$ for some $i = 0, 1, 2, \dots$ and for all $0 \le k \le i M, s_k \models g$.

Linear Time Logic

- Computation is a set of paths.
 - Infinite seqences of states.
- LTL formulas:
 - atomic propositions, true, false;
 - $\neg f, f \land g, f \lor g, f \rightarrow g$ where *f* and *g* are LTL formulas;
 - Xf, Ff, Gf, fUg, fWg, fRg where f and g are LTL formulas.
- LTL formulas are evaluated over all the compatation paths.

Semantics of LTL

- Let π be a path, p an atomic formula, and f and g are LTL formulas,
 - $-\pi \models true$
 - $-\pi \not\models false$
 - $-\pi \models p \text{ iff } p \in L(s_0)$
 - $-\pi \models \neg f \text{ iff } \pi \not\models f$
 - $-\pi \models f \land g \text{ iff } \pi \models f \text{ and } \pi \models g$
 - $-\pi \models f \lor g \text{ iff } \pi \models f \text{ or } \pi \models g$
 - $-\pi \models \mathbf{X}f \text{ iff } \pi^1 \models f$
 - $-\pi \models \mathbf{G}f \text{ iff } \pi^i \models f \text{ for all } i \ge 0.$

Semantics of LTL (cont'd)

- Let π be a path, p an atomic formula, and f and g are LTL formulas,
 - $-\pi \models \mathbf{F}f \text{ iff } \pi^1 \models f \text{ for } \underline{\text{some }} i \ge 0$
 - $-\pi \models f \mathbf{U} g \text{ iff } \pi^i \models g \text{ for } \underline{a} \ i \ge 0 \text{ and } \pi^j \models f \text{ for } \underline{all} \ 0 \le j \le i.$
 - $-\pi \models f \mathbf{W} g \text{ iff either } \pi^i \models g \text{ for } \underline{a} \ i \ge 0 \text{ and } \pi^j \models f \text{ for } \underline{all} \ 0 \le j \le i, \text{ or } \pi^k \models f \text{ for all } k \ge 0.$
 - $-\pi \models f \mathbf{R} g \text{ iff either } \pi^i \models f \text{ for } \underline{a} \ i \ge 0 \text{ and } \pi^j \models g \text{ for } \underline{all} \\ 0 \le j \le i, \text{ or } \pi^k \models g \text{ for all } k \ge 0.$
 - equivalent to $\neg(\neg f \mathbf{U} \neg g)$

LTL Model Checking

- Given a model *M*, and a LTL formula *f*, *M*, *s* \models *f* if $\pi \models f$ for all path π starting from *s*.
- If $\pi \models f$ for all paths π starting from all initial states, then $M \models f$.

LTL Semantics Example

 $M, s_0 \models p \land q$ $M, s_0 \models \mathbf{X} r$ $M, s_0 \models \mathbf{G} \neg (p \land r)$ $M, s_0 \models \mathbf{G} (\mathbf{F} p)$

A Sufficient Set of LTL Formulas

- $Gf \equiv \neg F \neg f$
- $\neg \mathbf{X} f \equiv \mathbf{X} \neg f$
- $f \mathbf{R} g \equiv \neg(\neg f \mathbf{U} \neg g)$
- $f \mathbf{U} g \equiv f \mathbf{W} g \wedge \mathbf{F} g$
- $\mathbf{F} f \equiv \mathbf{true} \ \mathbf{U} f$
- $\{U, X\}, \{R, X\}, or \{W, X\}$ is surficient.
- $\mathbf{F}(f \lor g) \equiv \mathbf{F}f \lor \mathbf{F}g$
- $\mathbf{G}(f \wedge g) \equiv \mathbf{G}f \wedge \mathbf{G}g$