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“You can't always get what you want 
But if you try sometimes you just might find 

You get what you need “
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Preface

As a former RTL designer who made the switch to High-Level Synthesis (HLS) years ago, I can 
still remember both the excitement of discovering a totally new design methodology, as well as 
the frustration of not knowing what to expect from the HLS tool as I attempted to code increas-
ingly complex designs. 

My first exposure to the world of HLS began with a demo of a FIR filter written in C++, and syn-
thesized directly to RTL. This was a design I was very familiar with coming from the world of 
RTL. After having written numerous hand-coded VHDL and Verilog implementations, I was 
completely blown away when I saw how a single algorithmic C++ description could be used to 
generate a large number of RTL implementations, each with different area/performance character-
istics. The HLS tool was able to do in a matter of minutes, what normally would take me days or 
weeks to accomplish. The fact that it was then able to take the resulting RTL and simulate it using 
my C++ testbench to prove functionality was simply unbelievable. The potential of the technol-
ogy was too attractive for me not to make the switch, and I soon found myself working in the field 
of HLS. 

As I began to tackle more complex designs, I started to encounter occasional problems with 
achieving the best possible results. What I saw was that the style in which my C++ was written 
could have a big impact on the resulting quality of the RTL. I would liken this to what I had expe-
rienced when people were first making the switch from schematic based design to RTL, where 
proper coding style was critical to good quality of results. Fortunately for me, I was working with 
a number of experts in HLS who I could rely on to provide the explanation as to why a particular 
coding style gave less than desirable results, and who could suggest a better way to write the C++. 
I was lucky since at that time there was no formal style guide for writing C++ for synthesis. 

As HLS has matured the quality of results has improved dramatically for a much wider range of 
C++ coding styles. However, this does not mean that all styles are equal, and there is still the 
potential for ending up with poor quality RTL when the C++ is not well written. Good style not 
only requires an understanding of the underlying hardware architecture of an algorithm, so that it 
is reflected in the C++ design, but also an understanding of how HLS works. 

This book presents the recommended coding style for C++ synthesis that results in good quality 
RTL. Most of the C++ examples are accompanied with hardware and timing diagrams, where 
appropriate. The basic concepts of HLS are introduced and an effort is made to relate them 
directly to concepts that are well understood by RTL engineers. Although this book focuses pri-
marily on C and C++ to illustrate the fundamentals of C++ synthesis, all concepts presented here 
are equally applicable to SystemC when describing the core algorithmic part of a design. 
Although the examples are simplistic in many cases, they illustrate the fundamental principles 
behind C++ hardware design. These concepts will translate to much larger designs. 

As a final thought for the RTL Designers, System Architects, and Algorithm Designers who are 
looking to adopt High-Level Synthesis; correct-by-construction RTL synthesized from C++ may 
not look exactly like what you would code by hand. HLS optimizations often can result in the odd 
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logic gate in the resulting schematic. The hardware diagrams in this book exclude all of the extra-
neous logic. You will probably end up saying at some point that “It’s not exactly what I expected 
the RTL to look like”. However you should also ask yourself “How long would it have taken to 
write using hand-coded RTL?”, “Would it have simulated correctly the first time?” and ultimately 
“Is it good enough?”. If you don’t get too caught up in the details you’ll find the results to be 
exactly what you need.

Mike Fingeroff, January 2010

Who Should Read This Book
Engineering managers should read chapter one to understand how HLS evolved from existing 
design methodologies and how it can help improve current design flows. RTL designers should 
read the entire book and System/Algorithm designers should read chapters 3, 4, 5, 8, and 9, at the 
very least.
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Chapter 1
Making the Case for High-Level Synthesis

The promise of high-level synthesis (HLS) is a powerful one: the ability to generate production 
quality register transfer level (RTL) implementations from high-level specifications. In other 
words, HLS automates an otherwise manual process, eliminating the source of many design 
errors and accelerating a very long and iterative part of the development cycle.

A broken design flow
To fully understand the potential and benefits of HLS it is important to put things in the 
perspective of a hardware design flow. Today, most projects start with some form of 
specification. Sometimes this is a simple, written document, but quite frequently an executable 
model is created - usually in ANSI C, C++ or SystemC. At this early stage, the specification is 
essentially functional: it contains little to no hardware implementation details, and its primary 
purpose is to validate and fine-tune the desired behavior. Once tested, this behavioral model 
undergoes a several step process until it takes the form of the actual hardware implementation. 
The first step is to define an optimal architecture to implement the desired functionality. If the 
functionality defines "what" the system does, the architecture defines "how" the system does it, 
with direct consequences on performance, area, and power consumption. After the architecture 
is defined, the design team hand-codes these decisions in the form of a Verilog or VHDL RTL 
description. 

This is where the biggest problem lies. Finding a suitable architecture is not a simple task, and 
finding an optimal one is even more challenging. But the fundamental issue is the manual nature 
of this entire approach. As clever as we can be and no matter what we do, our curse, as 
engineers, is to trip over these tiny yet enormously frustrating things we've dubbed "bugs." 
Simply put, any manual intervention is a source of errors. Suddenly, what was initially a 
straightforward process from specification to implementation becomes a nightmarish iterative 
cycle. The hand-coded RTL design is tested, bugs are reported, and time is spent trying to hunt 
them down and fix them individually - only to move on to the next bug. This could be an 
endless process if it didn't have to end at some point to meet deadlines. 

Keeping up with the pace
The issue of course is exacerbated by growing design sizes. The bigger the system and the more 
complex the application, the more chances of errors and the harder it becomes to stay on 
schedule. Unfortunately, ever-increasing complexity is one of the few certainties in electronic 
design. 
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Just remember the kind of equipment we had fifteen years ago, whether cell phones or 
televisions. Now compare them with today's commensurable items. Their evolution has been so 
dramatic that we don't even call them the same thing anymore! We now have "smart phones" in 
our pockets and "high-definition home entertainment systems" in our living rooms. Everything 
has changed to become more sophisticated, more complex. Likewise in the electrical 
engineering: technology nodes and process geometries keep shrinking, clock frequencies keep 
increasing, embedded cores keep multiplying, and verification methodologies are borrowing 
object-oriented concepts from the software community. Everything has changed. 

Everything but one thing: the RTL creation process. We are trying to develop 4G broadband 
modems with tools and methods inherited from the mid-90s, when GSM was the hot topic. We 
are trying to create H264 decoders with languages adopted to design VGA controllers. 
Something is deeply broken. We simply can't create RTL efficiently enough; eventually, bugs 
trigger and problems fire during the verification phase. It is no surprise if verification is now the 
bottleneck in any ASIC project. 

Benefits of high-level synthesis
High-level synthesis addresses the root cause of this problem by providing an error-free path 
from abstract specifications to RTL. By using HLS, design teams greatly accelerate design time 
while also reducing the overall verification effort. 

Reducing design and verification efforts
When working at a high-level of abstraction a lot less detail is needed for the description. For 
instance, at the functional level, engineers do not need to worry about implementation details 
such as hierarchy, processes, clocks, or technology. They are free to focus only on the desired 
behavior. This makes the description much easier to write. With fewer lines of code, the risk of 
errors is greatly reduced, and with fewer things to test for in the source, it is easier to 
exhaustively verify the model. 

After the high-level model is written and verified, HLS automates the RTL implementation 
process. But if HLS tools eliminate manual interventions and errors, they do not eliminate 
engineering intervention. That is, decisions still need to be made. With high-level synthesis, 
engineers remain in control; they make the decisions and the HLS tool implements them. They 
simply have a more efficient and productive way of getting their job done. For instance, the 
designer decides upon the proper level of parallelism for an optimal architecture and constrains 
the HLS tool accordingly. In turn, the tool takes care of allocating and scheduling the needed 
hardware resources, building the datapath and control structures to produce a fully functional 
and optimized implementation. With HLS, correct RTL is obtained more rapidly, shortening the 
creation phase. In turn, the debug overhead is lowered and the verification burden is reduced.
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More effective reuse
Working at a higher level of abstraction has an additional benefit. The design sources are now 
truly generic and therefore more versatile. For years, IP and reuse have been promoted as ways 
to address the design complexity challenge. But these strategies find their limits. RTL views 
describe what happens between two clocks edges. By definition this is tied to a specific 
technology and clock frequency. If retargeting legacy RTL is often possible, it is usually done at 
the expense of power, performance and area. Moreover making small changes to an existing IP 
to create a derivative can quickly turn into a much bigger project than anticipated. In contrast, 
when working with purely functional specifications, there are no such details as clocks, 
technology or micro-architecture in the source. This is information added automatically during 
the high-level synthesis process. And if new functionality is added to the IP, changes can be 
made and verified more easily in the abstract source and without the fear of breaking a pipeline 
or having to rewrite a state machine. With HLS it is much simpler to reuse and retarget 
functional IP.

Investing R&D resources where it really matters
There are many other advantages to using high-level synthesis, but what is especially interesting 
is to look at the induced benefits. When properly used, HLS flows can help save months of 
R&D effort. With engineering resources spending fewer cycles on RTL coding and verification, 
more time can be spent on differentiating activities. RTL coding is a necessity, not a value-
added activity. In comparison, algorithm development, architecture optimization, and system-
level power optimization can really make a difference in the success of a product. Time-to-
market often matters, but it is just one part of the equation. Feature superiority, cost 
competitiveness, and power consumption are also critical success factors. By using HLS, 
organizations can spend less effort dealing with mundane design tasks and invest more 
intelligence where it matters most.

Seizing the opportunity
High-level synthesis is not a new idea. The promise of designing in a better way is as old as 
EDA itself. The evolution towards higher abstractions is rooted in EDA's DNA. The industry 
constantly strives to raise the abstraction level, easing the design process for engineers around 
the world. When moving from transistor to gates, and then from gates to RTL, we did nothing 
other than adopt more efficient and higher-level hardware design methods. Today, once more, 
the design pressure is too high to resist the call for change. 

Since the early commercial and academic work, HLS has come of age. A new generation of C 
synthesis tools reached the market in 2004. Since then, countless user testimonials and hundreds 
of tape-outs have confirmed not only the viability but also the necessity  of HLS for modern 
ASIC design. Over the past few years, HLS tools have developed and added the necessary 
technology to become truly production-worthy. Initially limited to datapath designs, HLS tools 
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have now matured to address complete systems, including control-logic, and complex SoC 
interconnects - without a penalty in quality of results.

The value of HLS has clearly been established and the technology routinely delivers on the 
expectations. High-level synthesis provides great benefits, but is also a disruptive technology. It 
implies change in the methodologies, in the design processes, and to some extent, in the skills 
required. The learning curve is the last barrier to wider adoption. The move to HDL languages 
didn't happen overnight either. Designers learned from books, references materials, and real-
world examples, earning their RTL know-how over many years. The same is happening now for 
high-level synthesis. Early adopters have anchored HLS in their design flows and are paving the 
way for mainstream users. 

This book will help designers travel this HLS road. It is meant to be a practical and valuable 
companion for engineers seeking to adopt high-level synthesis. The HLS promise awaits, the 
technology delivers it, and this book helps you seize and implement this necessary and more 
productive path to verified RTL.

Thomas Bollaert, January 2010
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Chapter 2
General C++ Style

Introduction
The purpose of this C++ synthesis style guide is to provide a firm foundation for writing good 
quality synthesizable C++ code. This includes not only recommendations for achieving good 
quality of results in hardware, but also good programming practices to ensure "clean" code that 
passes compilation, execution, and RTL/C++ co-verification.

File Organization
This style guide covers general coding guidelines, including how to organize and structure the 
files that make up a design. This is only intended as an example recommendation and users are 
free to choose and use any structure that is comfortable, or required by their institution. The 
main intent here is to guide the user to adopting and adhering to a methodology that makes 
managing their designs easier.

An example directory structure for organizing your C++ files along with Catapult project files 
should look something like:

|---Project directory
                   |----src
                   |----ccs
                   |----dat
                   |----sim
Where:

• "Project directory" is the current design directory

• "src" directory contains all C++ (*.cpp, *cxx, *.C, *.h, *.hpp) source and header files 
and the Makefile. This is where the executable is compiled and linked.

• "ccs" contains the synthesis *.tcl scripts

• "dat" directory contains any file I/O for the testbench. 

• "sim" directory is for Matlab and Simulink projects and scripts
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Building an Executable Using Makefiles
Make is a Unix utility that is used to automate the compilation of a set of files into an 
executable. Although it is not necessary to use Makefiles, it is highly recommended, and 
streamlines the compilation and linking process. Make has default rules it knows about and 
enforces, such as understanding file dependencies and guaranteeing that files are recompiled 
when a dependency changes. (For a more complete guide to creating makefiles see 
http://www.gnu.org/software/make/manual)

Makefile Naming
The “make” utility looks for a file called “Makefile” by default. If this file is not found it then 
looks for a file called “makefile”. You can also specify an arbitrary filename by using the "-f" 
command line switch for Make.

Comments
Comments are denoted by preceding text with the pound (#) sign. Any text following the “#” 
sign till the end of the line is treated as a comment.

# Example Makefile

Macros
Macros can be defined in a Makefile that allow substitution of complex expressions. For 
example: 

CXX = /usr/bin/g++

Targets
The basic makefile is composed of a set of rules.

targets : prerequisites
command

The targets are file names and must be separated by spaces. The command lines must start with 
a tab character, and the prerequisites, also known as dependencies, consist of file names 
separated by spaces. The dependencies are used to test when a target is out of date.
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Phony Targets
A phony target is simply a way to enforce commands to be executed regardless of whether a file 
of the same name exists in the Makefile directory. Thus the target will always execute even if a 
file of the same name is up to date.

.PHONY: clean
clean: rm *.o *.exe

Simple Makefile Example
Consider the simple example where the design consists of three files:

• hello.cpp - src directory file with a function that prints hello

• hello.h - include directory file that contains the function prototype

• main.cpp - testbench that calls the hello.cpp function.

A very basic Makefile to compile these files into an executable is shown in Example 2-1.

Example 2-1. Simple Makefile
# Example Makefile

#MACROS
CXX = /usr/bin/g++
CXXFLAGS = -O 

#my_tb target is dependent on main.o and hello.o
my_tb : main.o hello.o

${CXX} ${CXXFLAGS} -o  my_tb main.o hello.o

#main.o is dependent on main.cpp and hello.h
main.o : main.cpp hello.h

${CXX} ${CXXFLAGS} -c main.cpp

#hello.o is dependent on hello.cpp and hello.h
hello.o : hello.cpp hello.h

${CXX} ${CXXFLAGS} -c hello.cpp

#phony target to remove all objetcs and executables
.PHONY: clean
clean: 

rm -f *.o *.exe
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An improvement of the very simple Makefile shown in Example 2-1would be to take advantage 
of the use of macros and also the implicit dependency in Make between *.o files and *.cpp or 
*.cxx files. This is shown in Example 2-2.

Example 2-2. Makefile Using Macros

Header/Include Files
In C++ programming a header file typically contains forward declarations of classes, function 
prototypes, and other information shared by multiple source files. Although variables can be 
declared within a header file, making them global, this is not recommended. One of the most 
common high-level synthesis uses for header files is for creating type and constant definitions. 
Example 2-3 shows the header file for the hello.cpp example discussed in the previous section. 

# Example Makefile

#MACROS
CAT_HOME  = $(MGC_HOME)
TARGET    = my_tb
OBJECTS   = main.o hello.o
DEPENDS   = hello.h
INCLUDES  = -I”$(CAT_HOME)/shared/include”
DEFINES   = 
CXX       =  /usr/bin/g++
CXXFLAGS  = -g  -o3 $(DEFINES) $(INCLUDES)

$(TARGET): $(OBJECTS)
$(CXX) $(CXXFLAGS) -o $(TARGET) $(OBJECTS)

$(OBJECTS): $(DEPENDS)

#phony target to remove all objetcs and executables
.PHONY: clean
clean: 

rm -f *.o *.exe
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Example 2-3. Header File

The details of Example 2-3 are:

• Lines 2 and 3 implement a guard string that prevents multiple inclusion of the header 
file. The first time the header file is compiled “__HELLO__” will be defined, preventing 
further inclusion.

• Line 6 defines the function prototype for the “hello” function implemented in 
hellop.cpp. Including this header file within another design makes the “hello” function 
available.

• Line 8 defines a constant integer “ITERATIONS” and sets it equal to 22. This could also 
have been done using a #define but it is not recommened.Use of #define should only be 
used when absolutely necessary. Defining constants using #define can lead to cryptic 
errors during compilation if the user is not careful.

• Line 10 uses a type definition to define a new type “dType” to be type int. This is very 
useful in that it allows the design data types to be decoupled from the implementation 
code. This mechanism can be used to easily switch between data types.

Example 2-4 shows the hello.cpp design which includes the header file.

Example 2-4. Including the Header File

The details of Example 2-4 are:

1 //guard string to prevent multiple inclusion
2 #ifndef __HELLO__
3 #define __HELLO__
4
5 //Forward declaration of fucntion
6 void hello();
7
8 const int ITERATIONS = 22;
9

10 typedef int dType;
11
12 #endif

1 #include <iostream>
2 using namespace std;
3 //Including user defined header file
4 #include “hello.h”
5 void hello(){
6   //dType defined in header file
7   dType tmp; 
8
9   //ITERATIONS defined in header file

10   for(int i=0;i<ITERATIONS;i++){
11     tmp = i;
12     cout << “Hello “ <<  tmp << endl;
13   }
14 }
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• Line 4 includes the design header file

• Line 10 uses the constant “ITERATION” defined in the header file.

Example 2-5 shows the design testbench for the hello.cpp design. This file also includes the 
header file which gives it access to the function prototype which is instantiated on line 4.

Example 2-5. Testbench

Test Benches
The user testbench is a C++ design that is used to test the device under test (DUT) for functional 
correctness. In a HLS design environment the C++ testbench is typically used to test both the 
C++ and the RTL, so it is important to follow good programming practices. Furthermore it is 
critical to leverage the C++ testbench to prove that the DUT matches the original algorithm as 
code changes are made. There is nothing worse than re-writing your C++ code to get good 
synthesis results only to find out that you have broken the functionality. Be smart, be 
methodical, and verify your design at every step. 

Note
If you don't have a C++ testbench, write one. Otherwise you're wasting valuable time.

Creating a Golden Reference Design
One of the first things a new HLS user discovers is that they have to make code changes to their 
original floating or fixed point source code. These code changes are made to improve quality of 
results (QofR) and/or pass synthesis. The biggest mistake that users can make is to take their 
algorithmic C++ code and start modifying it for synthesis without having created a backup 
reference to compare the changes against. It only takes a few code changes to completely break 
a design. 

Consider the following design shown in Example 2-6:

1 //Include user header file
2 #include “hello.h”
3 int main(){
4 hello();
5 }
6
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Example 2-6. C++ with Conditional Branches

Examination and/or synthesis of the "test" function shown in Example 2-6 reveals that the IO 
accesses on a, b, and dout creates a performance bottleneck if the interfaces are memory 
interfaces (The reasons for this performance bottleneck is discussed in later chapters). 
Rewriting the code allows for better performance, but rather than modifying the original code, a 
new design is created which allows a comparison to the original algorithm. 

Note
Always make a copy of the original algorithm to verify against any code changes when 
possible. It may not be possible to do a bit-for-bit comparison for some algorithms.

The re-written design, which is functionally equivalent to the original, is shown in Example 2-7.

Example 2-7. Modified Design

The testbench should be modified to check the modified design against the original algorithm, 
shown in Example 2-8.

#include “test.h”
void test(dType a[2], dType b[2], dType dout[2], bool sel){

  if(sel){
    dout[0] = a[0] + b[0];
    dout[1] = a[1] + b[1];
  }else{
    dout[0] = a[0] - b[0];
    dout[1] = a[1] - b[1];
  }
}

#include “test_mod.h”
void test_mod(dType a[2], dType b[2], dType dout[2], bool sel){

  for(int i=0;i<2;i++){
    if(sel){
      dout[i] = a[i] + b[i];
    }else{
      dout[i] = a[i] - b[i];
    }
  }
}
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Example 2-8. Modified Testbench

The details of the modified testbench shown in Example 2-8 are:

• Lines 13 and 15 instantiate the original and modified functions and apply the same set of 
inputs. Each function produces its own outputs “dout” and “dout_mod”.

• Lines 17 through 24 check each of the outputs from the original design against the 
modified design to see if they match. If there is a mismatch it’s flagged as an error.

• Lines 25 through 28 check to see if any errors occured and return the test status.

Note
Each time a code change is made the testbench should be rerun to check the change 
against the original design. Failure to do this may mean hours of debugging to figure out 
which change broke the design.

Make Sure You're Fully Testing the DUT
One of the most common, and costly, mistakes users make when testing the DUT is failing to 
test all possible conditional branches based on the control inputs into the DUT. This can often 
lead to discovering functional differences between the DUT and the golden reference after 

1 #include <iostream>
2 using namespace std;
3 #include “test.h”
4 #include “test_mod.h”
5 int main(){
6   dType a[2] = {10, 20}; 
7   dType b[2] = {10, 20}; 
8   dType dout[2]; 
9   dType dout_mod[2];

10   bool sel = true;
11   bool error = false;
12   //DUT original
13   test(a,b,dout,sel);
14   //DUT modified
15   test_mod(a,b,dout_mod,sel);
16
17   for(int i=0;i<2;i++){
18     if(dout_mod[i] != dout[i]){
19       cout << “ERROR” << endl;
20       error = true;
21     }
22     else
23       cout << dout[i] << endl;
24   }
25   if(error)
26     return -1; //indicates test failure
27   else
28     return 0; //test passed
29 }
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having made significant changes required for synthesis. This is illustrated by looking at the 
testbench and DUT shown in Example 2-8. The testbench only ever tests the DUT with "sel = 
1".  "sel" is responsible for selecting one of two possible conditional branches in the DUT. One 
of the primary reasons for making code changes is when the design cannot be synthesized, or 
when timing, performance, or area must be improved. If any of these reasons require the code to 
be rewritten, it is likely that it will force the user to modify all branches of any conditions in the 
design. The user would be unaware if a functional mistake was introduced in the branch for "sel 
= 0" after rewriting the code. The testbench should be rewritten as:

Example 2-9. Improved Testbench

Now the DUT is tested for both values of "sel" covering both conditional branches.

Uninitialized Variables
In general a variable should never be read before it is written. Uninitialized variables are treated 
differently by different compilers and synthesis tools, often leading to unpredictable results. 
Many hours can be wasted trying to track down simulation bugs only to discover that the source 
of the problem is an uninitialized variable. Another common side effect is to have entire 
sections of a design optimized away because variables are not initialized. Consider the 
following design:

#include <iostream>
using namespace std;
#include “test.h”
#include “test_mod.h”
int main(){
  dType a[2] = {10, 20}; 
  dType b[2] = {10, 20}; 
  dType dout[2]; 
  dType dout_mod[2];
  bool sel = true;

  for(int j=0;j<2;j++){
    sel = j;
    //DUT original
    test(a,b,dout,sel);
    
    //DUT modified
    test_mod(a,b,dout_mod,sel);
    
    for(int i=0;i<2;i++){
      if(dout_mod[i] != dout[i])

cout << “ERROR” << endl;
      else

cout << dout[i] << endl;
    }
  }
}
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Example 2-10. Uninitialized Variables

Line 2 of Example 2-10 defines a variable “tmp” that is left uninitialized. Line 4 then uses 
“tmp” to accumulate the array “din”. Since “tmp” is not initialized it can be considered as a 
“don’t care”, which means that the first accumulate looks like “tmp = (don’t care) + din[i]”. 
This can lead to a unexpected result. Most compilers will flag this as a warning if verbose 
messaging is enabled. E.g. “g++ -v....””.

Note
Leaving variables unitialized can cause unexpected results in both synthesis and 
simulation. Some designs may pass C++ simulation yet fail RTL simulation, leading to 
costly, yet unecessary, debugging by the designer.

1 void acc(int din[4], int &dout){
2   int tmp;
3   for(int i=0;i<4;i++)
4     tmp += din[i];
5   dout = tmp;
6  }
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Chapter 3
Bit Accurate Data Types

Introduction
Algorithm designers, system architects, and RTL engineers have been using bit-accurate data 
types for years to model true hardware behavior. The need for bit-accuracy becomes especially 
obvious now that designers are building hardware directly from C++, whose native types only 
come in widths of 1, 8, 16, 32, etc, bits. Many existing bit accurate data types used today are 
“home grown” class libraries that evolved within companies, and model bit accuracy using 
traditional shift and mask techniques. Although these “home grown” types may be faster for 
simulation, they are typically very slow for synthesis, and can also give much poorer quality of 
results than the industry standard bit-accurate data types. 

To date there are two industry standard bit accurate data types, the SystemCTM and Mentor 
Graphics Algorithmic C data types. Although SystemC was developed first, the implementation 
of its bit-accurate data types suffers from a number of issues, the biggest being long execution 
runtimes. Because of this, customer demand drove Mentor to develop their own bit-accurate 
types, which have now become the most widely used data types in high-level synthesis. The 
Algorithmic C data types not only simulate much faster than the SystemC types, but give better 
quality of results for synthesis over “home grown” bit accurate types. Algorithmic C data types 
are also consistent between C++ and RTL simulation. So whatever you build in C++ matches 
the true hardware behavior. In light of this, the focus of this chapter is on the use of the 
Algorithmic C data types. Furthermore, this chapter only attempts to provide enough of an 
overview of the Algorithmic C data types to begin designing in C++. A comprehensive manual 
is available at:

http://www.mentor.com/products/esl/high_level_synthesis/ac_datatypes

Compilation, Debug, and Simulation Speed
In order to compile and use the Algorithmic C data types the header file for either the integer 
data types, ac_int, or fixed point data types, ac_fixed, must be included in the C++ source 
file(s). 

#include <ac_int.h>
#include <ac_fixed.h>

It is also critical to achieving the fastest runtimes that the highest level of optimization is set (-
O3 in gcc and /Ox in MS Visual).
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g++ -O3 -I <path to Alogrithmic C data types> -o hello.exe hello.cpp

When debugging bit accurate code using gdb, ddd, or any of the MS Visual tools it is best to 
disable optimizations and turn on verbose warnings. E.g.

g++ -g -Wall -I <path to Alogrithmic C data types> -o hello.exe hello.cpp

Header Files and Typedefs
Although the Algorithmic C data types execute much faster than the SystemC data types, they 
will in general run slower than the native C++ types. For this reasons, as well as simplifying 
debugging it is often desirable to be able to quickly switch between Algorithmic C and native 
C++ data types. The easiest way to do this is to define all variables in a global header file for 
both Algorithmic C and native types and use compiler defines to switch between the two 
definitions. Example 3-1 shows a header file that uses a compiler define “NATIVE_TYPES” to 
select between the type definitions of “dType” and “oType” as either native C++ types or 
Algorithmic C data types. This header file is then included in Example 3-2, which defines all its 
variables in terms of the typedef’d variables.

Example 3-1. Header File with Typedefs

Example 3-2. Using Typedef’d Variables in a Design

Integer Data Types
The Algorithmic C integer data types allow designers to model a signed or unsigned bit vector 
with static bit precision. This closely matches what RTL designers can do today with VHDL 

1 #ifndef __TYPEDEFS__
2 #define __TYPEDEFS__
3 #include <ac_int.h>
4
5 #ifdef NATIVE_TYPES
6 typedef short int dType;
7 typedef int       oType;
8 #else
9 typedef ac_int<7,true> dType;

10 typedef ac_int<14,true> oType;
11 #endif
12 #endif

14 #include “typedefs.h”
15 void test(dType a, dType b, oType &c){
16   oType tmp;
17
18   tmp = a*b;
19   c = tmp;
20 }
21
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and Verilog 2001. The ac_int data types are templatized, and allow designers to specify both the 
width and signedness of variables.

Unsigned integer
The Algorithmic C unsigned integer data types are declared as:

ac_int<W,false> x; 

where:

W = Bit width

0 <= x <= 2W-1 by increments of 1

Any value assigned to “x” that is either greater than the maximum representable value, or 
negative in this case, will overflow or “wrap” around. This is the same behavior that RTL 
designers are familiar with today when creating counters. Example 3-3, which is purely for 
simulation, shows the use of a 7-bit unsigned integer to create a sign wave. 

Example 3-3. Algorithmic C Unsigned Integer

The details of Example 3-3 are:

• Line 1 includes the ac_int library.

• Line 10 declares an array of 7-bit unsigned integers.

• Line 12 computes two cycles of a sine wave and assigns the results to “x[i]”. The sine 
wave amplitude is +/- 63 and it is given a positive offset of 64 to utilize the full dynamic 
range of “x”. This is because a 7-bit unsigned integer can range from 0 to 2^7-1 or 0 to 
127. Since the sine function only produces values between 1 and -1 it is necessary to 
scale it and add the offset before assigning to “x”

1 #include <ac_int.h>
2 #include <fstream>
3 #include <cmath>
4 using namespace std;
5 const double pi = 3.14;
6 const int OFFSET = 64;
7 int main(){
8   fstream fptr;
9   fptr.open(“tmp.txt”, fstream::out);

10   ac_int<7,false> x[128];
11   for(int i=0;i<128;i++){
12     x[i] = OFFSET + 63*sin(2*pi*i/64);
13     fptr << x[i] <<endl;
14   }
15   fptr.close();
16 }
17
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The plot of the sine wave generated in Example 3-3 is shown in Figure 3-1.

Figure 3-1. Maximum Range of 7-bit Unsigned Integer

The effects of wrapping in a bit-accurate data type can be seen by replotting the results of 
Example 3-3 when the offset is increased to 80, shown in Figure 3-3.

Figure 3-2. Effect of Wrapping in Bit-accurate Unsigned Data Types

Signed Integer
The Algorithmic C signed integer data types are declared as:

ac_int<W,true> x; 

where:
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-2W-1<= x <= 2W-1-1 by increments of 1

The signed integer bit-accurate data types have similar wrapping behavior as the unsigned 
integers with the difference being that the signed data types wrap based on the expression 
shown above. Example 3-4 shows the sine wave generation example where the type for “x” has 
been changed to signed integer on Line 10. The offset has been set to zero since the negative 
values are now supported by the data type.

Example 3-4. Algorithmic C Signed Integer

Figure 3-3 and Figure 3-4 show the plots for Example 3-4 with offsets of zero and 14 
respectively.

Figure 3-3. Maximum Range of a 7-bit Signed Integer

1 #include <ac_int.h>
2 #include <iostream.h>
3 #include <fstream.h>
4 #include <math.h>
5 const double pi = 3.14;
6 const int OFFSET = 0;
7 int main(){
8   fstream fptr;
9   fptr.open(“tmp.txt”, fstream::out);

10   ac_int<7,true> x[128];
11   
12   for(int i=0;i<128;i++){
13     x[i] = OFFSET + 63*sin(2*pi*i/64);
14     fptr << x[i] <<endl;
15   }
16   fptr.close();
17 }
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Figure 3-4. Effects of Wrapping in Bit-accurate Signed Data Types

Note
The plots of both the unsigned and signed data types illustrate the similarity in behavior 
to designing in RTL. Designers MUST be aware of the dynamic range of the algorithm to 
avoid “wrapping” of bits. Once this occurs the algorithm results are meaningless.

Fixed Point Data Types
The Algorithmic C fixed point data types allow designers to model a signed or unsigned bit 
vector with static fixed point precision. This is something that cannot be done directly in RTL, 
and is one of the many advantages of high-level synthesis. Although most DSP algorithms are 
designed using floating or fixed point arithmetic, the actual RTL implementation is done using 
integers, and the designer has to manually track the decimal point by shifting intermediate 
results left or right. This is not only a tedious way of designing, but it is also error prone. HLS 
allows designers to build hardware directly from a fixed point model. The ac_fixed data types 
are templatized, and allow designers to specify both the integer and fractional width and 
signedness of variables.

Unsigned Fixed Point
The Algorithmic C unsigned fixed point data types are declared as:

ac_fixed<W,I,false> x; 

where:

0 <= x <= (1-2-W)2I by increments of 2I-W
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For the fixed point data types both the total width W and the number of integer bits I are 
specified. As a result of this “I” determines the location of the decimal point relative to the MSB 
(Figure 3-5).

Figure 3-5. Fixed Point Decimal Point Position

Now that the Algorithmic C data types have provided the ability to express fractional values, it 
is no longer necessary to scale results into the integer domain. Taking Example 3-3, which 
scaled the sine wave up to maximize the dynamic range of 7-bit unsigned integer “x’, and 
expressing it using unsigned fixed point data types leads to Example 3-5.

Example 3-5. Algorithmic C Unsigned Fixed Point Data Type

The details of Example 3-5 are:

• Line 1 includes the ac_fixed data types.

• Line 10 defines a 7-bit fixed point array “x” with one integer bit. This means that values 
of “x” can range somewhere between 0 and (1-2-7)*21 or 1.98. Supporting the full 
amplitude of the sine wave from -1 to 1 would require 2 integer bits.

1 #include <ac_fixed.h>
2 #include <iostream.h>
3 #include <fstream.h>
4 #include <math.h>
5 const double pi = 3.14;
6 const double OFFSET = 1.0;
7 int main(){
8   fstream fptr;
9   fptr.open(“tmp.txt”, fstream::out);

10   ac_fixed<7,1,false> x[128];
11   
12   for(int i=0;i<128;i++){
13     x[i] = OFFSET + 0.98*sin(2*pi*i/64);
14     fptr << x[i] <<endl;
15   }
16   fptr.close();
17 }
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• Line 13 computes the sine wave and adds an offset of one, keeping all values positive 
and preventing wrapping by keeping the amplitude of the sign wave from exceeding +/- 
0.98.

Figure  shows the plot of the sine wave from Example 3-5.

Figure 3-6. 7-bit Unsigned Fixed Point Sine Wave

Signed Fixed Point
The Algorithmic C signed fixed point data types are declared as:

ac_fixed<W,I,true> x; 

where:

-0.5*2I <= x <= (0.5-2-W)2I by increments of 2I-W

“I” determines the location of the decimal point relative to the MSB, which is also the sign bit.

Example 3-6 shows Example 3-5 rewritten to use signed fixed point data types. The offset, 
which is no longer needed is set to zero. Figure 3-7 shows the plot of the sine wave from 
Example 3-6, which ranges form almost -1 to 1.
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Example 3-6. Algorithmic C Signed Fixed Point Data Type

Figure 3-7. 7-bit Signed Fixed Point Sine Wave

Quantization and Overflow
In addition to allowing algorithms to be expressed more naturally, the fixed point data types 
also provide mechanisms to deal with quantization and overflow. The default mode for ac_fixed 
is to truncate and wrap/overflow, similar to what was shown for ac_int. The default mode does 
not cost any additional area but may not be ideal for some applications. There are many 
quantization and overflow modes supported by the ac_fixed data types, and they are covered in 
detail in the Algorithmic C data types manual. This chapter presents the reasons why one might 
wish to enable these modes. The quantization and overflow modes are enabled using additional 
template parameters for the ac_fixed data types.

ac_fixed<W,I,S,Q,O> x;

Where Q and O set the quantization and overflow modes respectively.

1 #include <ac_fixed.h>
2 #include <iostream.h>
3 #include <fstream.h>
4 #include <math.h>
5 const double pi = 3.14;
6 const double OFFSET = 0.0;
7 int main(){
8   fstream fptr;
9   fptr.open(“tmp.txt”, fstream::out);

10   ac_fixed<7,1,true> x[128];
11   
12   for(int i=0;i<128;i++){
13     x[i] = OFFSET + 0.98*sin(2*pi*i/64);
14     fptr << x[i] <<endl;
15   }
16   fptr.close();
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Truncation and Rounding
The default behavior is truncate and to throw bits to the right of the LSB away. This results in a 
complete loss of information. An example of this would be assigning fractional data to a fixed 
point variable with only integer bits. E.g.

ac_fixed<7,7,true> x = 0.5;

Printing out the value of “x” after the assignment gives a value of zero, since “x” has no 
fractional bits. Instead of throwing away the fractional data, a rounding mode can be used to 
round up or down depending on the fractional value. Similar to what we were all taught in grade 
school, we can round up or down depending on where the fractional value lands between two 
integer values.

ac_fixed<7,7,true,AC_RND> x = 0.5;

AC_RND rounds up towards positive infinity, which means that “x” will be assigned a value of 
one. The rounding mode rounds based on the smallest allowable increment defined by W and I.

Saturation and Overflow
The previous examples showed that the default behavior is to have bits “wrap” around when the 
maximum or minimum representable value is exceeded. This is known as overflow or 
underflow and is usually a very undesirable situation. Most algorithms can, and should, be 
designed so that overflow never occurs. This means taking into account the dynamic range of 
variables and ensuring that the internal bit growth is sufficient to represent all possible ranges of 
algorithm inputs. However there are situations where it is necessary to ensure that overflow can 
never occur. Mission critical systems such as flight control would be a good example where 
overflow would be disastrous. Video algorithms are another example of why overflow would be 
undesirable, with most people not wanting pixels flipping from the brightest to the darkest 
colors. 

Taking Example 3-6 on page 23 and adding a slight positive offset will cause the result to 
overflow, leading to a meaningless, or potentially catastrophic, result, shown in Figure 3-8.
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Figure 3-8. Fixed Point Overflow

Overflow can be prevented by enabling saturation on the fixed point data type. More details on 
the behavior of these modes can be found in the Algorithmic C data types manual. Care should 
always be taken when using saturation since it often increases the area of a design. DO NOT 
simply turn on saturation on all variables in a design. Saturation is typically used selectively in a 
few places. Example 3-6 is rewritten to enable saturation using the overflow template parameter 
AC_SAT, shown on line 10 of Example 3-7.

Example 3-7. Turning on Saturation in ac_fixed Data Types

Figure 3-9 shows the results of adding saturation in Example 3-7. 

1 #include <ac_fixed.h>
2 #include <iostream.h>
3 #include <fstream.h>
4 #include <math.h>
5 const double pi = 3.14;
6 const double OFFSET = 0.2;
7 int main(){
8   fstream fptr;
9   fptr.open(“tmp.txt”, fstream::out);

10   ac_fixed<7,1,true,AC_TRN,AC_SAT> x[128];
11   
12   for(int i=0;i<128;i++){
13     x[i] = OFFSET + 0.98*sin(2*pi*i/(double)64);
14     fptr << x[i] <<endl;
15   }
16   fptr.close();
17 }
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Figure 3-9. Effects of Saturation

Examination of Figure 3-9 shows that enabling saturation has prevented any overflow or under 
flow. However the figure also clearly shows that the waveform is non-linear. This non-linearity, 
also known as clipping, has the effect of adding noise into the system. This is one of the main 
reasons why most algorithms should be designed without the use of saturation.

Note
Saturation should only be used when absolutely necessary. Most algorithms can be 
designed to avoid overflow/underflow by selecting the appropriate variable bit widths to 
support the full dynamic range of the algorithm. Saturation usually impacts both area and 
performance.

Operators
All of the standard C++ arithmetic and logical operators are supported by the ac_int and 
ac_fixed data types. The operators such as multiplication, addition, etc, are designed to return a 
result without a loss of precision. The Algorithmic C reference manual should be consulted for a 
full description of all operators. Operators such as divide “/” and modulus “%” are supported 
but should be used with care when the two operands are variables. This is because an operation 
such as division costs a great deal in area, and the reality is that most hardware designers would 
never use a hardware divider. This is often a misunderstood area of HLS since it is perfectly 
reasonable to write something like z = x/y in C++. If a divide is truly needed, there are cheaper 
implementations such as the CORDIC algorithm. Most HLS tools provide a library that 
implements these functions more efficiently. Divisions or modulus by a constant are much more 
acceptable, and are implemented using add and shift logic. Divide or modulus by a power of 
two is implemented using static shifts, and cost nothing in additional area. Two operators whose 
behavior is worth noting are the bit select and shift operators, but first a quick discussion of 
arithmetic operators.
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Bitwise Arithmetic Operators: *, +, -, /, &, |, ^,%
The Algorithmic C bitwise arithmetic operators are designed so that there is no loss of precision 
in the return value. Furthermore the mixture of signed and unsigned Algorithmic C data types is 
supported, and returns the expected signedness.

The return type of an arithmetic operation automatically takes care of bit growth so that there is 
no loss of precision. This can be done automatically because the bit widths of the two operands 
are specified as template parameters when the ac_int variables are declared. This is shown 
below:

ac_int<8,true> a,b; //8-bits signed

Multiplying “a” times “b”, each with 8 bits of precision, requires 16 bits of precision:

(returns ac_int<16,true>)(a*c) 

Adding “a” plus “b” requires nine bits of precision:

(returns ac_int<9,true>)(a+b)

Bit Select Operator: []
Individual bits can be read or written from an ac_int or ac_fixed data type using the [] operator. 
The operator index selects the bit position. E.g. x[1], x[3], x[7]. The return value is an object of 
class ac_int::bitref and a built-in conversion function to ac_int and bool are provided. The code 
fragment below shows how the bit select operator can be used to read the sign bit of an ac_int.

ac_int<11,true> x;
bool is_neg;

if(x[10]) //test for sign bit treated as bool
is_neg = true;

else
is_neg = false;

The bit select operator can just as easily be used to write a bit in an ac_int or ac_fixed. E.g.

ac_fixed<9,1,false> x = 0;
bool add_one = true;

if(add_one)
x[8] = 1; //set MSB of x

Shift Operators: <<, >>
The shift operators are worthy of discussion because, unlike the arithmetic operators which 
maintain full precision, they return the precision of the left operand. This can lead to unexpected 
results. Furthermore, designers should pay attention to how they use shifts because both 
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operands can be signed or unsigned. This can also lead to surprising results that would not be 
possible in traditional RTL.

Shift Right Operator: >>

Unsigned Shift Right
The unsigned right shift operator applied to unsigned ac_int or ac_fixed data types behaves 
exactly how an RTL designer would expect a shifter to behave. Each bit is shifted right by the 
shift amount and zeros are stuffed into the upper bits. This can best be seen by a graphical 
example shown in Figure 3-10. The variable being shifted is a 4-bit unsigned integer that is 
initialized with all bits set equal to 1. As the shift amount is increased zeros are stuffed into the 
MSBs. 

ac_int<4,false> x = -1; //set all bits to 1's
int idx;
ac_int<4,false> y = x >> idx;

Figure 3-10. Unsigned Shift Right

Signed Shift Right
Signed shift right has somewhat unexpected behavior. Most hardware engineers think of right 
and left shifts as either divides or multiplies by power of two. So one would expect that at some 
point right shifting sets all bits to zero as was shown in Figure 3-10. However, when right 
shifting a signed ac_int, the sign bit is always kept, which has the end result of shifting ones 
from the MSB rather than zeros. This is shown in Figure 3-11. The ac_int “x” is initialized with 
the sign bit set equal to one and all other bits zero, which is equal to negative eight. Each 
increasing shift has the effect of dividing by increasing powers of two until all bits are set to 
one. From this point forward the result is always negative one.

ac_int<4,true> x = 0;
x[3] = 1 //set x equal -8
int idx;
ac_int<4,true> y = x >> idx;
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Figure 3-11. Signed Right Shift

Shift Left Operator: <<
The left shift operator behaves mostly as one would expect, with the exception being when 
assigning to a variable with larger precision. The typical behavior is discussed first.

Unsigned Shift Left
Shifting an unsigned ac_int left and assigning the result to a variable with the same precision 
has similar behavior as an unsigned shift right, except that zeros are stuffed from the LSB 
position, shown in Figure

ac_int<4,false> x = -1; //set all bits to 1's
int idx;
ac_int<4,false> y = x << idx;

Figure 3-12. Unsigned Shift Left

Signed Shift Left
Signed shift left has similar behavior to unsigned shift left where zeros are stuffed from the 
LSB.
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ac_int<4,true> x = -1; //set all bits to 1's
int idx;
ac_int<4,true> y = x << idx;

Figure 3-13. Signed Shift Left

Unexpected Loss of Precision
Shifting left can have unexpected, but correct, behavior when the expectation is that the result is 
based on the precision of the target variables. This is best understood by looking at an example:

ac_int<4,false> x = -1; //set all bits to 1's
int idx;
ac_int<8,false> y = x << idx;

In the example shown above “x”, which is four bits unsigned, is shifted left and assigned to “y”, 
which is eight bits unsigned. A common misconception by designers new to Algorithmic C data 
types is that the upper bits of “x” are stored in “y” as they are shifted past the MSB of “x”. 
Figure 3-14 shows the actual behavior. Remember that the shift operator returns the precision of 
the left operand, which is four bits in this example. In order to preserve the bits that are being 
shifted out of the MSB of “x” it is necessary to cast “x” to the precision of “y”. E.g.

ac_int<4,false> x = -1; //set all bits to 1's
int idx;
ac_int<8,false> y = (ac_int<8,false>) x << idx;

Note
Shifting left can result in loss of bits if the variable being shifted is not cast to the same 
precision as the left hand of the assigment.

This now gives the desired behavior shown in Figure 3-15.
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Figure 3-14. Unexpected Loss of Precision when Shifting Left

Figure 3-15. Casting to Desired Precision When Shifting Left

Methods
The Algorithmic C data types provide a number of built-in methods which are covered in detail 
in the reference manual. The methods most often used for design and simulation are covered 
below.

Slice Read: slc
The slice read method has the form: slc<W>(int lsb)

Where the template parameter “W” specifies the width of the slice, and “lsb” points to where 
the slice begins. Dynamic sizing of the slice width is not possible because “W” is a template 
parameter. However it is possible to dynamically change the value of “lsb”. Consider the 
following example where a three bit slice is read from “x” and assigned to “y”. “lsb” points to 
bit position two. Figure  shows graphically how the read slice works.

ac_int<8,false> x = 100;
ac_int<3,false> y;

y = x.slc<3>(2);
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Figure 3-16. Read Slice

Problems with Compilation of Read Slice Method
Some compliers may error out when the read slice method is used inside of a templatized 
function or class. If this occurs simply place the keyword “template” before the method name. 
E.g.:

ac_int<8,false> x = 100;
ac_int<3,false> y;

y = x.template slc<3>(2);

Slice Write: set_slc
The set_slc method has the form: set_slc(int lsb, const ac_int<W,S> &slc)

Where “lsb” is the index into the bit vector and indicates where the slice should be written. This 
is essentially the same behavior as that shown for slice reads in Figure3-16. The slice that is 
written can be a signed or unsigned ac_int. Similar to slice reads, the size of the slice cannot be 
changed dynamically. The usage is:

ac_int<8,false> x = 0;
ac_int<3,false> y = 5;

x.set_slc(2,y);

Explicit Conversion Functions
The Algorithmic C data types provide a number of implicit, as well as explicit, conversion 
functions. These are fully documented in the language reference manual. The explicit 
conversion functions are typically required when assigning an ac_fixed to an ac_int, or when 
trying to use “printf” to print out simulation results. The first case generates a compiler error, 
and the second case using “printf” causes a segmentation fault during runtime.
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E.g.

ac_fixed<8,3,false> x = 3.185;
ac_int<8,false> y;

The assignment below generates a compiler error

y = x;

It should be written as:

y = x.to_int();

The statement below causes a runtime segmentation fault:

printf(“%d\n”,y);

It should be rewritten as:

printf(“%d\n”,y.to_int());

Implicit Conversion Functions
The algorithmic C data types have built-in conversion functions for the assignment operator “=” 
up to 64-bits. These conversion functions automatically convert algorithmic C data types back 
to native types. This allows variables to be used directly for conditional testing of any bits set in 
the bit vector. E.g.

ac_int<64,false> ctrl = 37;
if(ctrl)//test for any bit set to a one

tmp += din;

Note
A compilation error occurs if “ctrl” is greater than 64 bits. In this case one of the explicit 
conversion functions should be used.

Helper/Utility Functions
The Algorithmic C libraries provide some useful functions for designing hardware. 

Array Uninitialization: ac::init_array
This function can be used to both initialize and uninitialize an array with a constant or a don’t 
care value. The advantage of using this built-in function is that the HLS tool can optimize the 
array more efficiently since it doesn’t have to analyze loops and assignments to determine the 
intent. The most common use of this function is to uninitialize an array, or in other words to set 
all array elements to don’t-care. The reason why one would wish to do this is in order to prevent 
the creation of hardware to clear all locations of a static array mapped to memory. By definition 
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in the C++ language a variable declared as static is set equal to zero when it is constructed. In 
many cases it is not necessary to clear the memory of a design since it is known that the memory 
is written before it is ever read. Thus the overhead of initially cycling through each memory 
location can be removed. The ac::init_array function has the form:

bool ac::init_array<“init value”>(“base address of array”, “number of elements”);

Consider the following code fragment where the array “a” is mapped to a memory.

static int a[1000];
static bool dummy = ac::init_array<AC_VAL_DC>(a,1000);

Note
The reason why “dummy” is used and declared static is that we only want to call the 
init_array function once during initialization.

ceil, floor, and nbits
It is often required to statically compute the minimum number of bits required for an 
Algorithmic C data type in order to index an array. The following functions are provided:

• ac::log2_ceil<x>::val - returns the number of bits required to index “x” elements.

• ac::log2_floor<x>::val - returns log2(x).

• ac::nbits<x>::val - returns number of bits required to represent “x”.

In all of these cases “x” must be statically determinable. For example:

const int WORDS = 175;
void foo(int data[WORDS], 

ac_int<ac::log2_ceil<WORDS>::val,false> idx,
int &dout){

dout = data[idx];
}

In the example above “idx” has been defined with the minimum number of bits required to 
index “WORDS” elements.

Complex Data Types
The Algorithmic C bit accurate data types libraries also provide support for complex data types, 
eliminating the need for designers to develop their own complex class. The ac_complex data 
type is a templatized class that can be used with both ac_int and ac_fixed as well as native C++ 
types. The Algorithmic C data types manual should be referred to for usage and restrictions.
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Chapter 4
Fundamentals of High Level Synthesis

Introduction
One of the common misconceptions held by people is that synthesizing hardware from C++ 
provides users the freedom of expressing their algorithms using any style of C++ coding that 
they desire. When designing using high-level C++ synthesis, it is important to remember that 
we are still describing hardware using C++, and a "poor" description can lead to a sub-optimal 
RTL implementation. It is the responsibility of the user to code their C++ to not only account 
for the underlying memory architecture of a design, but to also adhere to the recommended 
coding style for C++ synthesis. Because of this it is important to have a solid understanding 
about what high level synthesis really does. This chapter attempts to cover the basics of high 
level synthesis, and to show what designers can expect from a given coding style. Where 
appropriate, the code examples are accompanied by hardware diagrams to hopefully allow RTL 
designers to relate C++ synthesis to concepts that are familiar to them.

The Top-level Design Module
Similar to RTL design, HLS requires that users specify where the "top" of their design is. This is 
where the design interfaces with the outside world and consists of port definitions, direction, 
and bit widths or in the case of C++, data types. Since we are still designing hardware, although 
using C++, it is helpful to see how this might relate to the world of RTL design. Consider the 
following simple Verilog RTL design that describes a d-type flip flow with asynchronous reset. 
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Example 4-1. Simple Verilog Design Module

The verilog module shown in Example 4-1 contains several input ports and a single output port. 
The inputs are for clock, reset, and 32-bit input data, the output is for the 32-bit output data. The 
port directions and widths are explicitly defined in the Verilog source. 

In order for HLS to determine the top-level design from the C++, the user must either specify a 
pragma in the source code or set a user constraint in the synthesis tool. 

So the C++ equivalent description of the Verilog design described above would look like:

Example 4-2. Setting the Top-level Design

 Even this simple example illustrates how HLS can simplify the design process. The C++ 
description is very compact. Looking at the C++ description in Example 4-2 it is important to 
understand that there are several things that are implied in the code.

Registered Outputs
High-level synthesis by default builds synchronous designs. This means that all outputs of the 
top-level design are registered to guarantee that timing is met when connecting to another 
design. There are mechanisms to build smaller combinational blocks (automated component 
flows) but in general designs are synchronous. 

module top(clk,arst,din,dout);

input clk;
input arst;
input [31:0] din;
output [31:0] dout;
reg [31:0] dout;

always@(posedge clk or posedge arst)
begin
  if(arst == 1’b1)

dout = 1’b0;
  else
    dout = din;
end

endmodule

void top(int din, int& dout){
  dout = din;
}
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Control Ports
The C++ code has no concept of timing so there are no clocks, enables, or resets described in 
the source. Instead these signals are added by the synthesis tool. Control over things like 
polarity, type of reset, etc, are taken care by setting design constraints.

Port Width
For the simple case, meaning minimal interface constraints in synthesis, the bit widths of the 
top-level ports, excluding clock and reset, are implied by the data type. In the design example 
shown above the data type is "int" which implies 32 bits. Designers can describe any arbitrary 
bit width using bit-accurate data types.

Port Direction
The port direction is implied by how an interface variable is used in the C++ code

Input ports
An input port is inferred when an interface variable is only read. In the C++ example shown 
above you can see that "din" is only ever read, so it is determined to be an input. If a variable is 
declared on the interface as "pass by value" it can only be an input. This is covered in more 
detail later.

Output ports
An output port is inferred in two cases. One is when the top-level function returns a value. The 
other is when the interface variable is only written in the C++ code. In the C++ example design 
it can be seen that "dout" is only ever written. It can also be seen that "dout" is declared as a 
reference. A variable must be declared as a reference or a pointer in order to infer an output. 
This is also covered in more detail later.

Inout Ports
Although this design does not contain any inout ports, these are inferred if an interface variable 
is both read and written in the same design. This requires that the variable is declared as a 
reference or a pointer.

High-level C++ Synthesis
Although this style guide is not intended to be a tutorial on the intricacies of high-level synthesis 
optimizations, it is useful to present a brief overview of the basic process of automatically 
transforming un-timed algorithmic C++ into hardware. Understanding these fundamental 
concepts goes a great way towards providing a solid foundation for the material covered in later 
sections.
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Similar to the rest of the style guide, these concepts are best illustrated using simple examples 
consisting of both C++ code and hardware design concepts. Consider the following C++ 
example that accumulates four integer values shown in Example 4-3.

Example 4-3. Simple C++ Accumulate

Data Flow Graph Analysis
The process of high-level synthesis starts by analyzing the data dependencies between the 
various steps in the algorithm shown above. This analysis leads to a Data Flow Graph (DFG) 
description shown in Figure 4-1. 

Figure 4-1. Data Flow Graph Description

Each node of the DFG represents an operation defined in the C++ code, for this example all 
operations use the "add" operator. The connection between nodes represents data dependencies 
and indicates the order of operations. This example shows that t1 must be computed before t2 
[1 ].

Resource Allocation
Once the DFG has been assembled, each operation is mapped onto a hardware resource which is 
then used during scheduling. This is the process known as resource allocation. The resource 
corresponds to a physical implementation of the operator hardware. This implementation is 
annotated with both timing and area information which is used during scheduling. Any given 
operator may have multiple hardware resource implementations that each have different 
area/delay/latency trade-offs. The resources are selected from a technology specific pre-
characterized library that contains sufficient data points to represent a wide range of bit widths 
and clock frequencies. Figure 4-2 shows the resource allocation of Figure 4-1. Each operation 
can potentially be allocated to a different resource. It is also typical that designers can explicitly 
control resource allocation to insert pipeline registers or limit the number of available resources.

#include “accum.h”
void accumulate(int a, int b, int c, int d, int &dout){
  int t1,t2;

  t1 = a + b;
  t2 = t1 + c;
  dout = t2 + d;
}
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Figure 4-2. Resource Allocation

Scheduling
High-level synthesis adds "time" to the design during the process known as "scheduling". 
Scheduling takes the operations described in the DFG and decides when (in which clock cycle) 
they are performed. This has the effect of adding registers between operations based on a target 
clock frequency. This is similar to what RTL designers would call pipelining, by which they 
mean inserting registers to reduce combinational delays. This is not the same as "loop 
pipelining" which is discussed later.

If we assume that the "add" operation for the DFG of Figure 4-1 takes 3 ns out of a 5 ns clock 
cycle, the resulting schedule would look something like the schedule shown in Figure 4-3. Each 
add operation is scheduled in its own clock cycle C1, C2, and C3. Thus registers are inserted 
automatically between each adder.

Figure 4-3. Scheduled Design

A data path state machine (DPFSM) is created to control the scheduled design. The FSM for 
this example requires four states that correspond to the four clock cycles needed to execute the 
schedule shown above. In HLS these state are also referred to as control steps or c-steps. 
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Figure 4-4. Data Path State Diagram

The state diagram of the DPFSM is shown in Figure 4-4 and illustrates that the scheduled 
design is capable of producing a new output every four clock cycles. Once C4 has completed a 
new C1 begins.

The resulting hardware that is generated from the schedule shown in Figure 4-3 varies 
depending on how the design was constrained in terms of resource allocation as well as the 
amount of loop pipelining used on the design. Loop pipelining is covered in detail next but for 
now let's assume that the design is unconstrained, which should allow the hardware to be 
realized with the minimum number of resources if sharing saves area. In this example that 
would be the minimum number of adders. The resulting hardware would look something like 
that shown in Figure 4-5.

Figure 4-5. Hardware Implementation of the Unconstrained Design

The resulting hardware shown in Figure 4-5 uses a single adder to accumulate a, b, c, and d. It 
should be noted that the data path is 32-bits wide because the variables have been declared as 
integer types.



Fundamentals of High Level Synthesis

 41

Classic RISC Pipelining
The HLS concept of "Loop Pipelining" is similar to the classic RISC pipeline covered in most 
introductory computer architecture classes. 

The basic five stage pipeline in a RISC architecture typically consists of Instruction Fetch(IF), 
Instruction Decode(ID), Execute(EX), Memory access(MA), and Register write back(WB) 
stages.

Figure 4-6. Five Stage RISC Pipeline

Figure 4-6 illustrates how a new instruction can be fetched each clock cycle while the other 
pipeline stages are gradually activated. The time it takes for all pipeline stages to become active 
is known as the pipeline “ramp up”. Once all pipeline stages are active the pipeline “ramp 
down” is the time it takes for all pipeline stages to become inactive. The difference between the 
RISC pipeline and HLS loop pipelining is that the RISC pipeline is designed to fetch and 
execute every clock cycle. A design that does not need to run every clock cycle under-utilizes 
the pipeline, and a design that needs to fetch and execute multiple times per clock cycle is not 
possible. HLS removes these restrictions and allows the pipeline to be custom built to meet the 
design specification.

Loop Pipelining
Similar to the RISC pipelining example described in Figure 4-6, which allows new instructions 
to be read before the current instruction has finished, "Loop Pipelining" allows a new iteration 
of a loop to be started before the current iteration has finished. Although in Example 4-3 there 
are no explicit loops, the top-level function call has an implied loop, also known as the main 
loop. Each iteration of the implied loop corresponds to execution of the schedule shown in 
Figure 4-3 on page 39.  "Loop pipelining" allows the execution of the loop iterations to be 
overlapped, increasing the design performance by running them in parallel. The amount of 
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overlap is controlled by the "Initiation Interval (II)". This also determines the number of 
pipeline stages

Note
The Initiation Interval (II) is how many clock cycles are taken before starting the next 
loop iteration. Thus an II=1 means a new loop iteration is started every clock cycle.

The initiation interval is set on a desired loop either as a design constraint in the HLS design 
environment, or alternatively can be set using a C++ compiler pragma. 

Note
Latency refers to the time, in clock cycles, from the first input to the first output

Note
Throughput, not to be confused with IO throughput, refers to how often, in clock cycles, 
a function call can complete.

If the design of Example 4-3 on page 38 is left unconstrained there is only a single pipeline 
stage because there’s no overlap between execution of each iteration of the main loop. This 
results in data written every four clock cycles (Figure 4-7). The design has a latency of three and 
a throughput of four clock cycles. Because there is no overlap of any operation only a single 
adder is required if sharing reduces overall area.

Figure 4-7. No Pipelining, L=3, TP=4

 If a pipelining constraint of II=3 is applied on the top-level design (main loop), then the next 
loop iteration can be started in C4 allowing writing of "dout" in C4 to be overlapped with the 
reading of the next values of "a" and "b". The output is now written every three clock cycles 
while still requiring only one adder to implement the hardware (Figure 4-8). Only one pipeline 
stage is required since C4 is only used to allow the completion of the write on “dout”. 
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Note
The number of pipeline stages increases by one if other operations are scheduled in the 
last c-step. 

Figure 4-8. Pipeline II=3, L=3, TP=3

Figure 4-9 shows that pipelining with an II=2 results in a new iteration started every two clock 
cycles. Iteration one is started in C3 while iteration 0 is computing "t3 = t2 + d". Since iteration 
one is computing "t1 = a + b" it can be seen that two adders are required for the two pipeline 
stages.

Figure 4-9. Pipeline II=2, L=3, TP=2

Pipelining with an II=1 (Figure 4-10) results in a new iteration started every clock cycle. 
Iteration one is started in C2 and iteration 2 is started in C3. Looking at C3 in the Figure 4-10 
shows that three adders are required in hardware since all three pipeline stages are active.
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Figure 4-10. Pipelining II = 1, L=3, TP=1

Loops
One of the most important features of HLS for tuning design performance is Loop Unrolling. 
However, it is necessary first to discuss what constitutes a “loop” in C++. Loops are the primary 
mechanism for applying high level synthesis constraints as well as moving data, or IO, into and 
out of an algorithm. The style in which loops are written can have a significant impact on the 
quality of results of the generated hardware. In order to talk about how to write loops it's helpful 
to introduce a few definitions:

• Interface synthesis - the process of mapping top-level C++ variables to resources that 
implement an interface protocol (wire, handshake, memory).

• Loop iterations - the number of times the loop runs before it exits.

• Loop iterator - the variable used to compute the loop iteration.

• Loop body - the code between the start and the end of the loop.

• Loop unrolling - the number of times to copy the loop body.

• Loop pipelining - how often to start the next iteration of the loop.
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What's in a Loop?
In HLS a design always has one loop which corresponds to the top-level function call. This is 
known as the “main loop” (See line 1 of Example 4-4).

Example 4-4. The Main Loop

The "main loop" is a continuously running loop, which means that it runs for an infinite number 
of iterations. The analog to this can be seen from the equivalent Verilog module implementation 
that was shown in the top-level interface section. Once that Verilog module is reset it runs 
forever as long as the clock is supplied.

There are three ways to specify a loop in C++; using the “for” loop, “while” loop, and “do-
while” loop. The syntax is as follows:

"for" Loop
Syntax: 

LABEL: for( initialization; test-condition; increment ) {
    statement-list or loop body;
 }

The “for” construct is a general looping mechanism consisting of 4 parts: 

1. initialization - which consists of zero or more comma-delimited variable initialization 
statements

2. test-condition - which is evaluated to determine if the execution of the for loop 
continues

3. increment - which consists of zero or more comma-delimited statements that increment 
variables

4. statement-list - which consists of zero or more statements that execute each time the 
loop is executed.

1 void top(int din, int& dout){
2   dout = din;
3 }
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Example 4-5. “for” Loop

The example "for" loop shown in Example 4-5 copies four 32-bit values from din to dout. The 
for loop has initialization "int i=0", test condition "i<4", and increment "i++".

"while" Loop
The "while" keyword is used as a looping construct that executes the loop body as long as 
condition is tested as true. If the condition starts off as false, the loop body is never executed. 
(You can use a do loop to guarantee that the loop body executes at least once.)

Syntax: 

LABEL: while(test-condition) {
    statement-list or loop body;
 }

Example 4-6. “while” Loop

The "while" loop shown in Example 4-6 has the same functionality of the previous "for" loop 
example.

"do" Loop
The "do" keyword is used as a looping construct that executes the loop body until the condition 
is tested as false. The loop body always executes at least once.

Syntax: 

LABEL: do{
    statement-list or loop body;
 } while(test-condition);

#include “simple_for_loop.h”
void simple_for_loop(int din[4], int dout[4]){
 FOR_LOOP:for(int i=0;i<4;i++){
    dout[i] = din[i];
  }
}

#include “simple_while_loop.h”
void simple_while_loop(int din[4], int dout[4]){
  int i=0;
 WHILE_LOOP:while(i<4){
    dout[i] = din[i];
    i++;
  }
}
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Example 4-7. “do” Loop

The "do" loop shown in Example 4-7 has the same functionality as the previous "for" and 
"while" loop examples.

Rolled Loops
Note
If a loop is left “rolled”, each iteration of the loop takes at least one clock cycle to execute 
in hardware. This is because there is an implied “wait until clock” for the loop body. 

Consider the following C++ example that uses a “for” loop to accumulate four 32-bit integers 
from an array:

Example 4-8. C++ Accumulate Using Loops

Design Constraints
Main loop pipelined with II=1
All loops left rolled

Although the loop is left rolled notice that the design has been pipelined with an II=1. This was 
done intentionally in order to ignore the effects of the extra clock cycle required for allowing the 
write of “dout” to complete, as it was discussed in “Loop Pipelining” on page 41. The effects of 
pipelining loops is covered in more detail in later sections. Figure 4-11 shows the schedule of 
the loop iterations for Example 4-8.

#include “simple_do_loop.h”
void simple_do_loop(int din[4], int dout[4]){
  int i=0;
 DO_LOOP:do{
    dout[i] = din[i];
    i++;
  }while(i<4);
}

1 void accumulate4(int din[4], int &dout){
2   int acc=0;
3  ACCUM:for(int i=0;i<4;i++){
4     acc += din[i];
5   }
6   dout = acc;
7 }
8
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Figure 4-11. Schedule for Accumulate Using Loops

Figure 4-11 shows that each call to the “accumulate” function requires four clock cycles to 
accumulate the four 32-bit values in Example 4-8. This is because the loop has been left rolled 
and there is an implied “wait until clock” at the end of the loop body. The synthesized hardware 
would have the approximate structure shown in Figure 4-12

Figure 4-12. Hardware Implementation - Accumulate Using Loops

Figure 4-12 has a structure similar to what one might expect from a hand-code RTL design. 
However, one important feature to note is that the control logic for this implementation is three 
bits wide. The reason for this is that the loop exit condition is “i<4”. This means that this loop 
only exits when “i>=4”, which requires at least three bits.

Note
The number of bits required for evaluating the loop exit condition is usually one bit larger 
than expected. This is because the loop iteration must increment before exiting.

Loop Unrolling
Loop unrolling is the primary mechanism to add parallelism into a design. This is done by 
automatically scheduling multiple loop iterations in parallel, when possible. The amount of 
parallelism is controlled by how many loop iterations are run in parallel. This is different than 
loop pipelining, which allows loop iterations to be started every II clock cycles. Loop unrolling 
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can theoretically execute all loop iterations within a single clock cycle as long as there are no 
dependencies between successive iterations. 

Partial Loop Unrolling
If we take Example 4-8 and unroll the ACCUM loop by a factor of two, this has the equivalent 
effect of manually duplicating the loop body two times and running the ACCUM loop for half 
as many iterations. Example 4-9 illustrates the effects of loop unrolling by showing the 
ACCUM loop of Example 4-8 manually unrolled two times. 

Example 4-9. Manual Loop Unrolling - Unroll by 2

The details of Example 4-9 are:

• line 3 increments the ACCUM loop by two, which means that the “partially unrolled” 
loop now has two iterations. 

• Lines 4 and 5 have duplicated the loop body two times, which shows that two 
accumulations are performed each iteration. It should be noted that the accumulate in 
Line 5is dependent on the accumulate on line 4. For now it is assumed that there is still 
sufficient time to schedule both in the same clock cycle. Dependencies between loop 
iterations are discussed later.

Figure 4-13 shows the schedule of the loop iterations for Example 4-8 on page 47 when the 
ACCUM loop is unrolled by two. All four values are now accumulated in only two clock cycles.

Figure 4-13. Schedule for Accumulate Unroll by 2

1 void accumulate(int din[4], int &dout){
2   int acc=0;
3  ACCUM:for(int i=0;i<4;i+=2){
4     acc += din[i];
5     acc += din[i+1];
6   }
7   dout = acc;
8 }
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Figure 4-14 shows the hardware implementation when unrolling by two. It can be seen that this 
design requires twice as many resources (adders) as the “rolled” version.

Figure 4-14. Hardware Implementation - Accumulate Unroll by 2

Fully Unrolled Loops
Taking Example 4-8 on page 47 and “fully” unrolling the ACCUM loop dissolves the loop and 
allows all iterations to be scheduled in the same clock cycle (Assuming that there is sufficient 
time to account for dependencies between iterations). The manual equivalent C++ of doing this 
is shown in Example 4-10.

Example 4-10. Manual Loop Unrolling - Fully Unrolled

Figure 4-15 shows the schedule of the fully unrolled ACCUM loop. All four values are now 
accumulated in a single clock cycle.

Figure 4-15. Schedule for Accumulate - Fully Unrolled

void accumulate(int din[4], int &dout){
    int acc=0;

    acc += din[0];
    acc += din[1];
    acc += din[2];
    acc += din[3];

    dout = acc;
}
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Figure 4-16 shows the approximate hardware when fully unrolling the ACCUM loop.

Figure 4-16. Hardware Implementation - Accumulate with Fully Unrolled Loop

Dependencies Between Loop Iterations
Note
Unrolling a loop does not necessarily guarantee that the loop iterations are scheduled in 
the same c-step. Dependencies between iterations can limit parallelism.

The previous examples have assumed that there is sufficient time to ignore the effects of any 
dependencies between loop iterations. Thus Figure 4-15 shows all four iterations scheduled in 
the same clock cycle, but it does not show the dependencies that exist between iterations. A 
more accurate depiction of the schedule that includes the dependencies and component delays is 
shown in Figure 4-17. If the adders in Figure 4-17 were sufficiently slow it would be likely that 
second stage of the adder tree would be scheduled in the next clock cycle, increasing the design 
latency. However, if the design is pipelined with II=1 it is still possible to achieve a throughput 
of accumulating four values per clock cycle. Thus some dependencies between loop iterations 
do not limit design performance. However in many cases the dependencies between iterations 
limit performance or prevent pipelining. This is covered in detail in “Data Feedback” on 
page 73.

Figure 4-17. Schedule Dependencies

Loops with Constant Bounds
When writing loops for HLS it is important, when possible, to express them such that there is:

1. A constant initialization of the loop iterator 

2. A test condition of the loop iterator against a constant value
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3. A constant increment of the loop iterator

Writing the loop in this fashion allows HLS to optimize the design by reducing the bit widths of 
control and data path signals that are based on the loop iterator. This is because the three 
conditions listed above are sufficient for determining the maximum number of loop iterations. 
This is desirable to be able to get accurate information about latency and throughput of a design. 

The four cycle accumulator in Example 4-8 on page 47 is a good example of writing loops with 
constant bounds. The corresponding hardware implementation shown in Figure 4-12 on page 48 
shows that the control logic is optimally reduced to three bits. The main point to take away from 
this example is that even though the loop iterator "i" was declared as a 32-bit integer, HLS is 
able to reduce the bit widths to the fewest possible bits because the loop was written with 
constant bounds.

Loops with Conditional Bounds
The previous section showed that optimal hardware can be inferred if a loop is written with 
unconditional bounds. However, it is often the case that an algorithm or design requires that a 
loop terminate early base on some variable that has been defined outside of the loop, or on the 
design interface. This is a perfectly reasonable thing to do, but the way this is written in the C++ 
code can have a dramatic impact on the quality of results as well as accurate reporting of latency 
and throughput. 

The accumulator design used in Example 4-8 can be modified illustrate the impact in quality-of-
results when using a loop with conditional bounds. In order to make the accumulator more 
programmable the code is modified so that the accumulator can accumulate anywhere from one 
to four 32-bit values.

Example 4-11. Conditional Accumulate

The modified accumulator design shown above now uses the interface variable "ctrl" on line 5 
to select the number of loop iterations to be one through four. Synthesizing this design reveals 
that there are several inefficiencies with the resulting hardware.

1 #include “accum.h”
2 #include <ac_int.h>
3 void accumulate(int din[4], int &dout, unsigned  int ctrl){
4   int acc=0;
5  ACCUM:for(int i=0;i<ctrl;i++){
6     acc += din[i];
7   }
8   dout = acc;
9 }

10
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Caution
Having a variable as the loop upper or lower bound often results in the loop counter 
hardware being larger than needed

Caution
Having a variable as the loop upper bound requires one extra clock cycle to test the loop 
condition

Caution
Having an unconstrained bit width on the loop exit condition results in control logic 
larger than needed 

Lets first examine the hardware that would be synthesized from the conditional accumulator 
shown in Example 4-11:

Figure 4-18. Loop With Conditional Bounds

The resulting hardware synthesized from the C++ accumulator with conditional loop bounds 
results in a 32-bit loop counter and 33-bit logic for the loop exit condition (Figure 4-18). The 
reason for this is that the interface variable "ctrl" is a 32 bit integer. Because "ctrl" is on the 
design interface, HLS has no way of knowing, or more importantly proving, that it only should 
ever range from one to four. 

Note
This is an important lesson about HLS in that it only automatically reduces bit-widths 
where it can symbolically prove that it can be done without changing the functionality 
between the C++ code and the generated RTL. 

In this example, the C++ specifies a 32-bit interface variable which requires 33-bit control logic 
to be functionally equivalent. The solution to the problem shown above requires two minor C++ 
code changes, and can be split into two parts; fixing the loop counter, and fixing the loop exit 
condition.
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Optimizing the Loop Counter
In order for HLS to reduce the bit width of the loop counter the loop upper bound should be set 
to a constant. However, since the execution of each loop iteration is determined by the variable, 
"ctrl", we need to add a mechanism for terminating the loop early. This is done by using a 
conditional break in the loop body shown in Example 4-12. 

Example 4-12. Bounded Loop with Conditional Break

The conditional break is placed at the end of the loop because it is assumed that there is at least 
one loop iteration. Having the conditional break at the end of the loop should give the best 
quality of results in general. However, if “ctrl” can be zero, meaning that the loop can have zero 
iterations, the break must be placed at the beginning of the loop body. Figure 4-19 shows the 
resulting hardware from Example 4-12.

Figure 4-19. Bounded Loop With Conditional Break

The code transformation has the effect of reducing the loop counter to three bits by fixing the 
upper loop bound to a constant. Unfortunately, the code change has actually made the design 
slightly larger. Putting the conditional break at the end of the loop has created a 33-bit 
subtractor to compute "ctrl-1" and a 34-bit subtractor to compute the ">=" operation. This is in 
part because “ctrl” is 32-bits and cannot be automatically reduced since it is on the design 
interface. The control logic can be further optimized.

1 #include “accum.h”
2 #include <ac_int.h>
3 void accumulate(int din[4], int &dout, int ctrl){
4   int acc=0;
5  ACCUM:for(int i=0;i<4;i++){
6     acc += din[i];
7     if(i>=ctrl-1)
8       break;
9   }

10   dout = acc;
11 }
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Note
In general making the loop bounds constant produces better hardware. Conditional breaks 
can be used inside of the loop to give the same functionality as a variable loop bound.

Optimizing the Loop Control
There are two problems with the control logic for the loop exit condition of Example 4-12:

• Use of a 32-bit integer on the design interface

• Exit condition test requires a subtractor to compare against ctrl-1

HLS is not able to reduce the bit-widths on the top-level design interface for this design since it 
cannot prove that "ctrl" is always between one and four. In this case the designer must constrain 
the bit-width of "ctrl" to the desired number of bits. Native C++ data types do not give designers 
the ability to specify arbitrary bit widths on a variable so bit-accurate data types are required. A 
better way to write the code to optimize the loop control is shown in Example 4-13.

Example 4-13. Optimized Loop Control

The following code changes were made to optimize the loop control logic:

1. Line 3 - “ctrl” was constrained to three bits reducing the comparison logic to three bits

2. Line 10 - “i_old” stores the previous value of the loop iterator “i”

3. Line 8 - The exit condition test is made on the previous value of “i” eliminating the need 
for a subtractor.

The resulting hardware from Example 4-13 is shown in Figure 4-20.

1 #include “accum.h”
2 #include <ac_int.h>
3 void accumulate(int din[4], int &dout, ac_int<3,false> ctrl){
4   int acc=0;
5   int i_old=0;
6  ACCUM:for(int i=0;i<4;i++){
7     acc += din[i];
8     if(i_old==ctrl)
9       break;

10     i_old = i;
11   }
12   dout = acc;
13 }
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Figure 4-20. Optimized Loop Control

Note
Interface variables should always be constrained to the minimum number of bits, 
especially when used as a loop control variable.

Nested Loops
Nested loops and the effects of pipelining nested loops is often one of the most misunderstood 
concepts of high-level C++ synthesis. Understanding the resulting hardware behavior from 
synthesizing non-pipelined and pipelined nested loops allows designers to more easily meet 
performance and area requirements. The simple accumulator that has been used in previous 
examples can be extended to illustrate the effects of nested loops. 

Example 4-14. Nested Loop Accumulator

The following enhancements to the C++ accumulator designer were made:

1. Line 4- The input data is a 2x4 array of type integer.

2. Lines 6 and 10 - Two loops, ROW and COL are nested to index the rows and columns of 
the 2x4 array.

1 #include “accum.h”
2 #include <ac_int.h>
3 #define MAX 100000
4 void accumulate(int din[2][4], int &dout){
5   int acc=0;
6  ROW:for(int i=0;i<2;i++){
7     if(acc>MAX)   
8       acc = MAX;
9   COL:for(int j=0;j<4;j++){

10       acc += din[i][j];
11     }
12   }
13   dout = acc;
14 }
15
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3. Lines 7 and 8 - The accumulate variable "acc" is saturated to keep it from exceeding a 
maximum value at the beginning of the ROW loop. This is somewhat of an artificial 
example but helps illustrate the effects of nesting loops.

Unconstrained Nested Loops
If the nested loop accumulator in Example 4-14 is synthesized with both loops left rolled and no 
loop pipelining, the resulting hardware has a behavior similar to the state diagram shown in 
Figure 4-21. Note that for this example it is assumed that each iteration of the COL loop can 
execute in one clock cycle.

Figure 4-21. State Diagram of Unconstrained Nested Loops

The state diagram in Figure 4-21 shows that unconstrained nested loops have an overhead 
associated with the computation of the outer loop body and index (C1_ROW and C2_ROW). 
This overhead has the impact of increasing the latency of the design. This increased latency can 
be substantial compared to the number of clock cycles required to perform the main 
computation of the algorithm. Figure 4-21 shows that the execution of the design requires two 
c-steps (clock cycles) for the main loop, and two c-steps for the ROW loop, in addition to the 
eight cycles required to execute the COL loop twice. This means that the entire design takes 14 
cycles to accumulate the eight values of din[2][4], which in turn means that 43% of the 
execution time is taken up by the main and ROW loop overhead in this example. Figure 4-22 
shows the schedule for the unconstrained design.
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Figure 4-22. Schedule of Unconstrained Nested Loops

Note
Unconstrained nested loops can increase latency because of the overhead of computing 
the loop exit conditions and loop bodies separately.

 Pipelined Nested Loops
Loop pipelining can be applied in order to improve design performance. 

Note
It is generally good practice to begin pipelining starting with the innermost loops and 
working up towards the top-most loops. This should in general give the best 
area/performance trade-off. 

For this example the innermost loop is the COL loop. However since it was assumed that each 
iteration of the COL loop only requires one c-step to execute there is no benefit in pipelining 
this loop. 

Pipelined ROW Loop With II=1

Note
When nested loops are pipelined together the loops are “flattened” into a single loop. The 
initiation interval constraint is then applied to the flattened loop. 

Figure 4-23 shows the state diagram that illustrates the effect of pipelining the ROW and COL 
loops for Example 4-14.
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Figure 4-23. State Diagram of ROW Loop with II=1

Figure 4-23 shows how loop flattening removes the overhead of the C1_ROW and C2_ROW 
states by combining the saturation and ROW loop index logic into the same loop with the COL 
loop. Although pipelining nested loops improves performance in terms of latency and 
throughput, it is not without cost. The control logic become progressively more complex as 
more and more nested loops are pipelined. This can lead to larger area, or failure to schedule in 
some cases. So a good rule of thumb is to start pipelining the inner loops and work your way 
towards the outer loops until the performance target is met. Figure 4-24 shows the schedule 
when the ROW loop is pipelined with II=1.

Figure 4-24. Schedule of ROW Loop with II=1
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Figure 4-24 shows that by pipelining the ROW and COL loops together, the two cycle overhead 
of the ROW loop has been absorbed into the flattened loop allowing the nested ROW and COL 
loops to execute in eight clock cycles. The only overhead remaining is caused by the main loop.

Pipelined main Loop with II=1
Similar to pipelining the ROW loop, pipelining the main loop causes the main, ROW, and COL 
loops to be flattened into a single loop. This has the effect of moving the loop iterator 
initialization and the write of the output “dout” into the ROW_COL loop and executing them 
conditionally, as shown in the state diagram of Figure 4-25. The net result is to increase the 
design performance at the expense of making the control logic more complicated. Figure 4-26 
shows the schedule with the main loop pipelined. The two cycle overhead of the main loop has 
been flattened along with the ROW and COL loops allowing the design to achieve maximum 
performance.

Figure 4-25. State Diagram of main Loop with II=1
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Figure 4-26. Schedule of Main Loop with II=1

Unrolling Nested Loops
Loop unrolling can be applied to nested loops to increase the design performance, often at the 
expense of larger area. Because of this, designers must be methodical in choosing how much to 
unroll a loop. For nested loops with a large number of iterations it is more commonplace to 
leave the outer loop(s) rolled and partially or fully unroll the inner loop when trying to increase 
design performance. This is also usually done in combination with loop pipelining. 

Note
In general it is always better to pipeline loops first before using loop unrolling. This is 
because loop pipelining often gives a significant boost in performance with a smaller cost 
in terms of area.

Loop unrolling on the other hand usually has a greater impact on area when the loop body 
contains a large number of operations. This is because unrolling replicates the loop body 
leading to larger numbers of resources being scheduled in parallel.

Unrolling the Innermost Loop
Example 4-15 shows a C++ design that uses two nested loops to separately accumulate the rows 
of a two-dimensional array. This example is synthesized with the COL loop fully unrolled and 
the ROW loop pipelined with II=1.
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Example 4-15. Unrolling the Inner Loop

Fully unrolling the COL loop has the same effect as manually replicating the COL loop body, 
shown in Example 4-16.

Example 4-16. Unrolling the Inner Loop Manually

Example 4-16, which shows the effects of duplicating the inner loop body is transformed during 
scheduling into something that more closely resembles the code shown in Example 4-17.

Example 4-17. Unrolling the Inner Loop Transformation

Example 4-17 shows that accumulating four values at a time requires three adders. Assuming 
that there is sufficient time to schedule the three adders in the same clock cycle, the design 
schedule looks like that shown in Figure 4-27. Each iteration of the ROW loop executes in one 
clock cycle, while there is still some overhead caused by not pipelining the main loop.

#include “accum.h”
void accumulate(int din[2][4], int dout[2]){
  int acc[2];
 ROW:for(int i=0;i<2;i++){
     acc[i] = 0;
  COL:for(int j=0;j<4;j++){
      acc[i] += din[i][j];
    }
    dout[i] = acc[i];
  }
}

#include “accum.h”
void accumulate(int din[2][4], int dout[2]){
  int acc;
 ROW:for(int i=0;i<2;i++){
    acc=0;
    acc += din[i][0];
    acc += din[i][1];
    acc += din[i][2];
    acc += din[i][3];
    dout[i] = acc;
  }
}

#include “accum.h”
void accumulate(int din[2][4], int dout[2]){
  int acc=0;
 ROW:for(int i=0;i<2;i++){
      dout[i] = din[i][0]+din[i][1]+din[i][2]+din[i][3];
    }
  }
}
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Figure 4-27. Schedule with Inner Loop Fully Unrolled ROW Loop with II=1

The hardware resulting from synthesizing Example 4-15 is shown in Figure 4-28. High-level 
synthesis automatically builds a balanced adder tree when unrolling accumulators inside a loop. 
There are some situations where the tree balancing does not happen automatically when the 
accumulate is conditional. This is discussed later.

Figure 4-28. Hardware with Inner Loop Fully Unrolled 

Rampup/Rampdown of Pipelined Nested Loops
Increasing the clock frequency when synthesizing Example 4-15 at some point requires that the 
adder tree shown in Figure 4-28 be scheduled over multiple clock cycles or c-steps. Figure 4-29 
shows the design schedule where the first two adders are scheduled together in the same c-step, 
with the second adder stage scheduled in the next c-step. Two pipeline stages are created when 
the ROW loop is pipelined with II=1, and the design latency and throughput is affected due to 
pipeline rampup and rampdown, initially discussed in “Classic RISC Pipelining” on page 41. 
For loops with large number of iterations, the effect of rampup/rampdown may be negligible, 
and allowing the pipeline to rampdown has the added benefit of allowing all data to be 
“flushed” from the pipeline stages. In this example the cost of rampup/rampdown is significant 
compared to the number of iterations for the ROW loop.
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Figure 4-29. Schedule of Ramp-up/down with Inner Loop Fully Unrolled

Figure 4-30 shows the hardware generated for the schedule shown in Figure 4-29. The adder 
tree has been separated into two pipeline stages. 

Figure 4-30. Hardware of Ramp-up/down with Inner Loop Fully Unrolled

Rampup Only of Nested Loops with Pipelined Main Loop
A possible solution for increasing the performance for designs that have both rampup and 
rampdown of the pipeline would be to pipeline the “main” loop with II=1. When this is done the 
pipeline only ramps up and then runs forever, removing the throughput cost of pipeline 
rampdown. This is shown in Figure 4-31.
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Figure 4-31. Rampup of Nested Loops with Main Loop II=1

Caution
There are side effects associated with pipelining the main loop when the design has rolled 
loops. If IO is mapped to a handshaking interface and is accessed inside of the pipelined 
loop it can cause the pipeline to stall. This is covered in “Conditional IO” on page 90.

Unrolling the Outer Loop
The previous section illustrated how unrolling the innermost loop replicates the loop body 
resulting in higher performance. The core architectural feature resulting from unrolling the 
innermost loop was a balanced adder tree, Figure 4-28. If the inner loop is left rolled and the 
outer loop is unrolled the inner loop is replicated as many times as the loop is unrolled. 
Example 4-18 shows the effects of manually unrolling the outer loop where there are now two 
copies of the inner loop, COL_0 and COL_1.
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Example 4-18. Manually Unrolling the Outer Loop

When possible, high-level synthesis automatically merges all of the replicated loops into a 
single loop, leading to a number of accumulators running in parallel. Example 4-19 shows the 
effects of manually merging the two COL loops.

Example 4-19. Manual Merging

Figure 4-32shows the schedule when the ROW is fully unrolled and all copies of the COL loop 
are merged. 

#include “accum.h”
void accumulate(int din[2][4], int dout[2]){
  int acc[2];
  
  acc[0] = 0;
 COL_0:for(int j=0;j<4;j++){
    acc[0] += din[0][j];
  }
  dout[0] = acc[0];
  acc[1] = 0;
 COL_1:for(int j=0;j<4;j++){
    acc[1] += din[1][j];
  }
  dout[1] = acc[1]; 
}

#include “accum.h”
void accumulate(int din[2][4], int dout[2]){
  int acc[2];
  
  acc[0] = 0;
  acc[1] = 0;
 COL_0_1:for(int j=0;j<4;j++){
    acc[0] += din[0][j];
    acc[1] += din[1][j];
  }
  dout[0] = acc[0];
  dout[1] = acc[1]; 
}
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Figure 4-32. Unrolling the Outer Loop with Loop Merging

Figure 4-33 shows the synthesized hardware resulting from unrolling the outer loop which has 
had the effect of creating two accumulators running in parallel.

Figure 4-33. Hardware of Unrolling the Outer Loop

Reversing the Loop Order
The previous section illustrated how unrolling the outer loop cause the inner loop to be 
replicated and merged automatically during synthesis. However, there are situations that 
prevent automatic merging, and this leads to sub-optimal performance. Example 4-20 shows the 
accumulator design used in the previous section that has been modified to conditionally assign 
the index for the “acc” array. This conditional index assignment breaks automatic loop merging.
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Example 4-20. Conditional Index Breaks Loop Merging

Not merging the two copies of the COL loop that result from unrolling the ROW loop causes the 
loops to be scheduled sequentially (See “Sequential Loops” on page 69). Pipelining the main 
loop with II=1 causes the two copies of the COL loop, COL_0 and COL_1, to be flattened into 
the main loop, but they are still be executed sequentially as shown in Figure 4-34.

Figure 4-34. Schedule with Conditional Index and ROW Loop Unrolled

One possible solution to achieve the desired behavior of two accumulators running in parallel is 
to reverse the order of the ROW and COL loops. However, this must be done carefully since it 
usually requires that the outer loop body must be moved to the inner loop and executed 
conditionally. Example 4-21 shows how to manually reverse the loop order.

#include “accum.h”
void accumulate(int din[2][4], int dout[2], bool flag){
  int acc[2];
  int idx;
 ROW:for(int i=0;i<2;i++){
    idx = flag ? i: 1-i;  
    acc[idx] = 0;
  COL:for(int j=0;j<4;j++){
      acc[idx] += din[i][j];
    }
    dout[i] = acc[i];  
  }
}
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Example 4-21. Reversing the Loop Order

The following code changes were made in Example 4-21.

• Lines 6 and 7- reversed the order of the ROW and COL loops

• Line 8- Moved the index computation into the inner loop body

• Lines 9 and 10 - Moved the clearing of the accumulators into the inner loop body and 
made it conditional so that they are only cleared once at the beginning

• Lines 12 and 13 - Moved the writing of the output into the inner loop body and made the 
writes conditional so that the output is only written on the final iteration of COL

Sequential Loops
It is not uncommon to have multiple consecutive loops in a C++ design. Although these loops 
execute sequentially in the simulation of the C++, HLS can be directed to automatically merge 
these loops and execute them in parallel in hardware. However there are many cases where the 
C++ code can be written in such a way as to make automatic loop merging impossible. In these 
cases either the C++ code must be re-written to manually merge the loops if better performance 
is required, or explicit hierarchy should be used (See “Hierarchical Design” on page 191). 

It is important for designers to understand the behavior of the hardware when loop merging does 
and does not take place so there are no unexpected results.

Simple Independent Sequential Loops
Example 4-22 shows the case where there are two sequential loops that are used to separately 
accumulate two four-element arrays. 

1 #include “accum.h”
2 void accumulate(int din[2][4], int dout[2], bool flag){
3   int acc[2];
4   int idx;
5
6  COL:for(int j=0;j<4;j++){
7   ROW:for(int i=0;i<2;i++){
8       idx = flag ? i: 1-i;  
9       if(j==0)

10         acc[idx] = 0;
11       acc[idx] += din[i][j];
12       if(j==3)
13         dout[i] = acc[i];  
14     }
15   }
16 }
17
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Example 4-22. Independent Sequential Loops

High-level synthesis can automatically merge these loops because there are no dependencies 
between the loops and the indexing of the arrays is base solely on the loop iterators. With loops 
left rolled and automatically merged, and the main loop pipelined with II=1, the resulting 
schedule looks like that shown in Figure 4-35 

Figure 4-35. Schedule of Merged Sequential Loops

The schedule shown above indicates that the loop iterations in each of the ACCUM loops can be 
run at the same time, resulting in a design that has two accumulators and runs in four clock 
cycles (Figure 4-36). If this kind of performance and increase in area is not required, automatic 
loop merging can be disabled during synthesis, allowing the loops to execute sequentially. This 
is discussed in the next section.

#include “accum.h”
void accumulate(int din0[4], int din1[4],int &dout0, int &dout1){
  int acc0=0;
  int acc1=0;
 ACCUM0:for(int i=0;i<4;i++){
    acc0 += din0[i];
  }
 ACCUM1:for(int i=0;i<4;i++){
    acc1 += din1[i];
  }
  dout0 = acc0;
  dout1 = acc1;
}
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Figure 4-36. Hardware of Merged Sequential Loops

Effects of Unmerged Sequential Loops
In some instances sequential loops are not automatically merged. This can occur either 
intentionally because the design does not require the extra performance, usually at the cost of 
higher area, or because there are dependencies between the loops that break loop merging 
optimizations. Other operations such as conditional index assignment for reading or writing an 
array can also prevent loop merging optimizations. In either of these cases it results in designs 
that have both longer latency and throughput. 

Consider the following design shown in Example 4-23. In this example the accumulated result 
from the ACCUM0 loop is used as the starting value for the ACCUM1 loop. These loops are 
not automatically merged since the ACCUM0 loop must finish before the ACCUM1 loop can 
start. 

Example 4-23. Unmerged Sequential Loops

Figure 4-37 shows the schedule when the main loop of Example 4-23 is pipelined with an II=1. 
It also illustrates the effect of pipelining the main loop when there are unmerged sequential 

#include “accum.h”
void accumulate(int din0[4], int din1[4],int &dout0, int &dout1){
  int acc0=0;
  int acc1=0;

 ACCUM0:for(int i=0;i<4;i++){
    acc0 += din0[i];
  }
  acc1 = acc0;
 ACCUM1:for(int i=0;i<4;i++){
    acc1 += din1[i];
  }
  dout0 = acc0;
  dout1 = acc1;
}
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loops in the design. Pipelining the main loop causes all loops in the design to be flattened, which 
in turn causes the last iteration of the ACCUM0 loop to be overlapped with the first iteration of 
the ACCUM1 loop. Although this improves the design performance slightly it has the impact of 
requiring two adders to implement the hardware. If performance is not an issue it is better to 
pipeline the ACCUM0 and ACCUM1 loops individually. This should then allow the operations 
scheduled in each loop to be shared, reducing the area. However pipelining the loops 
individually can impact the performance since each loop must then ramp-up and ramp-down 
separately. 

Figure 4-37. Schedule of Unmerged Sequential Loops with Main II=1

Figure 4-38 shows the schedule when the ACCUM0 and ACCUM1 loops of Example 4-23 are 
pipelined with II=1 instead of pipelining the main loop. In this case there is no overlap between 
the loops and a single adder can be used to implement the hardware. However there is a two 
cycle performance penalty incurred due to the un-pipelined main loop (C1 Main and C2 Main).

Figure 4-38. Schedule of Unmerged Sequential Loops with ACCUM(s) II=1

Manual merging of sequential loops
It is up to the designer to manually merge sequential loops in situations where HLS does not do 
it automatically, and merged loops is the desired behavior. This usually means rewriting the 
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C++ code. Example 4-24 shows the manual rewrite of the code in Example 4-23 in order to 
achieve the best possible performance.

Example 4-24. Manually Merged Sequential Loops with Main II=1

The example shown above manually merged the sequential loops so that the design runs in four 
clock cycles when pipelining the main loop with II=1. However this design is larger than the 
previous implementations because it requires three adders, shown in the schedule in 
Figure 4-39.

Figure 4-39. Schedule of Manual Merged Sequential Loops with Main II=1

Pipeline Feedback
The initiation interval can be set anywhere from a synthesis tool dependent maximum down to 
an II=1 on any feed-forward design. However, a design with feedback limits the initiation 
interval to be no less than the delay of the feedback path. There are three types of feedback, data 
dependent, control dependent, and inter-block feedback. Inter-block feedback is discussed in 
later chapters covering system level design.

Data Feedback
Data feedback occurs when the input to a data path operation is dependent on a variable 
computed in the previous loop iteration. If the only loop in the design is the main loop the 

#include “accum.h”
void accumulate(int din0[4], int din1[4],int &dout0, int &dout1){
  int acc0=0;
  int acc1=0;
  int tmp;
 ACCUM0_1:for(int i=0;i<4;i++){
    tmp = din0[i];
    acc0 += tmp;
    acc1 += din1[i]+tmp;
  }
  dout0 = acc0;
  dout1 = acc1;
}
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variable must have been declared as static for there to be feedback. Consider the following 
design:

Example 4-25. Data Feedback Design

Design Constraints
Clock frequency slow
Main loop pipelined with II=1

If the clock frequency for this design is assumed to be very slow the schedule and hardware 
would look approximately like Figures 4-40 and Figure 4-41. The design schedule shows that 
pipelining with II=1 is possible since each iteration of the main loop finishes computing “acc” 
before the next iteration starts. This is also obvious by looking at the hardware diagram.

Figure 4-40. Feedback Within One Clock Cycle

Figure 4-41. Hardware for Feedback Within One Clock Cycle

1 void accumulate(int a, int b, int &dout){
2   static int acc=0;
3   int  tmp = acc*a;
4   acc = tmp+b;
5   dout = acc;
6 }
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Now consider the same design from Example 4-25 re-synthesized with the following 
constraints:

Design Constraints
Clock frequency very fast
Main loop pipelined with II=1
Multiplier constrained to a two-cycle pipelined multiplier

This design cannot be pipelined with II=1 with the given set of constraints listed above. The 
failed schedule shown in Figure 4-42 illustrates why. To pipeline with II=1 would mean that 
“acc” is available to be read in the second clock cycle. However, the first pipeline stage is not 
finished computing “acc” until the edge of the third clock cycle. Another way to look at this is 
to examine the hardware that is synthesized, shown in Figure 4-43. It takes two clock cycles to 
compute “tmp” in the feed-forward path. “tmp” is then added to the current value of “b” and fed 
back to the multiplier. Lines 3 and 4 of Example 4-25 show that each time a new value of “acc” 
is computed it is available in the next iteration to compute “tmp”. Thus the hardware pipeline 
cannot be made to run every clock cycle since it must allow the multiplier to flush for each 
computation of “tmp”. The best possible performance would be pipelining with II=2.

Figure 4-42. Failed Schedule for Multi-cycle Feedback
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Figure 4-43. Hardware for Multi-cycle Feedback

The solution to getting the design discussed above to pipeline with II=1 is to modify the design 
to balance the delays between the feed-forward and feedback paths. This means introducing 
delay elements in the C++ along the feedback path. The functionality is different from the 
original design, but there is no other way to pipeline with II=1 and have the RTL match the C++ 
exactly. Example 4-26 shows Example 4-25 rewritten to balance the delay along the feedback 
path to match the two cycle feed forward delay. This is done by creating a two element shift 
register to delay “acc”. The hardware synthesized for Example 4-26 is shown in Figure 4-44.

In general the number of shift register elements needed in the feedback path can be computed 
as:

Num Shift Elements = (feed-forward latency)/Initiation Interval (II)

Example 4-26. Balancing Feedback Path Delays

The details of Example 4-26 are:

• Lines 3 and 4 define two static variables used to implement the feedback delays.

• Line 6 uses the delayed feedback “acc_old1” as the input to the multiplier.

• Lines 8 and 9 implement the shift register to delay “acc” by two clock cycles.

1 void accumulate(int a, int b, int &dout){
2   static int acc=0;
3   static int acc_old0;
4   static int acc_old1;
5
6   int  tmp0 = acc_old1*a;
7   acc = tmp0+b;
8   acc_old1 = acc_old0;
9   acc_old0 = acc;

10   dout = acc;
11 }
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Figure 4-44. Hardware with Balanced Delays on Feedback Path

Control Feedback
Pipelining failures due to feedback are also possible due to the loop control in a design. The 
deeper the nesting of loops in a design, the more complicated the control becomes, which in turn 
limits the clock frequency and ability to pipeline a design. Adhering to the recommended 
coding practices eliminates many of these potential issues. The following design, 
Example 4-27, illustrates how “bad” coding style can lead to problems when trying to pipeline. 
This design does not only have larger area than needed, but also fails pipelining for high clock 
frequencies due to control feedback. The cause of this is due to the 32-bit interface variables 
being used for the loop upper bounds. The impact of writing the C++ this way was covered in 
detail in “Optimizing the Loop Counter” on page 54 and “Optimizing the Loop Control” on 
page 55. Essentially there is a long combinational path created to evaluate the loop exit 
conditions. The outer loop “X” has to know when the inner loops are finished so it can exit 
immediately. Figure 4-45 shows the approximate hardware structure for Example 4-27. 
Although this is a very rough approximation it clearly shows that there is a combinational path 
through both 32-bit loop bounds comparisons, which severely impacts performance as the clock 
frequency is increased. A secondary problem is that the unbounded loops generate 32-bit logic 
for the loop counters. This can also prevent pipelining due to the feedback on the loop 
accumulator.



78

Fundamentals of High Level Synthesis
 

Example 4-27. Control Feedback

Figure 4-45. Control Feedback

To minimize the possibility of feedback failures, Example 4-27 should be rewritten using the 
recommended style discussed previously. This is shown below in Example 4-28. The loops 
have been bounded, and the control logic for the loop exit reduced by using the appropriate bit 
widths on “x_size” and “y_size”

1 void control(int din[8][8], 
2              int dout[8], 
3              int x_size, 
4              int y_size){
5   int acc;
6  X:for(int x=0;x<x_size;x++){
7     acc = 0;
8   Y:for(int y=0;y<y_size;y++){
9       acc += din[x][y];

10       dout[x] = acc;
11     }
12   }
13 }
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Example 4-28. Minimizing Control Feedback

Conditions

Sharing
HLS can automatically share resources when it can prove mutual exclusivity. This means that 
HLS can theoretically share any similar operators that are in mutually exclusive branches of a 
condition, no matter how deeply nested the condition. The reality is that there are a number of 
ways that the C++ can be written and/or constrained so that the proof of mutual exclusivity is 
not possible. Usually this is due to a combination of either bad coding style or overly complex 
or deeply nested conditions. Good coding practices should always allow the maximum amount 
of sharing.

Conditional expressions are specified using the switch-case and if-else statements.

if-else statement
The if-else statement has the following form:

if( condition0 ) {
      statement-list0;
}
else if( condition1 ) {
      statement-list1;
}
...
else {
      statement-listN;
}

1 #include <ac_int.h>
2 void control(int din[8][8], 
3              int dout[8], 
4              ac_int<4,false> x_size, 
5              ac_int<4,false> y_size){
6   int acc;
7  X:for(int x=0;x<8;x++){
8     acc = 0;
9   Y:for(int y=0;y<8;y++){

10       acc += din[x][y];
11       dout[x] = acc;
12       if(y==y_size-1)
13         break;
14     }
15     if(x==x_size-1)
16       break;
17   }
18 }
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The conditions evaluate to a boolean expression and can range from simple boolean conditions 
to complex function calls. The statement list can be any number of C++ assignments, 
conditional expressions, or function calls.

switch statement
The switch statement has the following form:

switch( expression ) {
    case 0: statement list0;
    break;
    case 1: statement list1;
    break;
    ...
    case N: statement listN;
    break;
    default: statement list;
    break;
}

The “expression” is typically an integer that selects one of the possible cases. The statement list 
can be any number of C++ assignments, conditional expressions, or function calls. The 
statement list for a selected case executes and is followed by a break.

Note
Although it is possible to have a “case” without a “break” this is not generally good for 
synthesizable C++. The behavior in C++ is to drop through to the next “case”. However 
in C++ synthesis this can sometimes cause replication of logic.

Keep it Simple
Think about what you want the hardware to do and code your design using good design 
practices. While it is easy to write complex deeply nested conditions and rely on the HLS tool to 
share everything, it is just as likely to get less sharing than expected. Consider the following 
design example (Example 4-29) that conditionally accumulates one of four different arrays 
based on several IO variables. Each condition branch calls the “acc” function with one of four 
arrays as the input. 



Fundamentals of High Level Synthesis

 81

Example 4-29. Automatic Sharing and Nested Conditions

Design Constraints
Clock frequency slow
Main loop pipelined with II=1
All loops unrolled

There are several potential problems with the design in Example 4-29.

1. The four calls to the “acc” function are by default all inlined during synthesis. This 
means that there are four copies of the “ACC” loop that are inlined and optimized. 
Although it is possible that HLS can still share everything this will in general lead to 
longer synthesis runtimes since all four copies must be merged back together and 
shared. One possible solution to improve sharing and runtime would be to make “acc” 
into a component using a HLS component flow.

2. Even if everything is shared it is likely that HLS will perform fine-grained sharing, 
which leads to more MUX logic since each individual operator is shared separately. One 
possible solution to minimize MUX logic would be to make “acc” into a component.

3. The conditions in this example are simple and the clock frequency is slow enough so 
that everything is scheduled in the same clock cycle. As the conditions become more 
complex, the nesting becomes deeper, and/or the clock frequency increases, it is likely 
that operators will be scheduled in different clock cycles. This can limit sharing. Making 
“acc” into a component will not help in these types of situations. The best solution is to 
rewrite the code so that “acc” is called once.

Example 4-30 shows Example 4-29 rewritten to facilitate sharing. The key is to use the 
conditions to compute the MUXing of data and control and call the function only once.

1 int acc(int data[4]){
2   int tmp = 0;    
3   ACC:for(int i=0;i<4;i++)
4     tmp += data[i];
5   return tmp;
6 }
7 void test(int a[4], int b[4], int c[4], int d[4], 
8           bool sel0, bool sel1, bool sel2, int &dout){
9   int tmp;  

10   if(sel0){
11     if(sel1)
12       tmp = acc(a);
13     else if(sel2)
14       tmp = acc(b);
15     else
16       tmp = acc(c);   
17   }else
18     tmp = acc(d);
19   dout = tmp;
20 }
21
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Example 4-30. Explicit Sharing and Nested Conditions

Design Constraints
Clock frequency slow
Main loop pipelined with II=1
All loops unrolled

Example 4-30 will in general give better results than Example 4-29. This is because the nested 
conditional expression is only used to control the selection of the input array. Once the input 
array is selected the “acc” function is called once. Doing this allows HLS to easily optimize the 
adder tree for the “acc” function and the MUX logic is only needed to select the input data. In 
essence this is coarse grained sharing. This style should be used when using component flows 
does not give the desired sharing. This example will also have better runtime in general since 
the “ACC” loop is only inlined once.

Functions and Multiple Conditional Returns
Although multiple returns in function calls are allowed by both C++ and HLS, they are in 
general a bad idea. This is true both from a code debugging perspective as well as a synthesis 
quality of results issue. HLS balances the pipeline stages of all conditional branches. Having a 
return in the branch complicates this and makes it more difficult to pipeline a design. It is best to 
use a single return at the end of the function. It’s especially bad to use multiple returns to try and 
make things mutually exclusive.

Consider the following example:

1 int acc(int data[4]){
2   int tmp = 0;    
3   ACC:for(int i=0;i<4;i++)
4     tmp += data[i];
5   return tmp;
6 }
7 void test(int a[4], int b[4], int c[4], int d[4], 
8           bool sel0, bool sel1, bool sel2, int &dout){
9   int tmp,data[4];  

10   for(int i=0;i<4;i++)  
11     if(sel0){
12       if(sel1)
13         data[i] = a[i];
14       else if(sel2)
15         data[i] = b[i];
16       else
17         data[i] = c[i];
18     }else
19       data[i] = d[i];
20   tmp = acc(data);
21   dout = tmp;
22 }
23
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Example 4-31. Multiple Conditional Returns

Example 4-31 has several problems that will prevent good QofR.

1. Although sel0 and sel1 are mutually exclusive in that they are never evaluated together, 
HLS will typically not be able to prove this and will not share “acc”.

2. The function returns on both lines 9 and 12. If HLS cannot prove mutual exclusivity it 
will not be able to pipeline with II=1 if the function return is mapped to an IO.

3. The function only returns if “sel0” or “sel1” is true. This means that the return value can 
be undefined. This undefined behavior may cause logic to be optimized away or 
simulation behavior of the RTL may not match the C++.

Example 4-31 is rewritten to have only one return, shown below.

Example 4-32. Single Function Return

Example 4-32 has made the conditions mutually exclusive. A temporary variable “tmp” is used 
to store the result of each condition and is then returned on line 15. The temporary variable is 
initialized to zero as well so the return value will never be undefined. 

1 int acc(int data[4]){
2   int tmp = 0;    
3  ACC:for(int i=0;i<4;i++)
4     tmp += data[i];
5   return tmp;
6 }
7 int test(int a[4], int b[4], bool sel0, bool sel1){  
8   if(sel0){
9     return acc(a);

10   }
11   if(sel1){
12     return acc(b);
13   }
14 }

1 int acc(int data[4]){
2   int tmp = 0;    
3  ACC:for(int i=0;i<4;i++)
4     tmp += data[i];
5   return tmp;
6 }
7 int test(int a[4], int b[4], bool sel0, bool sel1){
8   int tmp = 0;  
9   if(sel0){

10     tmp = acc(a);
11   }
12   else if(sel1){
13     tmp = acc(b);
14   }
15   return tmp;
16 }
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Replacing Conditional Returns with Flags
It is also possible to bypass entire sections of code by using a conditional return. This should 
also be avoided. It is always possible to replace the conditional return with a flag variable that 
can bypass the code. Consider the following code fragment:

Example 4-33. Conditional Return to Bypass Code

Example 4-33 only adds “b” to “tmp” if “sel0” is false. It should be rewritten as:

Example 4-34. Using Flags to Bypass Code

Example 4-34 replaces the conditional return with a flag that is set conditionally. The flag is 
then used to conditionally bypass the same sections of code that were bypassed by the 
conditional return. A single return is used at the end of the function.

Note
A function should have one and only one return.

References
1. John P. Elliot - Understanding Behavioral Synthesis, Kluwer Academic Publishers 1999

1 ...
2 tmp = 0;
3 tmp += a;
4 if(sel0)
5 return tmp;
6 tmp += b;
7 return tmp;

1 ...
2 bool flagl = false;
3 tmp = 0;
4 tmp += a;
5 if(sel0)
6 flag = true;
7 if(flag)
8 tmp += b;
9 return tmp;
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Chapter 5
Scheduling of IO and Memories

Introduction
Similar to loop pipelining and loop unrolling, the way in which IO and memory accesses are 
coded in a design can have a significant impact on both area and performance. IO and memory 
accesses tend to be the bottleneck in a system and they can potentially limit the ability to 
pipeline a design, or negate the benefits gained from loop unrolling. In the worst case using bad 
style when coding IO or memories prevents scheduling a design. 

There are two primary ways for passing IO into and out of a design, pass by value and pass by 
pointer or reference, which includes arrays. Using one over the other can lead to very different 
behavior.

Unconditional IO
Unconditional IO is considered to be an interface variable mapped to a “wire” type resource. In 
other words there is no handshaking protocol and it is assumed that the IO can be accessed at 
any point in the schedule. This has several ramifications in terms of what hardware is built, as 
well as how the IO should be dealt with external to the design. 

Note
If an IO is unconditional HLS is free to move the IO into and out of conditions, as well as 
into different c-steps, in order to reduce register area. 

Because the IO is a wire type interface there is no signaling mechanism to the external world 
that indicates when the IO access occurs. It is the responsibility of the designer to ensure that the 
IO data is set up and available for reading, or ready to accept writing of data. Unconditional IO 
is used most often for either control type interfaces, where the IO does not change, on in designs 
that are pipelined with II=1 and the IO is read or written every clock cycle. Otherwise a designer 
must look at the design schedule in order to determine the correct point in time when IO is 
accessed. The understanding of this type of IO behavior can be further complicated when either 
passing by value or passing by reference. The following sections look at each of these cases 
individually.
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Pass by Reference
Pass by reference is when a variable is declared as either a pointer or a reference on the design 
interface. This means that the data that the variable “points to” or “refers to” is stored externally. 
In other words the “data” is stored off-chip. What this can often imply when hardware is 
synthesized is that either the data is expected every clock cycle, or there is some sort of off-chip 
storage in either registers or memory. 

Consider Example 5-1 where the four element accumulator has been enhanced to saturate to a 
maximum value when a control flag is set to true.

Example 5-1. Unconditional IO Passed by Reference

Design constraints - ACCUM loop with II=1
All IO mapped to wire interfaces

Figure 5-1 shows the schedule for Example 5-1. What this shows is that din[], flag, and 
threshold are read for each iteration of the ACCUM loop. Because the IO is unconditional the 
designer must ensure that the data is setup and held for the duration of the ACCUM loop, and 
the write of “dout” must be captured in C2_Main. Without explicit handshaking this would 
require counting clock cycles after the design is reset. 

void accumulate(int din[4], int &dout, int &threshold, bool &flag){
  int acc=0;
 ACCUM:for(int i=0;i<4;i++){
    acc += din[i];   
    if(flag)
      if(acc > threshold)
        acc = threshold;
  }
  dout = acc;
}       
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Figure 5-1. Schedule of Unconditional IO Passed by Reference

The resulting hardware and typical off-chip configuration of Example 5-1 is shown in 
Figure 5-2.
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Figure 5-2. Hardware of Unconditional IO Passed by Reference

One of the potential problems with the design shown in Figure 5-2 is that there is no 
synchronization to indicate when din, threshold, and flag are read, or where “dout” is written. 
This means that the designer must design the external logic to guarantee that the IO data is 
available at the right point in time. In many cases it is better to add explicit synchronization on 
the IO. This is covered in later sections.

Pass by Value
Declaring a variable on the design interface as “pass by value” has the effect of registering the 
data internally in the design. The reason for this is because it matches the behavior of C++ 
compilers, which is to push pass-by-value interface variables onto the stack when a function is 
called. The function then pops these variables of the stack and can use them internally, but 
cannot modify them. The advantage of using pass-by-value versus pass-by-reference is twofold;

1) The IO data does not have to be held stable after it is read at the beginning of the main loop

2) IO traffic is reduced because the data is read once.

Example 5-2 is functionally the same as Example 5-1 but the interface variables “threshold” and 
“flag” have been made pass-by-value.
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Example 5-2. Unconditional IO Passed by Value

The schedule for Example 5-2 is shown in Figure 5-3. Making the threshold and flag variables 
pass-by-reference has the effect of reading them once and storing the data in registers at the 
beginning of the design, eliminating the need to read them for each iteration of the ACCUM 
loop.

Figure 5-3. Schedule of Unconditional IO Passed by Value

Figure 5-4 shows the resulting hardware implementation and off-chip configuration. Holding 
registers have been created for threshold and flag. Because of this the hardware does not require 
that these variables are held stable through all iterations of the ACCUM loop. However, this 
design still has the same synchronization issues see when passing by reference. The off-chip 
hardware must guarantee that threshold and flag are setup and available for reading in C1 of the 
main loop without receiving any hardware synchronization signals from the on-chip logic. This 
is one of the reasons why “wire” interfaces are used either for designs that have IO read and 

void accumulate(int din[4], int &dout, int threshold, bool flag){
  int acc=0;
 ACCUM:for(int i=0;i<4;i++){
    acc += din[i];   
    if(flag)
      if(acc > threshold)
        acc = threshold;
  }
  dout = acc;
}       
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written every clock cycle, or in combination with some hardware synchronization to make sure 
that IO is accessed in the correct c-step.

Figure 5-4. Hardware of Unconditional IO Passed by Value

Conditional IO
An IO is considered conditional if the interface variable is mapped to a resource that has a 
hardware “handshake”. This handshake can consist either of a simple ready to send or receive 
data, or a ready/acknowledge behavior. Unlike unconditional IO, where high-level synthesis is 
free to move IO into and out of conditions in the C++, conditional IO cannot be moved into or 
out of conditions in the C++ code. The only exception to this rule is when the variable mapped 
to IO is pass-by-value. In this case the IO is always read once at the beginning of the design 
schedule and stored in registers. Using pass-by-value variables in this way can have some 
potentially unexpected behavior when the IO has a handshake.

Pass by Reference
Similar to the pass-by-reference example for unconditional IO, passing by reference using 
conditional IO requires that the data is setup and available before the IO is accessed. However 
conditional IO provides the mechanism to synchronize the transfer of data via 
ready/acknowledge control signals. In Example 5-3 the “threshold” variable is mapped to an IO 
resource that generates a ready for data strobe. It is assumed that the data is already available for 
reading in an off-chip FIFO so an acknowledge is not required. The “threshold” interface 
variable is read conditionally after the “flag” interface variable is read and evaluates to true. 
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Example 5-3. Conditional IO Passed by Reference

Design constraints - ACCUM loop with II=1
threshold and dout mapped to ready to send or recieve data interface
All other IO mapped to wire interfaces

Figure 5-5 shows the schedule for Example 5-3. The IO for “threshold is considered 
synchronous because the “ready for data” control signal is a registered signal. This is indicated 
in the schedule by showing the IO operation crossing the clock boundary.

Figure 5-5. Schedule of Conditional IO Passed by Reference

void accumulate(int din[4], int &dout, int &threshold, bool &flag){
  int acc=0;
 ACCUM:for(int i=0;i<4;i++){
    acc += din[i];   
    if(flag)
      if(acc > threshold)
        acc = threshold;
  }
  dout = acc;
}       
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One of the effects of reading “threshold” inside of a condition based on “flag” is that the number 
of c-steps for each iteration has been increased. The “threshold” request-for-data control signal 
can not be asserted until the condition based on “flag” has evaluated to true. The timing diagram 
of this behavior is shown in Figure 5-6. The read request for threshold is only generated when 
“flag” is asserted high.

Figure 5-6. Timing of Conditional IO Passed by Reference

Figure 5-7 shows the hardware implementation of Example 5-3. Mapping to an IO with a 
“request” signal causes the synthesis process to insert a hardware control signal that can be 
hooked up to an external FIFO to control the flow of data. Additionally, the synchronous nature 
of “threshold” requires that “flag” is read in the previous clock cycle than “threshold”.

Figure 5-7. Hardware of Conditional IO Passed by Reference
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Pass by Value
The previous section illustrated how a pass-by-reference interface variable mapped to a 
conditional IO is only read inside of a C++ condition when the condition is true. This includes 
the generation of the “request” control signal. When using pass-by-value variables on the 
interface the behavior is different. Pass-by-value interface variables are always read at the 
beginning of the main loop regardless of where they are used in the C++ code. So even if the 
variable is read conditionally in the code, as shown in Example 5-4, a request-for-data is still 
generated.

Example 5-4. Conditional IO Passed by Value

Design constraints - ACCUM loop with II=1
threshold and dout mapped to request for data interface
All other IO mapped to wire interfaces

The schedule for Example 5-4 is shown in Figure 5-8. “threshold” has its request-for-data 
control signal issued in C1_Main and “threshold” and “flag” are read once, and only once, in 
C2_Main since they are both pass by value. The timing diagram in Figure 5-9 shows the 
potentially unexpected behavior of this example. The “threshold” request-for-data control signal 
is asserted and “threshold” is read is regardless of the value of “flag”. This happens because 
pass-by-value interface variables are always read once at the beginning of the main loop no 
matter where they are used in the C++ code. Figure 5-10 shows the hardware synthesized for 
Example 5-4.

void accumulate(int din[4], int &dout, int threshold, bool flag){
  int acc=0;
 ACCUM:for(int i=0;i<4;i++){
    acc += din[i];   
    if(flag)
      if(acc > threshold)
        acc = threshold;
  }
  dout = acc;
}       
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Figure 5-8. Schedule of Conditional IO Passed by Value

Figure 5-9. Timing of Conditional IO Passed by Value
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Figure 5-10. Hardware of Conditional IO Passed by Value

Ready/acknowledge Behavior (wait)
In addition to being able to automatically map interface variables to request-for-data type 
resources, high-level synthesis lets users map to interface resources that have a 
ready/acknowledge type behavior. These type of interfaces must be used with caution since they 
are more restrictive in terms of how the generated hardware behaves. In particular they can 
produce unwanted behavior when pipelining the main loop with II=1. This more restrictive case 
is discussed in the next section. For now we can re-use Example 5-3 on page 91 with a different 
set of constraints. 

Design constraints - ACCUM loop with II=1
threshold mapped to request-grant interface
dout mapped to request for data interface
All other IO mapped to wire interfaces

Mapping the “threshold” interface variable to a ready/acknowledge type resource yields 
essentially the same schedule as that shown in Figure 5-5 on page 91. However the timing and 
hardware implementation is slightly different. The timing diagram for this example is shown in 
Figure 5-11. The “threshold” acknowledge control signal is used to determine when data is 
available. If data is being requested, “threshold” request driven high, and the acknowledge 
signal is low, the current loop iteration stalls the entire design until acknowledge goes high. This 
requires that the current data that is driven from “off-chip” must be held stable until the iteration 
completes. The timing diagram shows that this type of ready/acknowledge interface behavior is 
well suited for connecting to an off-chip FIFO, where ready is connected to the FIFO read, and 
acknowledge is connected to the FIFO empty flag, Figure 5-12.
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Figure 5-11. Timing of IO with Wait

Figure 5-12. Hardware of IO with Wait

Stalling the Pipeline
Using IO resources with ready/acknowledge behavior showed that it is possible to stall the 
execution of a loop until data is available without any unwanted behavior. In the previous 
examples the main loop was left unconstrained while the ACCUM loop was pipelined with 
II=1. This allows the ACCUM loop to ramp-up and ramp-down, which in turn allows any data 
in the pipeline to “flush” after the last input is read. In designs with pipelines consisting of more 
than one stage, this “flushing” does not occur if the main loop is pipelined with II=1, and the 
whole pipeline can stall before the last output is written. Example 5-5 shown below is the four 
element accumulator that was used in previous sections.
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Example 5-5. Stalling the Pipeline with Conditional IO

Design constraints
Main loop pipelined with II=1
ACCUM loop fully unrolled
din maped to ready-acknowledge resource
dout mapped to ready resource

Fully unrolling the ACCUM loop creates a two-stage balanced adder tree. In this example it is 
assumed that the clock frequency is sufficiently fast so that the adder tree stages are scheduled 
in separate c-steps. Figure 5-13 shows the schedule for Example 5-5. This shows that the read 
for iteration 1 of the main loops happens before the write of iteration 0. If the read data is not 
available the pipeline stalls.

Figure 5-13. Schedule of Pipelined Main Loop with Conditional Wait IO

Figures 5-14 and 5-15 show the timing and hardware diagrams for Example 5-5. They illustrate 
how the previous read is completing in pipeline stage 2 while the current read is needed for 
pipeline stage 1. If the current read data is unavailable the previous read data gets stuck in the 

void accumulate4(int din[4], int &dout){
  int acc=0;
 ACCUM:for(int i=0;i<4;i++){
    acc += din[i];
  }
  dout = acc;
}
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pipeline. In other words, the pipeline does not flush if there is no data available for reading at 
the input.

Figure 5-14. Timing of Pipeline Stall

Figure 5-15. Hardware of Pipelined Main Loop with Conditional Wait IO

Having the pipeline stall is sometimes unacceptable for certain types of designs, especially 
designs that do not have continuously running data. Video is a good example of this, where 
horizontal and vertical blanking create gaps in the pixel data. One way to prevent the pipeline 
from stalling is to not pipeline the main loop but pipeline the inner loops. Pipelining the inner 
loops allows the pipeline to ramp down, flushing all data. The downside of not pipelining the 
main loops is that there is a multi-clock cycle penalty for the time it takes to ramp-up and ramp-
down the pipeline. If the main loop must be pipelined for performance reasons the other 
solution is to manually code the “ack” into the C++ code to allow the pipeline to flush.

Caution
Pipelning the main loop when using handshaking IO can prevent the pipeline from 
flushing.
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Manually Flushing the Pipeline
It’s possible to manually flush the pipeline in a design with a pipelined main loop by explicitly 
coding the acknowledge into the C++ interface. Example 5-6 has taken the code from 
Example 5-5 and modified it so that acknowledge is now part of the top-level C++ interface.

Example 5-6. Manually Flushing the Pipeline

Design constraints
Main loop pipelined with II=1
ACCUM loop fully unrolled
din maped to ready for data resource
dout mapped to ready to send resource

The C++ is written so that an output is always produced every time “ack” is true. When “ack” is 
false the loop is skipped and the function exits. This behavior allows the pipeline to flush since 
the design doesn’t have to wait if data is not available. One side effect of this is that the read-
for-data signal for “din” is not asserted until “ack” goes high. In the previous example that 
mapped “din” to a ready/acknowledge interface the ready-for-data signal was issued 
immediately regardless of the value of the acknowledge. Figure 5-16 shows the timing of 
Example 5-6.

Figure 5-16. Timing of Manually Flushing the Pipeline

void accumulate(int din[4], int &dout, bool &ack){
  int acc=0;
  if(ack){
  ACCUM:for(int i=0;i<4;i++){
      acc += din[i];
    }
    dout = acc;
  }
}       
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Writing IO for Throughput
All of the IO examples covered previously have been able to schedule with the main loop 
pipelined with II=1. This was because either there was only a single IO access per loop iteration 
or because the IO accesses were automatically merged when inside of an unrolled loop. There 
are instances when multiple IO accesses or conditional IO inside of unrolled loops are not 
merged, which in turn prevents pipelining a design and limits the throughput. When this 
happens it usually requires modifying the C++. Example 5-7 shows the four element 
accumulator with a slight modification. The “flag” array is tested inside the loop to determine 
which element of “din” is read and accumulated. If all elements of “flag” are false then “din” is 
never read. This design can not be pipelined when the ACCUM loop is unrolled because 
multiple IO access are created and cannot be merged.

Example 5-7. IO Throughput Limiting Design

Design constraints
ACCUM loop fully unrolled
One ADD takes most of 
din maped to ready for data resource
dout mapped to ready to send data resource

Figure 5-17 shows the schedule for Example 5-7where the main loop is not pipelined. Reading 
the IO “din” conditionally, where each condition is different “flag[i], in this case causes four 
separate conditional reads that are not merged, even though each read is only accessing a slice 
of “din”.This can be better understood by looking at Example 5-8 which shows

void accumulate(int din[4], int &dout, bool flag[4]){
  int acc=0;
  ACCUM:for(int i=0;i<4;i++){
      if(flag[i])
        acc += din[i];   
  }
  dout = acc;
}       
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Figure 5-17. Schedule of IO Throughput Limiting Design

Example 5-7 with the ACCUM loop manually unrolled. What this illustrates is that each 
condition must be evaluated before “din” can be read and accumulated. Thus there is a 
dependency between each loop iteration and this prevents the IO accesses from being merged 
into a single access, causing four separate reads of “din”.

Example 5-8. Manual Unrolling of IO Throughput Limiting Design

The reason why this design cannot be pipelined is evident from Figure 5-18 which shows that 
overlapping iterations of the main loop would require simultaneous multiple reads from the IO 
port “din”, which is physically impossible. 

void accumulate(int din[4], int &dout, bool flag[4]){
  int acc=0;
 
  if(flag[0])
    acc += din[0];   
  if(flag[1])
    acc += din[1];   
  if(flag[2])
    acc += din[2];   
  if(flag[3])
    acc += din[3];   
  
  dout = acc;
}       
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Figure 5-18. Design that Can’t be Pipelined Due to Unmerged IO

Making IO Mergable
The code for Example 5-7 should be rewritten to either make the read of “din” unconditional 
when possible, or to simplify the condition so that the reads can be merged. Example 5-7 
illustrates how you often get what you asked for, but not what you want, when writing 
synthesizable C++ code. Let’s assume that after analyzing the undesirable scheduling results 
from HLS, it is determined that “din” can, and should, be read every iteration of the main loop, 
since in hardware it is expected that all four values of “din” come in parallel from an external 
FIFO. With this assumption the C++ code can be rewritten as shown in Example 5-9. All 
elements of “din” are read in the beginning of the design regardless of the value of “flag”, and 
then stored in the internal variable “din_int”. The internal variable is then used in the ACCUM 
loop.
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Example 5-9. Making IO Read Unconditional

Design constraints
Main lop pipelined with II=1
DIN and ACCUM loops fully unrolled
din maped to ready for data resource
dout mapped to ready to send resource

Figure 5-19 shows the scheduled design for Example 5-9 where making the read of all elements 
of “din” unconditional allows them to be merged into a single read, which in turn allows the 
design to be pipelined with II=1. Although the reads have been merged, the three adders in the 
design have a dependency because of the conditional accumulate based on “flag[i]”. This 
dependency prevents adder tree balancing and can result in sub-optimal hardware, especially as 
the clock frequency is increased to the point where the adders must be scheduled in separate 
clock cycles.

Figure 5-19. Schedule of Unconditional IO Read

One potential problem with the re-write of Example 5-9 is that the read of “din” always occurs 
regardless of whether any of the “flag[i]” elements are set, which is different from the behavior 
of Example 5-7. If the desired behavior is to only read “din” if at least one element of “flag[i]” 
is set the code can be rewritten to give this type of behavior, shown in Example 5-10.

void accumulate(int din[4], int &dout, bool flag[4]){
  int acc=0;
  int din_int[4];
  bool flag_int;

 DIN:for(int i=0;i<4;i++)
    din_int[i] = din[i];  
 ACCUM:for(int i=0;i<4;i++){
    if(flag[i])
      acc += din_int[i];   
  }
  dout = acc;
}       



104

Scheduling of IO and Memories
 

Example 5-10. Simplifying Conditional IO to Help Merging

Design constraints
Main loop pipelined with II=1
FLAG, DIN and ACCUM loops fully unrolled
din maped to ready for data resource
dout mapped to ready to send resource

Example 5-10 has made the read of “din” conditional by creating a boolean variable that is 
equal to the “OR” of all of the “flag[i]” elements, which is done in the FLAG loop. If “flag_int” 
is true then “din” is read. Using the simple condition inside of the DIN loop allows the IO reads 
to be merged.

Caution
Conditionally reading arrays mapped to IO inside of unrolled loops has the potential to 
prevent pipelining. Make the IO reads unconditional when possible by reading the entire 
array into an internal array.

Memories
HLS not only allows users to map arrays to IO resources, where the array elements are available 
in parallel with or without a handshake, but also allows them to map arrays to memory type 
resources. Both internal arrays and arrays on the top-level function interface can be mapped to 
memory resources. If the array is on the top-level interface HLS creates the address, data, and 
control signals required to interface to an off-chip memory. If the array is internal to the design 
HLS not only creates the necessary address, data, and control signals to access the memory, but 
it also instantiates the memory model. In the case of targeting ASIC designs this instantiation of 
the memory is only used for simulation, and is black boxed for synthesis since ASIC synthesis 
does not infer memories. The “black-box” memory can then be replaced with the physical 
memory produced by the users memory compiler. In the case of FPGA design, the instantiated 
memory is used not only for simulation, but is inferred as a memory by the FPGA RTL 
synthesis tool. 

void accumulate(int din[4], int &dout, bool flag[4]){
  int acc=0;
  int din_int[4];
  bool flag_int;
 FLAG:for(int i=0;i<4;i++)
    flag_int |= flag[i];
 DIN:for(int i=0;i<4;i++)
    if(flag_int)
      din_int[i] = din[i];  
 ACCUM:for(int i=0;i<4;i++){
    if(flag[i])
      acc += din_int[i];   
    else
      acc += 0;  
  }
  dout = acc;
}       
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Automatic Mapping of Arrays to Memories
Consider the following four element accumulator example used previously where the interface 
array is now mapped to a memory resource.

Example 5-11. Arrays Mapped to Memories

Design constraints
Main loop pipelined with II=1
din maped to single port RAM interface
dout mapped to ready to send resource

Leaving the ACCUM loop left rolled in Example 5-11, with the main looped pipelined with 
II=1, requires four clock cycles, or four 32-bit memory reads, to read the data from the memory 
and write the output to “dout”, as shown in Figure 5-20. One important thing to note here is that 
there is only one memory read per iteration of ACCUM, which allows the design to be pipelined 
with II=1. Figure  shows the timing diagram. HLS always uses synchronous memories so the 
address is issued in the clock cycle prior to the data when reading. For memory writes address 
and data are issued in the same cycle.

Figure 5-20. Arrays Mapped to Memories

void accumulate(int din[4], int &dout){
  int acc=0;
 ACCUM:for(int i=0;i<4;i++){ 
    acc += din[i];
  }
  dout = acc;
}
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Figure 5-21. Timing of Arrays Mapped to Memories

Figure  shows the hardware diagram for Example 5-11. The “din” array, which is mapped to a 
memory-type interface, is synthesized to hardware that contains an address/data memory 
interface that allows the design to be hooked up to an off-chip memory.

Figure 5-22. Hardware of Arrays Mapped to Memories

Automatic Memory Merging
Similar to IO, the way in which arrays mapped to memories are accessed in the C++ code 
affects performance, as well as HLS’s ability to automatically optimize memory accesses. One 
of the more powerful features of HLS is automatic memory merging, where sequential reads 
and writes to memories can be combined when the width of a memory is doubled, tripled, etc. If 
memory accesses cannot be automatically merged by HLS the C++ code must be re-written 
either to facilitate merging, or to manually merge the memory accesses.

Some of the conditions for automatic memory merging to happen are:

• Reads and writes to arrays mapped to memories must start on even word boundaries.

• Reads and writes to arrays mapped to memories should be unconditional when possible.

• Conditional reads and writes to memories inside of unrolled loops should use simple 
conditions to allow merging.
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• Multiple reads and writes to arrays mapped to memories within the same loop body must 
be in mutually exclusive conditions.

• The number of elements of one dimensional arrays mapped to memories must be 
divisible by the factor in which the memory is automatically widened if memory 
merging is to occur.

• When using two dimensional arrays the right-most dimension must be a power of two.

The hardware architecture shown previously in Figure 5-22 is limited to reading one 32-bit 
value from the memory interface per clock cycle. The physical memory interface is usually the 
bottleneck in the performance of the algorithm because the internal bandwidth of the design 
cannot exceed the interface bandwidth. In Example 5-11, the internal and interface bandwidths 
were exactly matched, where each iteration of the ACCUM loop read one 32-bit value from the 
memory mapped array “din” on the design interface. What we saw previously is that loop 
unrolling can be used as a mechanism to increase design performance for arrays mapped to wire 
type interfaces. This was because, in most cases, anywhere from one to all elements of the array 
could be read at once from the interface. This is generally not possible when arrays are mapped 
to memories. In order to understand why, it’s helpful to look at the effects of loop unrolling on 
the schedule when arrays are mapped to memories. Consider Example 5-11 with the following 
constraints.

Design constraints
din maped to single port RAM interface
ACCUM loop unrolled by 2
dout mapped to ready to send resource

Figure 5-23 shows the schedule and the effects of unrolling the ACCUM loop. Although the 
number of loop iterations has been halved by unrolling by two, the performance has not 
improved since it still requires the same number of clock cycles to read from the single port 
memory. In fact the performance of this version of the design is worse than the rolled loop 
version because this version cannot be pipelined with II=1. Figure 5-24 illustrates why this is 
not possible.
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Figure 5-23. Unmerged Memory Accesses Inside Unrolled Loops

Trying to pipeline the design with II=1 essentially means that a new iteration of the ACCUM 
loop, which has been flattened into the main loop (See “Nested Loops” on page 56), must be 
started every clock cycle. However this is not possible because it would require reading twice 
from the singleport memory in the same clock cycle. In other words this design cannot be 
pipelined with II=1 for the schedule shown in Figure 5-23.

Figure 5-24. Failed Schedule for Unmerged Memory Accesses with II=1

The memory reads to the singleport memory must be reduced to one read per loop iteration in 
order to schedule the design when pipelined with II=1. For this example this can be achieved by 
automatically widening the word width of the memory interface to 64 bits. Since the reads of 
“din” begin on an even word boundary, automatic memory merging should be able to combine 
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them into a single read per loop iteration. The design is re-constrained with the following set of 
constraints:

Design constraints
Main loop pipelined with II=1
din maped to single port RAM interface
Word width of singleport interface widened to 64 bits
ACCUM loop unrolled by 2
dout mapped to ready to send resource

Figure 5-25 shows the scheduled design after the word width of the memory interface is 
doubled, allowing the two 32-bit sequential reads to “din” to be merged into a single 64-bit read.

Figure 5-25. Schedule for Merged Memory Accesses with II=1

Designing for Throughput When Using Memories
The previous examples with arrays mapped to singleport memory interfaces have illustrated that 
only one read or write to a singleport memory per clock cycle is possible. This is an important 
aspect of HLS to pay attention to when structuring the C++. If an array is read or written at 
different places within the design it is essential that the code expresses mutual exclusivity of the 
array/memory accesses, or the code should be rewritten to have only a single array/memory 
access. 

Non-Mutually Exclusive Memory Accesses
Consider the following design in Example 5-12. Two interface variables “flag0” and “flag1” are 
used to control whether the elements of “din” are added or scaled and subtracted. Even if “flag0” 
and “flag1” are never set at the same time, it is impossible for HLS to prove this, and two memory 
reads are scheduled. This design cannot be pipelined with II=1 due to the multiple reads on “din”. 
Figure 5-26 shows the failed schedule of the design to illustrate why pipelining is not possible.
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Example 5-12. Non-Mutually Exclusive Memory Accesses

Design constraints
Main loop pipelined with II=1
din maped to single port RAM interface
dout mapped to ready to send resource

Figure 5-26. Failed Schedule for Non-mutually Exclusive Memory Accesses

Figure 5-26 shows that pipelining with II=1 is not possible since each iteration of the ACCUM 
loop requires two reads from the singleport memory interface. The C++ code must be re-written 
in order to pipeline this design.

Making Memory Accesses Mutually Exclusive
When possible, multiple accesses to an array mapped to memory should be made mutually 
exclusive. In Example 5-12 the C++ was written such that it is impossible for HLS to prove 
mutual exclusivity. The reads of “din” can be made to be mutually exclusive if it is known by 
the designer that “flag0” and “flag1” can never be true at the same time. Example 5-13 shows 
the re-written code with explicit mutual exclusivity by using an “if-else” statement instead of 
two “if” statements. Accessing “din” in separate branches of a condition allows the two reads to 
be merged into a single read operation. Figure 5-27 shows the schedule for Example 5-13. 
Because the address/index for “din[i]” is the same in both branches, it is merged into a single 
adder.

void accumulate(int din[4], int &dout, bool &flag0, bool &flag1){
  int acc=0;
 ACCUM:for(int i=0;i<4;i++){ 
    if(flag0)
      acc += din[i];
    if(flag1)
      acc -= din[i]/2;
  }
  dout = acc;
}       
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Example 5-13. Mutually Exclusive Memory Accesses

Figure 5-27. Schedule of Mutually Exclusive Memory Accesses

Manually Merging Non-Mutually Exclusive Memory Accesses
Example 5-13 showed how Example 5-12 can be rewritten to make memory accesses mutually 
exclusive when the conditional logic controlling the memory accesses is also known to be 
mutually exclusive. A different approach is required when the conditional accesses are not 
mutually exclusive. If the “flag” variables of Example 5-12 can both be true at the same time 
both conditions are entered. In this case the best approach is to try and manually reduce the 
number of reads of “din” to once per loop iteration. Example 5-14 shows the rewritten design 
where a temporary variable “tmp” has been used to read “din” once per loop iteration. “tmp” is 
then used internally. The design can now be pipelined with II=1. This code transformation was 
possible because the original design accessed the same address for both reads of “din”. This 
technique would not help if the addresses were different and would require a different type of 
transformation. This type of transformation is covered in the chapter on memory architecture.

void accumulate(int din[4], int &dout, bool &flag0, bool &flag1){
  int acc=0;
 ACCUM:for(int i=0;i<4;i++){ 
    if(flag0)
      acc += din[i];
    else if(flag1)
      acc -= din[i]/2;
  }
  dout = acc;
}       



112

Scheduling of IO and Memories
 

Example 5-14. Manually Merging Non-Mutually Exclusive Memory Accesses
void accumulate(int din[4], int &dout, bool &flag0, bool &flag1){
  int acc=0;
  int tmp;
 ACCUM:for(int i=0;i<4;i++){ 
    tmp = din[i];
    if(flag0)
      acc += tmp;
    if(flag1)
      acc -= tmp/2;
  }
  dout = acc;
}       
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Chapter 6
Sequential and Combinational Hardware

Introduction
The previous chapters provided a good introduction to the principles behind high-level 
synthesis and the use of bit-accurate data types. The basics of scheduling and loop optimizations 
were illustrated using concepts familiar to RTL designers, such as hardware diagrams, state 
machines, and timing diagrams. The next logical step is to take this foundation and apply it to 
some real world hardware examples. In a similar fashion to most RTL design guides, this 
chapter presents many of the basic hardware structures that RTL designers are familiar with, 
and shows how to code them using synthesizable C++. Unlike the examples of previous 
chapters, which focused primarily on a C-like coding style, class-based/object oriented C++ is 
introduced, including templates and recursion. As this chapter progresses the reader can begin 
to see the true power of hardware design using C++. The hardware examples presented in this 
chapter are all depicted as sequential circuits. This is because it is assumed that each example is 
synthesized as the top-level design. When used in the context of a larger design these circuits 
may be sequential or combinational based on the clock frequency and how the design is 
scheduled. True combinational components can also be synthesized by using explicit directives 
in the C++ synthesis tool.

Shift Registers
After going through the previous two chapters readers should have a good understanding of how 
HLS relates to some basic hardware structures. We can now build on that understanding by 
looking at some of the most commonly used structures in RTL design. All RTL designers are 
familiar with shift registers, and their many different variations, so this is a good place to begin 
describing basic hardware concepts using C++.

Basic Shift Register
Shift registers are used in a number of applications, with perhaps the most common use being in 
Finite Impulse Response (FIR) filters. The shift register consists of a chain of d-type flops that 
stores a history of values applied to the shift register input. Figure 6-1 shows the hardware 
diagram of a basic four-tap shift register. Every clock cycle a new value of “din” is read and 
stored, while the previously stored values of din are shifted to the right. In other words the shift 
register keeps a history of previous values of din, with the oldest value stored in the right-most 
register.

Example 6-1 shows a C++ function that implements a shift register. It uses a user-defined data 
type “dType” as well as a user-define constant “N_REGS” to define the number of shift register 
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registers. A static array “regs” is declared internal to the function. The “static” declaration is 
required so that the past values of “din” stored in “regs” persist between calls to the shift_reg 
function. The SHIFT loop is used to do the actual shifting of data, and the WRITE loop is used 
to copy the shift register values to the output port “dout”. One of the drawbacks of using this 
“C” like coding style for creating shift registers is that the function cannot be reused if multiple 
shift registers are needed. The “regs” array is shared between multiple calls to the “shift_reg” 
function because it has been declared static. If multiple shift registers are required the user must 
either create a separate function for each shift register, or use C++ template functions or classes 
to uniqueify the implementation. This is covered in a later section.

Figure 6-1. Basic Shift Register

Example 6-1. Basic Shift Register

Design Constraints
Main loop pipelined with II=1
regs array mapped to registers
SHIFT and WRITE loops fully unrolled

Example 6-1 shows the relative ease in which C++ allows the description of hardware. One 
thing that should be noted with this example is that there is no clock, reset, enable, etc. Some of 
these signals such as the clock, clock enable, and resets can be added automatically during the 
synthesis process. Other signals such as data enable, load, and synchronous reset, can be defined 
in the C++ code.

#include “basic_shift.h”
void shift_reg(dType din, dType dout[N_REGS]){
  static dType regs[N_REGS];
 SHIFT:for(int i=N_REGS-1;i>=0;i--){
    if(i==0)
      regs[i] = din;
    else
      regs[i] = regs[i-1];
  }
 WRITE:for(int i=0;i<N_REGS;i++)
    dout[i] = regs[i];
}
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Shift Register with Enable
The basic shift register from Example 6-1 can easily be enhanced to add a data enable signal to 
control the shifting of “regs”, Example 6-2.

Example 6-2. Shift Register with Data Enable

Design Constraints
Main loop pipelined with II=1
regs array mapped to registers
SHIFT and WRITE loops fully unrolled

Example 6-2 shows that the boolean signal “en” is used to control whether or not the SHIFT 
loop body is executed. If “en” is true then the shift occurs, otherwise the values stored in “regs” 
are held. Figure 6-2 shows the hardware diagram for Example 6-2. The “en” signal that was 
added to the design causes a feedback MUX to be inserted at the input of each register to hold 
the output when “en” is false. This feedback MUX can then be transformed into a clock gate 
during the downstream RTL synthesis process.

Figure 6-2. Shift Register with Data Enable

#include “basic_shift.h”
void shift_reg(dType din, dType dout[N_REGS],bool en){
  static dType regs[N_REGS];
 SHIFT:for(int i=N_REGS-1;i>=0;i--){
    if(en){
      if(i==0)
        regs[i] = din;
      else
        regs[i] = regs[i-1];
    }
  }
 WRITE:for(int i=0;i<N_REGS;i++)
    dout[i] = regs[i];
}
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Shift Register with Synchronous Clear
Similar to adding a data enable signal, the shift register can be enhanced to allow clearing of all 
registers based on a control signal, shown below in Example 6-3. If the “srst” signal is true then 
all elements of “regs” are set equal to zero, otherwise the data is shifted. The reset in this case is 
synchronous because it is described within the C++, and HLS is always going to build a 
synchronous design.

Example 6-3. Shift Register with Synchronous Clear

Design Constraints
Main loop pipelined with II=1
regs array mapped to registers
SHIFT and WRITE loops fully unrolled

Figure 6-3 shows the hardware diagram of Example 6-3.

Figure 6-3. Shift Register with Synchronous Reset

#include “basic_shift.h”
void shift_reg(dType din, dType dout[N_REGS],bool srst){
  static dType regs[N_REGS];
 SHIFT:for(int i=N_REGS-1;i>=0;i--){
    if(srst)
      regs[i] = 0;
    else{    
      if(i==0)
        regs[i] = din;
      else
        regs[i] = regs[i-1];
    }
  }
 WRITE:for(int i=0;i<N_REGS;i++)
    dout[i] = regs[i];
}
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Shift Register with Load
A synchronous load can be added to the shift register to load “regs” from the design interface. 
This is done in the same fashion that the synchronous reset was added. Example  show the shift 
register with a synchronous load. When “load” is true the elements of “regs” are loaded with the 
values of “load_data” read from the function interface. The hardware implementation for 
Example 6-4 is shown in Figure 6-4.

Example 6-4. Shift Register With Load

Design Constraints
Main loop pipelined with II=1
regs array mapped to registers
SHIFT and WRITE loops fully unrolled

Figure 6-4. Shift Register with Load

#include “shift_w_load.h”
void shift_reg(dType din, dType load_data[N_REGS],dType 
dout[N_REGS],bool load){
  static dType regs[N_REGS];
 SHIFT:for(int i=N_REGS-1;i>=0;i--){
    if(load)
      regs[i] = load_data[i];
    else{
      if(i==0)
        regs[i] = din;
      else
        regs[i] =  regs[i-1];
    }
  }
 WRITE:for(int i=0;i<N_REGS;i++)
    dout[i] = regs[i];
}



118

Sequential and Combinational Hardware
 

Shift Register Template Function
One of the problems with all of the shift register implementations covered so far is that the 
“shift_reg” function is not reusable. In other words it is not possible to create multiple instances 
of shift registers to be used within the same design. This is because the static declaration of the 
“regs” array is not unique, and is shared between all calls to the “shift_reg” function. This is 
essentially a limitation with the “C” language, but is easy to overcome using C++. Up to this 
point most of the design examples are more “C” like since they have not used many of the 
features of C++. C++ supports function templates that allow functions to not only operate with 
generic types, but can also allow function calls to be uniquefied. Templates are used in a design 
by using the C++ keyword “template” followed by one or more template arguments. Templates 
are similar to RTL generics or parameters, but they are much more powerful.

Example 6-5 shows a templatized version of the basic shift register. For this example there are 
three template parameters, “ID” which is an integer used to create a unique instance of the 
function, “dataType” which is used to specify the data type processed by the function, and 
NUM_REGS which controls the number of shift registers. It immediately becomes apparent 
that the function template has given us a design that can be reused. Lines 16 and 17 of 
Example 6-5 show how two unique instances of the shift_reg function can be created by 
specifying a unique value for the “ID” parameter. In addition to that, the data type and number 
of registers are also specified allow multiple unique instances of the shift register to be created 
for any data type and number of registers.

Example 6-5. Shift Register Function Template

Design Constraints
Main loop pipelined with II=1
regs array mapped to registers
SHIFT and WRITE loops fully unrolled

1 #include “template_shift.h”
2 template<int ID, typename dataType, int NUM_REGS>
3 void shift_reg(dataType din, dataType dout[NUM_REGS]){
4   static dataType regs[NUM_REGS];
5  SHIFT:for(int i=NUM_REGS-1;i>=0;i--){
6     if(i==0)
7       regs[i] = din;
8     else
9       regs[i] = regs[i-1];

10   }
11  WRITE:for(int i=0;i<NUM_REGS;i++)
12     dout[i] = regs[i];
13 }
14
15 void shift_reg_instances(int din0, char din1, int dout0[N_REGS0],char 

dout1[N_REGS1]){
16   shift_reg<1,int,N_REGS0>(din0,dout0);
17   shift_reg<2,char,N_REGS1>(din1,dout1);
18 }
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Class Based Shift Register
Up to this point we’ve seen how a number of different shift register implementations can be 
realized using C++. C++ templates were introduced and illustrated the benefits of being able to 
reuse a design description for different data types and different number of registers. However, 
having to create separate implementations for all the different types of shift registers is 
undesirable. What is needed is a single description that can be configured to do what we want. 
While it is possible to use function templates to do this, a much better approach is to create a 
shift register class. This class not only is templatized for the data type and number of registers, 
but allows unique instances without the need for a template “ID” parameter. 
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Example 6-6. Shift Register Class

Example 6-6 shows the implementation of the shift register class. The class implements all of 
the shift registers discussed so far with any combination of control signals. The implementation 
details are as follows:

• Line 4 is the template declaration with two template parameters, “dataType” and 
“NUM_REGS”

• Line 7 is the declaration of the “regs” array of type dataType and NUM_REGS elements

1 #ifndef __SHIFT_CLASS__
2 #define __SHIFT_CLASS__
3
4 template<typename dataType, int NUM_REGS>
5   class shift_class{
6  private:
7   dataType regs[NUM_REGS];  
8   bool en;
9   bool sync_rst;
10   bool ld;
11   dataType *load_data;
12  public:
13     shift_class():en(true),sync_rst(false),ld(false){}
14     shift_class(dataType din[NUM_REGS]):
15       en(true),sync_rst(false),ld(false){
16       load_data = din;
17     }
18     void set_sync_rst(bool srst){  
19       sync_rst = srst;
20     }
21     void load(bool load_in){
22       ld = load_in;
23     }
24     void set_enable(bool enable){
25       en = enable;
26     }
27     void operator << (dataType din){
28     SHIFT:for(int i=NUM_REGS-1;i>=0;i--){
29         if(en)
30           if(sync_rst)
31             regs[i] = 0;
32           else if(ld)
33             regs[i] = load_data[i];
34           else
35             if(i==0)
36               regs[i] =  din;
37             else
38               regs[i] =  regs[i-1];
39       }
40     }
41     dataType operator [](int i){
42       return regs[i];
43     }
44 };
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• Lines 8, 9, and 10 are internal control variables used for data enable, sync reset, and data 
load

• Line 11 is an internal pointer that is used to access the load data when a synchronous 
load is enabled

• Line 13 is the default constructor. This initializes the control variables “en”, “srst” and 
“ld” so that the shift register is enabled, not reset, and not loading. These default values 
are constant propagated to remove the control logic when not used.

• Line 14 is the constructor that initializes the control variables and points the “load_data” 
variable to an array

• Lines 18, 19, and 24 are the member functions used to set the control variables. If these 
functions are not called then the control values always have the values assigned by the 
default constructor, and are constant propagated. This is how the different hardware 
configurations can be selected. Control logic is only inserted when a member function is 
used.

• Line 27 is the overloaded shift operator “<<“ used to shift data though the “regs” array. 
This operator takes a right hand argument of type “dataType” and operates on “regs” 
based of the control variables. If a control variable is unused it is optimized away and 
does not cost any additional area. The order of operations are enable, sync reset, load, 
shift.

• Line 41 is the overloaded bracket operator “[]” which is used to index the “regs” array.

The shift register class of Example 6-6 now allows multiple shift registers of any arbitrary 
number of elements and data type. Furthermore each shift register instance can be configured to 
use any number of the control signals as needed. Unused control is optimized away. 
Example 6-7 shows a design that cascades two instances of the shift register class.
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Example 6-7. Using the Shift Register Class

Design Constraints
Main loop pipelined with II=1
All regs array mapped to registers
All loops fully unrolled

The details of Example 6-7 are:

• Lines 4 and 5 create two static instances of the shift register class. The instances are 
declared static so that the data inside of the class variable persists between function 
calls. The instances each have the same data type but N_REGS0 and N_REGS1 number 
of registers. The “shift_reg0” instance uses the constructor to point to “load_data” while 
“shift_reg1 does not support loading data and uses the default constructor.

• Lines 7 through 10 are used to set the control signals for each shift register. “shift_reg0” 
is configured to use all of the control signals built into the class, while “shift_reg1” only 
uses the “en” control signal.

• Lines 12 and 13 call the shift operator “<<“ for both shift registers. “din” is shifted into 
“shift_reg0” and the right-most tap of “shift_reg0” is shifted into “shift_reg1” 

• Lines 15 through 18 use the bracket operator “[]” to copy the shift register data to the 
outputs

Examples 6-6 and 6-7 begin to show the true power of C++ synthesis. Not only can any 
arbitrary length shift register be created from an instance of the shift register class, but any data 
type can be used, including complex user created classes provided that they implement the “<<“ 
and “[]” operators.

1 #include “test_shift_class.h”
2 #include “shift_class.h”
3 void shift_reg(dType din, dType load_data[N_REGS0],dType 

dout0[N_REGS0], dType dout1[N_REGS1], bool srst, bool load, bool en){
4   static shift_class<dType,N_REGS0> shift_reg0(load_data);
5   static shift_class<dType,N_REGS1> shift_reg1;
6   
7   shift_reg0.set_enable(en); 
8   shift_reg0.set_sync_rst(srst);
9   shift_reg0.load(load);

10   shift_reg1.set_enable(en); 
11   
12   shift_reg0 << din;
13   shift_reg1 << shift_reg0[N_REGS0-1];
14   
15  WRITE0:for(int i=0;i<N_REGS0;i++)
16     dout0[i] = shift_reg0[i];
17  WRITE1:for(int i=0;i<N_REGS1;i++)
18     dout1[i] = shift_reg1[i];
19 } 
20
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Helper Classes for Design Reuse
The previous section of shift registers showed how to build reusable hardware by creating 
templatized C++ classes. This approach allowed the shift register to be parametrized based on 
the data type and number of registers. In that example there was a one to one correspondence 
between template parameters and the resulting hardware. In other words, the number of 
registers “NUM_REGS” in Example 6-7 was used directly in the underlying design to specify 
the number of array elements in “regs”. However it is often desirable to statically compute some 
other internal parameter based on the template parameter. A good example of this is to compute 
the number of address bits required to index an array. There are a number of ways to compute 
these types of constants that leverage the power of C++ templates, including template recursion. 
Unfortunately these more powerful methods sometimes obscure the functionality within this 
type of template “magic”. This section presents a more “brute force”, but identical, approach to 
computing internal parameters. Template recursion is discussed in later sections.

Note
The helper classes described in this chapter are also supported by the Algorithmic C bit 
accurate data types. 

Log2Ceil
One of the most commonly needed parameters is the number of bits required to index an array 
with N elements, or to count to N-1. This is known as the log2ceil function in C++ where it 
returns the value X that satisfies the condition N <= 2^X. Since this parameter N is usually 
based on a template parameter it requires the use of enumerated types to perform the 
computation so that the result is statically determinable at compile time. 

An enumerated type is a set of named values where each value, known as an enumerator, 
usually behave as constants. A “helper class” is created to contain the enumerated type. This 
class is then used to compute the parameter. Example 6-8 shows the helper class for computing 
log2ceil up to 32 bits.
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Example 6-8. Log2Ceil Helper Class

The enumerated type uses the template argument “N_VAL” and compares it to be less than or 
equal to 2^X. It returns X if true, otherwise it moves to the next comparison. The helper class 
can then be used directly to set the number of bits in a bit accurate data type. e.g.

ac_int<LOG2_CEIL<N_REGS>::val,false> addr;

One important point to note about using the “brute force” approach is that there must be 
sufficient enumerations to cover all of the possible values. This helper class is used in later 
sections.

NextPow2
Another constant that often must be computed is the next power of two of a number N that 
satisfies X = 2^Y for 2^Y >= N. This can also be computed using the same technique of a helper 
class and enumerated type, shown in Example .6-9. 

#ifndef __LOG2CEIL__
#define __LOG2CEIL__

template<int N_VAL>
struct LOG2_CEIL{
  enum {
    val = N_VAL <= 1 ? 1: N_VAL <= 2 ? 1 : N_VAL <= 4 ? 2 : 

N_VAL <= 8 ? 3 : N_VAL <= 16 ? 4 : N_VAL <= 32 ? 5 : 
N_VAL <= 64 ? 6 : N_VAL <= 128 ? 7 : N_VAL <= 256 ? 8 : 
N_VAL <= 512 ? 9 : N_VAL <= 1024 ? 10 : N_VAL <= 2048 ? 11 :
N_VAL <= 4096 ? 12 : N_VAL <= 8192 ? 13 : N_VAL <= 16384 ? 14 :
N_VAL <= 32768 ? 15 : N_VAL <= 65536 ? 16 : 32

  };
};



Sequential and Combinational Hardware

 125

Example 6-9. NextPow2 Helper Class

Multiplexors
Two types of multiplexors are used during the HLS process, binary selection and onehot muxes. 
Binary selection MUXes are typically seen when performing simple indexing into an array 
mapped to registers, whereas onehot muxes are usually inferred when the indexing or control 
logic becomes more complicated. What usually determines the choice of MUX depends on the 
choice of C++ selection statement, the number of levels of MUXes, and the number of 
assignments involved in accessing the array. HLS typically optimizes multiple levels of binary 
selection muxes with common inputs into a single onehot MUX.

Binary MUX
The simplest, and most reliable, way to infer a two input binary section much is to use the 
question mark operator “?”. Example 6-10 shows how the question mark operator is used to 
multiplex between two value.

Example 6-10. Two-to-one MUX Using the ? Operator

If a binary section MUX with more than two inputs is needed the array should be indexed with 
the selection variable. However care must be taken, not only to set the appropriate number of 
bits for the section variable, but also to limit the number of assignments. Example 6-11 shows 
how a single index into an array infers a binary selection MUX. With a binary section MUX the 
number of bits of the selection variable should be log2ceil of the number of MUX elements, 
which in this example are equal to “N_REGS”. The log2ceil helper class covered in “Helper 
Classes for Design Reuse” on page 123 can be used to compute the proper number of bits for 
“sType”. This is done in the “binary_mux.h” include file shown in Example 6-12.

#ifndef __NEXTPOW2__
#define __NEXTPOW2__

template<int N_VAL>
struct NEXT_POW2{
  enum {
    val = N_VAL <= 1 ? 1: N_VAL <= 2 ? 2 : N_VAL <= 4 ? 4 :

N_VAL <= 8 ? 8 : N_VAL <= 16 ? 16 : N_VAL <= 32 ? 32 : 
N_VAL <= 64 ? 64 :  N_VAL <= 128 ? 128 :  N_VAL <= 256 ? 256 :
N_VAL <= 512 ? 512 :  N_VAL <= 1024 ? 1024 :N_VAL <= 2048 ? 2048 :
N_VAL <= 4096 ? 4096 : N_VAL <= 8192 ? 8192 : N_VAL <= 16384 ? 16384 :
N_VAL <= 32768 ? 32768 : N_VAL <= 65536 ? 65536 : 1048576

  };
};

#include “binary_2x1_mux.h”
dType binary_2x1_mux(dType din[2],bool sel){
  return sel ? din[0]:din[1];
}
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Example 6-11. Binary Selection MUX

Example 6-12. Binary Selection MUX Header File

Line 8 of Example 6-12 shows how “sType” is defined with the minimum number of bits 
required to index an array with N_REGS elements. The LOG2CEIL helper class is used to 
statically compute log2ceil of “N_REGS”.

Automatic Binary to Onehot MUX Optimizations
HLS automatically optimizes cascaded binary MUXes into onehot MUXes if common inputs 
exist in the cascade structure. This optimization in general gives better performance at the cost 
of slightly larger area. A common scenario where this occurs is shown in Example 6-13. 

Example 6-13. Automatic MUX Optimizations

The general hardware structure of Example 6-13 before and after optimizations is shown in 
Figure 6-5. The MUX tree is optimized into a single onehot MUX since “din” is common to 
both MUXes on the input. The un-optimized hardware shows that the two branches of the “if” 
statement controlled by “s” become inputs into a 2-to-1 MUX. Each of the “if” branches are fed 
with a binary section MUX controlled by “sel0” and “sel1”.

#include “binary_mux.h”
dType binary_mux(dType din[N_REGS],sType sel){
  return din[sel];
}

1 #ifndef __BINARY_MUX__
2 #define __BINARY_MUX__
3 #include <ac_int.h>
4 #include “../../helper_classes/src/log2ceil.h”
5 #define N_REGS 8
6
7 typedef ac_int<8> dType;
8 typedef ac_int<LOG2_CEIL<N_REGS>::val,false> sType;
9 dType binary_mux(dType din[N_REGS],sType sel);

10
11 #endif
12

#include “binary_mux.h”
dType binary_mux(dType din[N_REGS],sType sel0, sType sel1, bool s){

dType tmp;
if(s)

tmp = din[sel0];
else

tmp = din[sel1];
  return tmp;
}
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Figure 6-5. Automatic MUX Optimizations

Manual Optimization of Binary Selection MUXes
Example 6-13 showed that multi-level binary selection MUX structures can be automatically 
optimized into onehot MUXes. The C++ description must be restructured if the desired 
behavior is a single binary selection MUX to select between elements of “din”. The key is to 
reduce the accesses of “din” to a single point in the C++ code and to explicitly code the 
selection logic, shown in Example 6-14. The control variable “s”, line 5, is now used to select 
between “sel0” and “sel1” and assign to an internal variable “sel_int”. “sel_int” is then used to 
access “din”, line 9, in a single location.

Example 6-14. Manual Optimization of MUXes

The hardware diagram for Example 6-14 is shown in Figure 6-6.

Figure 6-6. Manual Optimization of MUXes

1 #include “binary_mux.h”
2 dType binary_mux(dType din[N_REGS],sType sel0, sType sel1, bool s){
3   dType tmp;
4   sType sel_int;
5   if(s)
6     sel_int = sel0;
7   else
8     sel_int = sel1;
9   return din[sel_int];
10 }
11
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One Hot MUX
In addition to the automatic onehot MUX optimizations discussed previously, it is also possible 
to explicitly code onehot MUXes using the “switch” or ”if-else” statements. Example 6-15 
shows the use of a “switch” statement that is inferred as a onehot MUX. In this example HLS 
encodes the selection logic to prevent multiple selections at the same time. In many cases the 
onehot MUX is controlled by the data path FSM which is onehot encoded.

Example 6-15. Onehot MUX Using “switch” Statements

Example 6-16 shows the use of an “if-else” statement that causes a onehot MUX to be inferred.

Example 6-16. Onehot MUX using “if-else” Statements

Priority Search Hardware
One of the more common functions encountered in many designs is some form of a priority 
search such as finding the position of the first leading one in a bit-vector, or finding the 
minimum or maximum value in an array. Although these types of algorithms are very easy to 
express in C++ using a for loop and some counters or comparators, the resulting hardware is not 

#include “onehot_mux.h”
dType onehot_mux(dType din[N_REGS],sType sel){
  dType tmp;
  switch(sel){
  case 1: tmp = din[0];
    break;
  case 2: tmp = din[1];
    break;
  case 4: tmp = din[2];
    break;
  case 8: tmp = din[3];
    break;
  default: tmp = 0;
    break;  
  }

#include “onehot_mux.h”
dType onehot_mux(dType din[N_REGS],sType sel){
  dType tmp;
  if(sel==1)
     tmp = din[0];
  else if(sel==2)
    tmp = din[1];
  else if(sel==4)
    tmp = din[2];
  else if(sel==8)
    tmp = din[3];
  else
    tmp = 0;
  return tmp;
}
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always optimal. It can be on the order of N levels of logic, where N is the size of the search. 
Many of these algorithms can be realized in log2(N) levels of logic when written slightly 
differently.

Finding Leading 1’s in a Bit-vector

Algorithmic Coding Style
Example 6-17 shows the most common way to code an algorithm that returns the position of the 
first leading one in the bit-vector as well as a flag that indicates if any or none of the bits are set.

Example 6-17. Finding Leading Ones in a Bit-vector

Design Constraints
Main loop pipelined with II=1
All loops fully unrolled
NUM_BITS = 32

The details of Example 6-17 are:

• Line 3 - “dout” returns the bit position of the first leading one. This means that the 
maximum count can be represented with log2ceil(NUM_BITS) bits. The helper class 
covered in “Helper Classes for Design Reuse” on page 123 is used to compute the 
minimum number of bits for “dout”.

• Line 5 - the “flag” variable is initialized to false. If not set it is returned indicating that 
there are no ones in the bit vector.

• Lines 6 though 11 - Starting with the uppermost bit each bit is checked and the loop is 
exited if a bit is set to one.

The hardware diagram for Example 6-17 is shown in Figure 6-7. The bits of “din” are used to 
generate the section logic for a 32x1 onehot MUX, which has the position count as its data 
inputs.

1 #include “find_leading_ones.h”
2 bool find_leading_ones(ac_int<NUM_BITS,false> din, 
3                        ac_int<LOG2_CEIL<NUM_BITS>::val,0> &dout){
4   int tmp;
5   bool flag = false;
6   for(int i=NUM_BITS-1;i>=0;i--){
7     if(din[i]){
8       flag = true;
9       tmp = i;  

10       break;
11     }
12   }
13   dout = tmp;
14   return flag;
15 }
16
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Figure 6-7. Finding Leading Ones in a Bit-vector

Improved Performance and Area Using the Brute Force Approach
Although there are much more efficient ways to code Example 6-17, they require considerable 
more thought into what the underlying hardware should look like. Sometimes it is only 
necessary to improve performance and area by a little bit in order to hit the desired metrics. In 
these cases it is often easier to use a more brute force approach to subdivide the algorithm 
implementation into smaller chunks. Example 6-18 shows a rewrite of the leading ones 
algorithm that divides the original algorithm into two parts.

Example 6-18. Finding Leading Ones Using Brute Force

Design Constraints
Main loop pipelined with II=1
All loops fully unrolled
NUM_BITS = 32

1 #include <ac_int.h>
2 #include “find_leading_ones.h”
3 bool find_leading_ones(ac_int<NUM_BITS,false> din, 

ac_int<LOG2_CEIL<NUM_BITS>::val,0> &dout){
4   int upper=0,lower=0;
5   bool flagu = false; 
6   bool flagl = false;
7   for(int i=NUM_BITS-1;i>=NUM_BITS/2;i--)
8     if(din[i]){
9       upper = i;

10       flagu = true;
11       break;  
12     }
13   for(int i=NUM_BITS/2-1;i>=0;i--)
14     if(din[i]){
15       lower = i;
16       flagl = true;
17       break;
18     }
19   dout =  flagu ? upper:lower;
20   return flagu|flagl;
21 }



Sequential and Combinational Hardware

 131

The details of Example 6-18 are:

• Line 4 - two counters used to store the bit position of the leading one for upper and lower 
halfs of the bit vector

• Lines 5 and 6 - flags for both the upper and lower half of the bit-vector

• Lines 7 through 18 - two loops are used to look for leading ones in the upper and lower 
half of the bit-vector

• Line 19 - if any upper bit is set return the upper count, otherwise return the lower count

• Line 20 - “or” the upper and lower flags and return

The hardware diagram of Example 6-18 is shown in Figure 6-8. The onehot MUX has been 
reduced from a 32x1 to a 16x1 and the MSB of the position count is set based on the upper flag 
“flagu”. This is a result of the search being performed on a 32-bit vector. If the vector was not a 
power of two the logic would be slightly more complex. However, as shown in the next few 
sections, it is possible to zero pad the input bit-vector to make it a power of two. This “brute 
force” approach can be used to further divide the problem into smaller chunks, but there are 
more elegant ways to do this.

Figure 6-8. Finding Leading One Using Brute Force

Log2(N) Based Search
The optimal algorithm for finding the leading ones in an N-bit bit-vector should take 
log2ceil(N) iterations to complete. This algorithm is similar to the “brute force” approach, but it 
continues dividing the vector into upper and lower parts until it operates on a single bit. 
Example 6-19 shows this implementation.
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Example 6-19. Finding Leading Ones Using Log2(N) Search

Design Constraints
Main loop pipelined with II=1
All loops fully unrolled
NUM_BITS = 32

The details of Example 6-19 are:

• Lines 4, 5, and 6 - use the helper functions for computing log2ceil(N) and nextpow2(N). 
Enumerated types are used to compute these values, “P2” and “L2”,since they are used 
in multiple locations within the design.

• Lines 8, 9, and 10 - define internal variables as power of two bits wide. This allows 
support for any N bits by zero padding the internal variable “din_tmp”.

• Lines 12, 13, and 14 - clear the position count, copy the input and zero pad if necessary, 
and set all mask bits equal to one.

• Line 15 - set the flag if any bit in the bit vector is set to one.

• Line 16 - iterate on “din_tmp” log2ceil(N) times.

1 #include “find_leading_ones.h”
2 #include <ac_int.h>
3 bool find_leading_ones(ac_int<NUM_BITS,false> din, 
4                        ac_int<LOG2_CEIL<NUM_BITS>::val,0> &dout){
5   enum {P2 = NEXT_POW2<NUM_BITS>::val};
6   enum {L2 = LOG2_CEIL<NUM_BITS>::val};
7   int tmp;
8   ac_int<P2,false> upper,lower;
9   ac_int<P2,false> mask = 0;

10   ac_int<P2,false> din_tmp=0;
11   bool flag = false;
12   int idx = 0;
13   din_tmp = din;
14   mask = ~mask;
15   flag = din_tmp?1:0;
16   for(int i=0;i<L2;i++){
17     mask = mask >> ((P2/2)>>i);    
18     upper = lower = 0;
19     upper = din_tmp>>((P2/2)>>(i));
20     lower = din_tmp&mask; 
21     din_tmp = 0;
22     if(upper){
23       idx = idx + (P2/2 >> i);
24       din_tmp = upper;
25     }else
26       din_tmp = lower;
27   }
28   dout = idx;
29   
30   return flag ;
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• Lines 17 through 20 - Half the number of mask bits for each successive iteration and 
mask off the upper and lower portions of the bit-vector.

• Lines 22 though 27 - Check to see if a one is set in “upper”, if set add P2/2>>i to the 
position count, and set “din_tmp” equal to the upper half. Otherwise set “din_tmp” equal 
to the lower half and go to the next iteration until finished.

The general hardware structure of Example 6-19 is shown in Figure 6-9 with some gates 
omitted for clarity. What is shown is that the upper sections are “OR’d” together and the output 
of the “or” gate sets a bit of the position count “dout” and selects the next upper or lower 
section.

Figure 6-9. Finding Leading Ones Using Log2(N) Search

Recursive Template Search
The previous examples on finding the leading one in a bit-vector showed that more efficient 
hardware can be realized by coding more hardware intent into the C++. The log2 based search 
provides optimal hardware, but there is an alternative implementation that can provided similar 
results using C++ template recursion. Template recursion has the advantage of allowing 
designers to build highly balanced hardware. One drawback of using recursive templates is that 
there is no capability for design exploration via loop unrolling because the design is fully 
parallel. However algorithms such as finding the leading ones or the maximum value of an array 
are often fully parallel. Example 6-20 shows a recursive template function implementing of 
finding the leading ones in a bit vector. 
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Example 6-20. Find Leading Ones Using Recursive Template Search

The details of Example 6-20 are:

• Lines 8 and 10 use the helper classes for computing the log2ceil(N_BITS) and 
nextpow2(N_BITS+1). The nextpow2 computation allows the design to handle bit-
vectors that are not a power of two. The reason why we use nextpow2(N_BITS+1) is to 
ensure that vectors with an odd number of bits split the bits so that the upper half is a 
power of two. 

• Line 12 declares the number of bits for the upper half of the bit-vector. This takes into 
account if the bit-vector is not a power of two by using N_BITS-P2.

• Line 13 declares the number of bits for the lower half of the bit vector. This is always a 
power of two, P2 bits.

1 #ifndef __LEADING_ONES__
2 #define __LEADING_ONES__
3 #include <ac_int.h>
4 #include “../../helper_classes/src/log2ceil.h”
5 #include “../../helper_classes/src/nextpow2.h”
6 template<int N_BITS>
7 bool leading_ones(ac_int<N_BITS,false> &din, 
8                   ac_int<LOG2_CEIL<N_BITS>::val,false> &dout){
9   enum {

10     P2 = NEXT_POW2<(N_BITS+1)/2>::val
11   };
12   ac_int<N_BITS-P2,false> upper;
13   ac_int<P2,false> lower;
14   ac_int<LOG2_CEIL<N_BITS>::val,0> idx=0;
15   ac_int<LOG2_CEIL<N_BITS-P2>::val,0> idxu=0;
16   ac_int<LOG2_CEIL<P2>::val,0> idxl=0;
17   static bool flag = false;
18
19   upper.set_slc(0, din.template slc<N_BITS-P2>(P2));
20   lower.set_slc(0, din.template slc<P2>(0));
21
22   if(upper){
23     leading_ones<N_BITS-P2>(upper,idxu);
24     idx = idxu | P2;
25   }
26   else{
27     leading_ones<P2>(lower,idxl);
28     idx = idxl;
29   }
30   dout = idx;
31   return flag = (din!=0) ?1:0;
32 }
33
34 template<>
35 bool leading_ones<1>(ac_int<1,false> &din, 
36                      ac_int<1,false> &dout){
37   dout = 0;
38   return din[0];
39 }
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• Lines 14, 15, and 16 define the current index, and the index variables for the upper and 
lower halfs of the bit-vector.

• Lines 19 and 20 slice the bit vector into the “upper” and “lower” variables. 

• Lines 22 through 25 check to see if any of the bits in “upper” are set, and if true, 
recursively calls the “leading_ones” function, passing it all of the “upper” bits. Since the 
upper half of the bit-vector is chosen, the bit index offset, P2, is added to the previous 
index “idxu”.

• Lines 29 through 29 pass the “lower” variable to the recursive call of “leading_ones” 
and sets the current index to the previous index “idxl”.

• Line 31 sets flag to true if any bit is equal to one.

• Lines 34 to 39 implement the specialization of the “leading_ones” function for 
N_BITS==1.

Finding the Maximum Value in an Array
Another commonly used function, or algorithm, in hardware design is to determine the 
maximum or minimum value in a sequence of values. In C++ this is typically done by searching 
the elements of an array for the maximum or minimum. The implementation of this in 
synthesizable C++, and ultimately the quality of results, has many similarities to the algorithm 
for finding the leading one in a bit vector, discussed in “Finding Leading 1’s in a Bit-vector” on 
page 129. 

Algorithmic Coding Style
Similar to finding the leading one in a bit-vector, the max search algorithm can be expressed 
very compactly in C++. Example 6-21 shows the C++ implementation for searching an array on 
integers.
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Example 6-21. Finding the Maximum Value in an Array

Design Constraints
Main loop pipelined with II=1
“din” mapped to registers or wire interface
All loops fully unrolled
N_REGS = 4

The details of Example 6-21 are:

• Line 8 reads the first element of “din” and assigns it to “max”. This is to avoid making 
one extra comparison.

• Lines 11and 12 check to see if “tmp” is greater than the previous “din[i]” and keeps the 
larger of the two.

The C++ implementation of Example 6-21 is very clear and compact. However the quality of 
results in terms of area and performance may be less than ideal in some situations. This coding 
style is generally acceptable when the loop is left rolled and/or “din” is mapped to a memory. 
However, when “din” is mapped to registers and the loop is fully unrolled the resulting 
hardware has on the order of “N_REGS” levels of logic. This is because this type of C++ 
description is a “priority” encoded type structure. In other words the bigger the array gets, the 
longer the delay of the algorithm. This can have unwanted consequences such as more registers 
than required if the design is scheduled across multiple clock cycles, or worst case failure to 
schedule if the design sits in a pipeline feedback path. Figure 6-10 shows the approximate 
schedule for Example 6-21. The priority encoded nature of this algorithm is more likely to 
require multiple clock cycles to schedule as the clock frequency is increased. This is usually 
undesired behavior because it means larger area. 

1 #include “test_max.h”
2 void test_max(int din[N_REGS], int &dout){
3   int max;
4   int tmp;
5  
6   for(int i=0;i<N_REGS;i++){
7     if(i==0)
8       max = din[i];
9     else{    

10       tmp = din[i];
11       if(tmp>max)
12         max = tmp;
13     }
14   }
15   dout = max;
16 }
17
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Figure 6-10. Schedule of Priority Encoded Search

The hardware diagram for Example 6-21 is shown in Figure 6-11 assuming it has been 
scheduled within a single clock cycle. This shows the “serial” nature of the comparisons, which 
is essentially what the C++ describes. Although this implementation may be more than adequate 
for the end application, there are alternative ways to code this algorithm to achieve better 
performance and area. One approach would be to use the “brute-force” approach covered in 
“Improved Performance and Area Using the Brute Force Approach” on page 130. This 
approach would manually subdivide the comparisons into separate halfs. The most optimal 
solution for this type of algorithm is to use a recursive template function to fully subdivide the 
problem, which leads to a balanced comparison tree.

Figure 6-11. Hardware of Priority Encoded Search

Recursive Template Search
Unlike the “finding leading ones” algorithm in “Finding Leading 1’s in a Bit-vector” on 
page 129, which can be implemented optimally using either recursive template functions or 
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loops, the max search algorithm cannot be written optimally using loops. Using recursive 
template functions allows one to realize the most efficient hardware for both area and 
performance by building a balanced structure that has on the order of log2(N) levels of logic, 
with N being the number of array elements. One issue with recursive template functions is that 
partial specialization is not supported, which posses a problem since it is desirable to specify 
both the data type and the number of elements as template parameters. To make the max search 
algorithm truly generic a “helper” struct can be used to work around the limitations of partial 
specialization [1]. 

Example 6-22 shows the recursive template implementation of the max search algorithm.

Example 6-22. Max Search Using Recursive Templates

The details of Example 6-22 are:

• Lines 18 and 19 show a templatized function “max” that takes the number of array 
elements and the data type as the template arguments.

• Line 20 uses the helper struct “max_s” to work around partial specialization. The 
number of elements N are passed as the only struct template parameter, and template 
substitution is used to know what the data type of “a” is when calling the “max” member 
function of “max_s”.

• Lines 2 and 3 define the templatized helper struct. The helper struct has only N, the 
number of array elements, as its template argument.

• Lines 4 and 5 define the helper struct “max” function which has the data type “T” as its 
template argument. A pointer to the array to be searched is passed to this function.

1 // helper struct
2 template<int N>
3 struct max_s {
4   template<typename T>
5   static T max(T *a) {
6     T m0 = max_s<N/2>::max(a);
7     T m1 = max_s<N-N/2>::max(a + N/2);
8     return m0 > m1 ? m0 : m1;
9   }

10 };
11 // terminate template recursion
12 template<> struct max_s<1> {
13   template<typename T>
14   static T max(T *a) {
15     return a[0];
16   }
17 };
18 template<int N, typename T>
19   T max(T *a) {
20   return max_s<N>::max(a);
21 }
22
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• Lines 6 and 7 recursively call the helper struct “max” function, dividing the array into 
upper and lower halfs. Each recursive function call returns a comparison value “m0” and 
“m1”.

• Line 8 compares “m0” and “m1” and returns the maximum value.

• Lines 12 through 16 implement the specialization for “max_s”. This function returns the 
array elements themselves.

Example 6-23 shows the “max” function used in a top-level design.

Example 6-23. Instantiating the Recursive Template Function

Design Constraints
Main loop pipelined with II=1
“din” mapped to registers or wire interface
N_REGS = 4

Figure 6-12 shows the data flow graph for recursive template implementation of the max 
function.

Figure 6-12. Data Flow Graph of Recursive Template Max Function

Figure 6-13 shows the hardware synthesized from Example 6-23. The result is a balanced 
comparison tree that yields the best area and performance.

#include “test_max.h”
#include “max.h”
void test_max(int din[N_REGS], int &dout){
  dout = max<N_REGS>(din);
}
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Figure 6-13. Hardware Implementation of Recursive Max Function

Absolute Value (abs)
Calculating the absolute value of a number is a function that is often used in mathematics and 
many DSP algorithms. It is usually expressed as:

In most cases it is sufficient to express this algorithmically, shown below in Example 6-24. 

Example 6-24. Absolute Value

Design Constraints
Main loop pipelined with II=1

The hardware diagram for Example 6-24 is shown below in Figure 6-14.

a a a 0≥
a– a 0<⎩

⎨
⎧

=

1 #include <ac_int.h>
2 ac_int<8> abs(ac_int<8> din){
3   ac_int<8> tmp = din;
4   if(tmp<0)
5     tmp = -tmp;
6   return tmp;
7 }
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Figure 6-14. Hardware of Absolute Value

The hardware that gets synthesized uses the sign bit of “din” to select between “din” and “-din”. 
If area must be reduced in a design it’s possible to re-code the “abs” function using bit-level 
expressions which can help reduce area by as much as 10 to 20 percent in some instances. This 
area improvement may be negligible in the context of a much larger design, but the cumulative 
effect of making these code transformations throughout a design can be substantial. 
Example 6-25 shows the “abs” function rewritten using bit-level expressions that eliminate the 
need for a MUX, instead using XOR gates which require less area.

Example 6-25. Bit-level Implementation of Absolute Value

Design Constraints
Main loop pipelined with II=1
All loops fully unrolled

The details of Example 6-25 are:

• Lines 1 through 3 show that this design uses bit-accurate data types. This makes it much 
easier to perform bit level operations using the ac_int and ac_fixed “[ ]” bit slice 
operator.

• Lines 5 and 6 XORs the sign bit of “din”, “din[7]”,with all the bits of “din” which has 
been copied into the “tmp0” variable. This essentially inverts “din” if the sign bit is set.

• Line 7 takes “tmp1” and adds the sign bit of “din”. It can be seen that lines 5 through 7 
have implemented a twos-complement negation when the sign bit is set, shown in 
Figure 6-15.

1 #include <ac_int.h>
2 ac_int<8> abs(ac_int<8> din){
3   ac_int<8> tmp0=0,tmp1 = 0;
4   tmp0 = din;
5   for(int i=0;i<8;i++)
6     tmp1[i] = tmp0[i]^tmp0[7];
7   return tmp1+tmp0[7];
8 }
9
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Figure 6-15. Hardware for Bit-level Implementation of Absolute Value

Although Example 6-25 requires a little more thought to express the absolute value for inputs of 
types “ac_int<8>, it can easily be generalized to support any size bit accurate integer data type 
by rewriting it as a template function, shown in Example 6-26.

Example 6-26. Generic Bit-level Implementation of Absolute Value

The details of Example 6-26 are:

• Line 5 - a single template parameter specifies the number of bits in the ac_int.

• Line 6 - this function is hard coded to use only signed ac_int data types.

• Lines 9 through 11 - the template parameter “NUM_BITS” is used extract the sign bit 
and control the loop iterations.

Linear Feedback Shift Register (LFSR)
An LFSR is a shift register whose input is a function of the state of some of the previous shift 
register bits. LFSRs are used in a wide range of applications ranging from Cryptography to 
communications. LFSRs are also very good for implementing very fast counters since the 

1 #ifndef __ABS_OPT_TEMPLATE__
2 #define __ABS_OPT_TEMPLATE__
3 #include <ac_int.h>
4
5 template<int NUM_BITS>
6 ac_int<NUM_BITS> abs(ac_int<NUM_BITS> din){
7   ac_int<NUM_BITS> tmp0=0,tmp1 = 0;
8   tmp0 = din;
9   for(int i=0;i<NUM_BITS;i++)

10     tmp1[i] = tmp0[i]^tmp0[NUM_BITS-1];
11   return tmp1+tmp0[NUM_BITS-1];
12 }



Sequential and Combinational Hardware

 143

feedback in minimal compared to traditional binary counters. The feedback to the input of an 
LFSR can be represented as a mod-2 polynomial. E.g.

input bit = x3 + x2 + 1

Because the polynomial is mod-2 the input bit is equal to the XORing of the taps, excluding tap 
0 which has no effect. Bit accurate data types make expressing an LFSR very easy. 
Example 6-27 shows a four tap loadable LFSR.

Example 6-27. Linear Feedback Shift Register

Design Constraints
Main loop pipelined with II=1

The details of Example 6-27 are:

• Lines 2 and 3 - unsigned bit-accurate data types are idea for implementing LFSRs. No 
loops are required.

• Line 6 and 7 - the LFSR is loaded when “ld” is true. NOTE that this implementation 
assumes that the LFSR is not loaded with zero. If zero is loaded the LFSR does not 
count. 

• Line 8 implements the feedback polynomial.

• Line 9 shifts the bits of the LFSR

• Line 10 assigns the feedback polynomial result to bit zero of the LFSR

The hardware for Example 6-27 is shown below in Figure 6-16.

1 #include <ac_int.h>
2 void lfsr(ac_int<4,false> load_data, bool ld, ac_int<4,false> &dout){
3   static ac_int<4> reg;
4   ac_int<1,false> bit;
5  
6   if(ld)
7     reg = load_data;
8   bit = reg[3] ^ reg[2];
9   reg<<=1;

10   reg[0] = bit;
11   dout = reg;
12 }
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Figure 6-16. Hardware for Loadable LFSR

Accumulator
Accumulating the elements of an array is a common function seen in a variety of applications 
such as FIR filters, image processing, etc. The accumulation is typically accomplished using a 
loop to index the elements of the array. Fully unrolling the loop generally yields the optimal 
implementation of the sum of all array elements. This is because fully unrolling a loop allows 
bit widths of intermediate variables to be automatically reduced. However, care must be taken 
in writing the C++ when loops are left rolled, since automatic bit width reduction may not 
occur. The best coding practice is to account for the bit growth required for intermediate storage 
when accumulating an N element array. This bit growth is based on the bit-width of the input 
data type and the number of elements in the array. The number of extra bits needed to avoid 
overflow is log2ceil(N) bits. Bit-accurate data types allows the bit growth to be controlled 
explicitly. Example 6-28 shows a templatized implementation of an accumulator with bit 
growth computed based on the width of the data type as well as the number of elements. This 
implementation is designed to work with ac_int data types.

Example 6-28. Templatized Accumulator

The details of Example 6-28 are:

1 #ifndef __ACCUM__
2 #define __ACCUM__
3 #include <ac_int.h>
4 #include “../../helper_classes/src/log2ceil.h”
5 template<int W, bool S, int N>
6   ac_int<W+LOG2_CEIL<N>::val,S> accumulate(ac_int<W,S> din[N]){
7   ac_int<W+LOG2_CEIL<N>::val,S> acc = 0;
8   
9  ACCUM:for(int i=0;i<N;i++){

10     acc += din[i];
11   }
12   return acc;
13 }
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• Line 5 specifies three template parameters, “W” for the bit width, “S” for the 
signedness, and “N” for the number of array elements.

• Lines 6 and 7 use the helper class LOG2_CEIL to compute the bit growth for the return 
type and the internal storage variable “acc”.

Similarly to the other templatized functions discussed previously, the accumulator is used by 
instantiating it in another C++ design, and specifying the template parameters as shown in 
Example 6-29.

Example 6-29. Instantiating the Accumulator

Design Constraints
Main loop pipelined with II=1
All loops left rolled
WIDTH=8, SIGN=true, NUM_REGS=4, and WIDTH_OUT=10

The hardware for Example 6-29 is shown below in Figure

Figure 6-17. Hardware for Accumulator

Shifters
The process of shifting a bit vector, either dynamically or statically, in C++ is easily expressed 
using the built-in shift operators “<<“ and “>>”. What is sometimes not as obvious is the 
resulting hardware based on the “signedness” and the bit widths of the arguments to the shift 
operators. As is usually the case with HLS, care should be taken when using the shift operator to 
ensure that the resulting hardware has the desired implementation.

1 #include “accumulate.h”
2 #include “test_accumulate.h”
3 void test_accumulate(ac_int<WIDTH> din[NUM_REGS], 
4                      ac_int<WIDTH_OUT> &dout){
5   dout = accumulate<WIDTH,SIGN,NUM_REGS>(din);
6 }
7
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Barrel shifter
A barrel shifter allows a bit-vector to be shifted by an arbitrary amount in a single clock cycle. 
The shift direction can either be left or right, and the shift can be logical or arithmetic. HLS has 
built-in operator support for barrel shifters, and uses them when scheduling a design as needed. 
An important point to remember is that barrel shifters can be costly in terms of area and 
performance, so understanding how they are inferred influences quality of results. The 
underlying hardware implementation of the full barrel shift operation consists of at most 
N*log2(N) 2-input multiplexors, where N is the number of bits in the bit-vector being shifted. 

Logical
A logical barrel shift is inferred when the data variable being dynamically shifted is unsigned. 
Logical shifts insert zeros into the MSB or the LSB depending on the shift direction. 
Figure 6-18 shows how data is shifted in an 8-bit vector one bit position. Zero’s are stuffed into 
the MSBs and the LSBs are discarded for logical shift right. Logical shift left stuffs zeros into 
the LSBs and discards the MSBs

Figure 6-18. Logical Shift Left and Right

Example 6-30 shows a design that causes a logical shift right barrel shifter to be inferred and 
scheduled. The ac_int data types are used which allow the signedness to be expressed as a 
template parameter. In this case the data variable that is shifted is declared as unsigned, which 
causes a logical shifter to be inferred for the “>>” operator. 

Example 6-30. Barrel Shifter with Logical Shift Right 

Design Constraints
NUM_BITS = 8, CTRL_BITS = 4

The number of control bits needed to shift a vector of NUM_BITS is equal to 
log2ceil(NUM_BITS) + 1. The computation of CTRL_BITS can be done automatically by 

#include “barrel_shift_lr.h”
ac_int<NUM_BITS,false> barrel_shift_lr(ac_int<NUM_BITS,false> din, 
                                       ac_int<CTRL_BITS,false> s){
  return din >> s;
}
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leveraging the helper class for log2ceil. Example 6-31 shows how the helper class can be used 
directly in the header file that defines the design parameters.

Example 6-31. Computing Barrel Shifter Control Bit Width

Lines 5 though 7 of Example 6-31 show another way that the LOG2CEIL helper class can be 
used to statically compute the bit widths of variables inside of a header file. It is important to 
make the width of the barrel shifter control variable only as wide as is needed. Otherwise there 
is an additional overhead in and/or logic to account for the upper bits of the shift control. 
Example 6-30 could be easily converted into a logical left shift barrel shifter by using the left 
shift operator “<<“.

Arithmetic
An arithmetic barrel shifter is inferred when the data variable being dynamically shifted is 
signed. The arithmetic shift differs slightly from the logical shift in that zeros are only stuffed 
into the LSB when left shifting. The MSB, or sign bit is extended for right shifts, and is 
maintained for left shifts until overflow occurs. Figure 6-19 shows an arithmetic shift left and 
right by one bit position.

Figure 6-19. Arithmetic Shift Left and Right 

Example 6-32 show a C++ design that is inferred as an arithmetic right shift. It can be seen that 
the only difference from Example 6-30 is that the data variable and return type are both signed.

1 #ifndef __BARREL_SHIFT__
2 #define __BARREL_SHIFT__
3
4 #include <ac_int.h>
5 #include “../../helper_classes/src/log2ceil.h”
6 #define NUM_BITS 8
7 #define CTRL_BITS LOG2_CEIL<NUM_BITS>::val+1
8
9 ac_int<NUM_BITS,false> barrel_shift_lr(ac_int<NUM_BITS,false> din,

10                                        ac_int<CTRL_BITS,false> s);
11 #endif
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Example 6-32. Barrel Shifter with Arithmetic Shift Right

Bi-directional
Creating a bi-directional barrel shift for either arithmetic or logical shifting is as easy as 
changing the shift variable “s” in the previous examples to signed. When this is done positive 
values of “s” shift in the direction specified in the C++, negative values shift in the opposite 
direction. The number of bits for “s” must be increased by one to account for the sign bit since 
“s” can now be negative. This means that “s” requires log2ceil(NUM_BITS) + 2 bits. 
Example 6-33 shows the implementation of the bi-directional arithmetic barrel shifter. Positive 
values of “s” shift right, negative values of “s” shift left.

Example 6-33. Bi-directional Barrel Shifter

Rotating
Certain applications such as encryption require a barrel shifter that rotates the data, preserving 
the bits that are normally discarded from either the MSB or LSB position. This can easily be 
realized by combining a logical left and right barrel shifter as shown in Example 6-34.

Example 6-34. Rotating Barrel Shifter

The rotating barrel shifter design is designed for any size bit-vector, and it has built-in 
protection to guarantee that the rotate is always done correctly for non power-of-two bit vectors. 
This is accomplished by using the modulus operator “%” to make sure that neither shift value 
exceeds the maximum number of bits “NUM_BITS”. However non power-of-two bit vectors 
cause additional adder logic to be inferred for the “%” operator. The “%” can be removed if “s” 
is never allowed to range beyond NUM_BITS. If the protection of the modulus operator is 
required there is a slightly better way to code Example 6-34 for improved area. Line 4 of 
Example 6-34 contains two instances of the expression “s%NUM_BITS”. These two 
expressions are optimized first using sequential constant propagation because NUM_BITS is a 

#include “barrel_shift_ar.h”
ac_int<NUM_BITS,true> barrel_shift_ar(ac_int<NUM_BITS,true> din, 
                                       ac_int<CTRL_BITS,false> s){
  return din >> s;
}

#include “barrel_shift_bidir_a.h”
ac_int<NUM_BITS,true> barrel_shift_bidir_a(ac_int<NUM_BITS,true> din, 
ac_int<CTRL_BITS,true> s){
    return din>>s;
}

1 #include “rotate_r.h”
2 ac_int<NUM_BITS,false> rotate_r(ac_int<NUM_BITS,false> din, 
3                                        ac_int<CTRL_BITS,false> s){
4  return (din >> (s%NUM_BITS)) | (din << (NUM_BITS-(s%NUM_BITS)));
5 }
6
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constant. Unfortunately this prevents efficient sharing of common sub-expressions. 
Example 6-35 shows a better way to code the rotating barrel shifter so that the sub-expression 
“s%NUM_BITS” is shared. A temporary variable “stmp” is used on line 4 to compute 
“s%NUM_BITS”. This variable is then used twice on line 5, explicitly forcing the sharing of the 
sub-expression.

Example 6-35. Improved Rotating Barrel Shifter

Constant Shifts
The previous section illustrated that a barrel shifter is inferred when the shift control is 
programmable. This means that the barrel shift hardware is constructed so that the input bit 
vector can be arbitrarily shifted from 0 to 2^CTRL_BITS bits. This may not always be 
necessary if only a subset of shift values are required. When this is the case, it is better to re-
write the design to use constant shifts. The improvement on area depends on not only the size of 
the bit vector, but the required number of shifts. 

Transforming Barrel Shifters into Constant Shifts
Consider the “Barrel Shifter with Logical Shift Right” on page 146 with it constrained such the 
the shift control “s” can only take on one of three values, “0”, “1”, and “5”. The design can be 
re-coded to improve area by taking advantage of the fact that there are three constant shifts, 
shown in Example 6-36. 

Example 6-36. Transforming Barrel Shifters into Constant Shifts

Design Constraints
NUM_BITS = 8, CTRL_BITS = 4

The details of Example 6-36 are:

• Line 4 uses a temporary variable to read “din”.

1 #include “rotate_r.h”
2 ac_int<NUM_BITS,false> rotate_r(ac_int<NUM_BITS,false> din, 
3                                 ac_int<CTRL_BITS,false> s){
4   ac_int<CTRL_BITS,false> stmp = s%NUM_BITS;                                         
5   return (din >> stmp) | (din << (NUM_BITS-stmp));

}

1 #include “barrel_shift_lr.h”
2 ac_int<NUM_BITS,false> barrel_shift_lr(ac_int<NUM_BITS,false> din, 
3                                        ac_int<CTRL_BITS,false> s){
4   ac_int<NUM_BITS,false> tmp = din;
5
6   if(s==1)
7     tmp >>= 1;
8   else if(s==5)
9     tmp >>= 5;

10
11   return tmp;
12 }
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• Lines 6 through 9 test the shift variable “s” against the allowed bits shifts, and if true 
shifts “tmp” by a constant value. If nothing matches then “tmp” is returned unshifted 
which is the same as shift by zero.

Although Example 6-36 is an improvement in area over Example 6-30, it still has some 
inefficiencies. The shift control variable “s” is “CTRL_BITS”, 4 bits in this example, wide even 
though there are only three possible shift values. Instead of using the explicit shift value, “s” can 
be encoded to select one of three shift possibilities. This should reduce the amount of 
comparison logic and can make a substantial impact on large shifters. Example 6-37 illustrates 
this technique. In this case two bits can encode the three possible shift value.

Example 6-37. Encoding the Shift Control

Transforming Dynamic Bit Masking
Another cause for the unwanted inferencing of barrel shifters is when the iterator of an rolled 
loop is used to shift and mask a bit vector. This is often done when trying to count the number of 
ones in a bit vector, or when performing distributed arithmetic type operations. Example 6-38 
shows a design that uses dynamic shifting to count the ones in a bit vector. The expression 
“din>>i” on line 5 causes a barrel shifter to be inferred since the loop is left rolled.

Example 6-38. Dynamic Bit Masking

Design Constraints
Main loop pipelined with II=1
All loops left rolled

Example 6-38 can be rewritten to eliminate the need for a barrel shifter by storing the input and 
shifting it by one bit during each iteration of the loop, shown in Example

1 #include “barrel_shift_lr.h”
2 ac_int<NUM_BITS,false> barrel_shift_lr(ac_int<NUM_BITS,false> din, 
3                                        ac_int<2,false> s){
4   ac_int<NUM_BITS,false> tmp = din;
5
6   if(s==0)
7     tmp >>= 1;
8   else if(s==1)
9     tmp >>= 5;

10
11   return tmp;
12 }

1 #include “shift_mask.h”
2 ac_int<RES_BITS,false> test(ac_int<NUM_BITS> din){
3   ac_int<RES_BITS,false> acc=0;
4   for(int i=0;i!=NUM_BITS;i++)
5     acc += (din>>i)&1;
6   return acc;
7 }
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Example 6-39. Static Bit Masking

The details of Example 6-39 are:

• Line 4 reads the input “din” and stores it in a temporary variable.

• Line 7 masks off the LSB of “tmp” and adds it to “acc”.

• Line 8 shifts “tmp” by one bit to the right.

Adder Trees

Automatic Tree Balancing
High Level Synthesis always tries to build a balanced tree structure out of a number of related 
additions that can be scheduled in parallel. The most typical case of this is accumulating the 
elements of an array inside of a loop that is fully unrolled, or accumulating the products of the 
taps and coefficients of a FIR filter. Balancing the adder tree tends to help reduce the area of a 
design by minimizing the latency, which in turn reduces the number of registers. Example 6-40 
shows a design that results in a balanced adder tree.

Example 6-40. Automatic Tree Balancing

Design Constraints
Main loop pipelined with II=1
All loops fully unrolled
WIDTH=8, NUM_REGS=8

1 #include “shift_mask.h”
2 ac_int<RES_BITS,false> test(ac_int<NUM_BITS> din){
3   ac_int<RES_BITS,false> acc=0;
4   ac_int<NUM_BITS>tmp = din;
5   
6   for(int i=0;i!=NUM_BITS;i++){
7     acc += tmp&1;
8     tmp >>= 1;
9   }
10   return acc;
11 }

1 #include “balanced.h”
2 ac_int<WIDTH_OUT,false> balanced(ac_int<WIDTH,false> din[NUM_REGS]){
3   ac_int<WIDTH_OUT,false> acc = 0;
4   
5   for(int i=0;i!=NUM_REGS;i++)
6     acc += din[i];
7   return acc;
8 }
9
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Figure 6-20 shows the synthesized adder tree assuming that there is just enough time to 
schedule it within one clock cycle.

Figure 6-20. Balanced Adder Tree

Preventing Automatic Tree Balancing
Automatic tree balancing sometimes is prevented when the accumulate inside the unrolled loop 
is controlled by a condition. Simple conditions that don’t change between loop iterations can 
usually be balanced. However, when the condition changes between each iteration it is likely 
that the tree is not balanced. This can have a very negative impact on both area and 
performance. Example 6-41 shows just such a case where the elements of “din” are 
accumulated based on the element of “s” being set to true.

Example 6-41. Preventing Automatic Tree Balancing

Design Constraints
Main loop pipelined with II=1
All loops fully unrolled
WIDTH=8, NUM_REGS=8

The details of Example 6-41 are:

• Lines 7 and 8 - “din” is copied unconditionally into temporary storage “tmp”. This was 
done because the example design is synthesized as the top-level design. Having 

1 #include “unbalanced_tree.h”
2 ac_int<WIDTH_OUT,false> unbalanced(ac_int<WIDTH,false> din[NUM_REGS], 
3                                    bool s[NUM_REGS]){
4   ac_int<WIDTH_OUT,false> acc = 0;
5   ac_int<WIDTH,false> tmp[NUM_REGS];
6
7   for(int i=0;i!=NUM_REGS;i++)
8     tmp[i] = din[i];
9   for(int i=0;i!=NUM_REGS;i++)

10     if(s[i])
11       acc += tmp[i];
12   
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conditional IO in a pipelined design often causes scheduling to fail. Making an internal 
copy of din would not be necessary if this function was being called somewhere below 
the top-level.

• Lines 9 through 11 - each “din[i]” is accumulated when “s[i]” is true. Tree balancing is 
prevented since each loop iteration depends on a different “s[i].

The resulting hardware from Example 6-41 is shown in Figure 6-21. In this case an adder chain 
with “NUM_REGS” levels of logic is scheduled as opposed to log2ceil(NUM_REGS) levels of 
logic. This may lead to longer latency and larger area for higher clock frequencies.

Figure 6-21. Unbalanced Adder Chain

Coding to Facilitate Automatic Tree Balancing
The best way to facilitate adder tree balancing is to make the adds unconditional. The question 
mark operator “?” is usually used to accomplish this as shown in Example 6-42. In this 
example, on Line 10, the accumulate is performed for every iteration of the loop regardless of 
the value of “s[i]”. “s[i]” is used as the selection variable for the question mark operator to add 
either “tmp[i]” or zero. In other words the add has been made unconditional. The resulting 
hardware is shown in Figure 6-22.
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Example 6-42. Forcing Adder Tree Balancing

Design Constraints
Main loop pipelined with II=1
All loops fully unrolled
WIDTH=8, NUM_REGS=8

Figure 6-22. Forcing Adder Tree Balancing

1 #include “rebalanced.h”
2 ac_int<WIDTH_OUT,false> rebalanced(ac_int<WIDTH,false> din[NUM_REGS], 
3                                    bool s[NUM_REGS]){
4   ac_int<WIDTH_OUT,false> acc = 0;
5   ac_int<WIDTH,false> tmp[NUM_REGS];
6
7   for(int i=0;i!=NUM_REGS;i++)
8     tmp[i] = din[i];
9   for(int i=0;i!=NUM_REGS;i++)

10     acc += s[i] ? tmp[i] : 0;
11   
12   return acc;
13 }
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Lookup Tables (LUT)
HLS infers lookup tables from constant arrays. The hardware realized for the LUT can be either 
a MUX with constant inputs, or a ROM. The choice of one over the other is user defined, with 
the default behavior being a MUX based implementation. C++ makes the parametrization, 
generation and inclusion of lookup tables very simple. Example 6-43 shows a LUT based 
implementation of sin(x).

Example 6-43. Lookup Table for sin(x)

The details of Example 6-43 are:

• Line 3 declares a constant array of type ac_fixed<WIDTH,2>. Although it is not strictly 
necessary to declare the array as “const” to infer a lookup table, it is considered good 
programming style, and may help in standard C++ compilation. The reason why the data 
is declared with 2 integer bits, and the rest fractional, is to represent an sin(x) value 
between -1 and 1.

• Line 4 uses a convenient technique in C++ that allows the inclusion of a text file 
“data.inc” that specifies all of the constant values for sin_table by having the #include is 
within the braces “{ }”for “sin_table”

Example 6-44 shows the header file “lut.h” included in Example 6-43. The header file allows 
parametrization of the number of lookup table elements and uses the lod2ceil helper class to 
compute the required number of address bits.

Example 6-44. Lookup Table Header File

The actual “sin_table” constants for Example 6-43 are generated using a separate C++ program, 
shown in Example 6-45.

1 #include “lut.h”
2 ac_fixed<WIDTH,2> lut(ac_int<ADDR_WIDTH,false> i){
3   const ac_fixed<WIDTH,2> sin_table[NUM_REGS] = {
4     #include “data.inc”
5   };
6   return sin_table[i];
7 }

1 #ifndef __LUT__
2 #define __LUT__
3 #include <ac_fixed.h>
4 #include “../../helper_classes/src/log2ceil.h”
5
6 #define WIDTH 8
7 #define NUM_REGS 16
8 #define ADDR_WIDTH LOG2_CEIL<NUM_REGS>::val
9 ac_fixed<WIDTH,2> lut(ac_int<ADDR_WIDTH,false> i);

10
11 #endif
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Example 6-45. Lookup Table Generation

The details of Example 6-45 are:

• Line 5 includes the “lut.h” header file. This is where the #defines for WIDTH and 
NUM_REGS are declared for the actual lookup table design. Doing this allows the table 
generation to be matched to the C++ implementation.

• Line 12 opens a text file “data.inc” for writing.

• Line 15 generates sin values from 0 to 2*pi

• Lines 17 and 18 insert commas between data values except for the last value

The generated table data is shown below in Example 6-46.

1 #include <ac_fixed.h>
2 #include <math.h>
3 #include <iostream.h>
4 #include <fstream.h>
5 #include “lut.h”
6
7 int main(){
8   ac_fixed<WIDTH,2> data;
9   double pi = 3.1415926535897932384626433832795;

10   fstream fptr;
11
12   fptr.open(“data.inc”,fstream::out);
13   
14   for(int i=0;i<NUM_REGS;i++){
15     data = sin(2*pi*i/(double)NUM_REGS);
16     fptr << data;
17     if(i != NUM_REGS-1)
18       fptr << “, “ << endl;
19   }
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Example 6-46. Generated Lookup Table Data

Lastly the Makefile for this design can be written so that the table generation and design 
compilation are dependent on one another. This allows the design to be recompiled successfully 
when the design parameters are changed, shown in Example 6-47.

Example 6-47. Lookup Table Makefile with Dependencies

The details of the Makefile in Example 6-47 are:

0, 
.375, 
.703125, 
.921875, 
1, 
.921875, 
.703125, 
.375, 
0, 
-.390625, 
-.71875, 
-.9375, 
-1, 
-.9375, 
-.71875, 
-.390625

1 #MACROS
2 CAT_HOME  = $(MGC_HOME)
3 CXX       =  /usr/bin/g++
4 CXXFLAGS  = -g -O -Wall -Wno-deprecated  $(DEFINES) $(INCLUDES)
5 INCLUDES  = -I “$(CAT_HOME)/shared/include”
6
7 TARGET0    = gen_tbl
8 OBJECTS0   = gen_sin_table.o
9 DEPENDS0   = Makefile lut.h

10 $(TARGET0): $(OBJECTS0)
11 $(CXX) $(CXXFLAGS) -o $(TARGET0) $(OBJECTS0)
12 $(OBJECTS0): $(DEPENDS0)
13
14 TARGET1    = tb
15 OBJECTS1   = tb_lut.o lut.o
16 DEPENDS1   = Makefile lut.h data.inc
17 $(TARGET1): $(OBJECTS1)
18 $(CXX) $(CXXFLAGS) -o $(TARGET1) $(OBJECTS1)
19 $(OBJECTS1): $(DEPENDS1)
20
21 .PHONY: run
22 run0: $(TARGET0) 
23 ./gen_tbl.exe 
24 .PHONY: run1
25 run1: $(TARGET1)
26 ./tb.exe
27 #phony target to make and run table generation and design and tb
28 .PHONY: all
29 all: run0 run1
30
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• Lines 9 and 16 make both the table generation and the test bench and design dependent 
on “lut.h”. This forces recompilation of both designs if the parameters are changed.

• Line 16 is also dependent on the table data itself “data.inc” and is recompiled if a change 
is made. 

• Lines 28 and 29 builds the target for the table generation, generates the table, and then 
builds the target for the test bench and design 

References
1. Andres Takach, David Burnette, and Michael Fingeroff. C++ IP Design and Reuse. 

DesignCon 2009.
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Chapter 7
Memory Architecture

Introduction
Up until now the previous chapters have focused primarily on algorithms that have register 
based memory architectures. This reasons for this were twofold; one being that the hardware 
building blocks covered in “Sequential and Combinational Hardware” on page 113 are typically 
implemented using registers. More importantly it allowed the introduction of HLS concepts 
such as loop unrolling and pipelining as a means for exploring parallelism without having to 
consider how array access patterns may prevent scheduling when arrays are mapped to 
memories instead of registers. Although it has be said before, it’s worth repeating, that HLS 
often gives you exactly what you asked for. Arrays mapped to memories tend to be the 
bottleneck in a design’s performance. HLS provides a number of automatic optimizations and 
constraints, such as memory splitting, interleaving, and merging, that can remove these memory 
bottlenecks. Whenever possible, these automatic memory optimizations should be used, 
minimizing the number of code modifications. However, there may be situations where 
explicitly coding the memory architecture is either required to meet performance, or may allow 
designers to achieve even better quality of results. In these cases it is essential that array 
accesses are coded in such a way as to not limit performance. This means analyzing array access 
patterns and organizing the memories in a design so that the desired throughput and area can be 
achieved.

Memory-based Shift Register
A shift register implemented using memories is a good starting point to understand the impact 
that array access patterns have on performance. Because it’s memory based, the read of the shift 
register taps cannot occur in parallel, which means that loops must be left fully or partially 
rolled if used in the implementation. A memory based shift register would typically be used in 
something like a FIR filter with a very large number of taps, where it is impractical to use 
registers because of the area and power costs. 

Classic Shift Register Description mapped to Memories

If we revisit the classic register-based shift register, it becomes obvious why its memory 
architecture is unsuitable for a memory-based implementation.
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Example 7-1. Register-based Shift Register

Design Constraints
Main loop cannot be pipelined
“din” mapped to registers or wire interface
All loops left rolled
“regs” array mapped to RAM with separate read and write ports
N_REGS = 4

The schedule for the SHIFT loop in Example 7-1 is shown below in Figure 7-1.The rest of the 
design schedule has been excluded to simplify the scheduling diagram.

Figure 7-1. Schedule for Classic Shift Register Mapped to RAM

1 #include “basic_shift.h”
2 void shift_reg(dType din, dType dout[N_REGS]){
3   static dType regs[N_REGS];
4  SHIFT:for(int i=N_REGS-1;i>=0;i--){
5     if(i==0)
6       regs[i] = din;
7     else
8       regs[i] = regs[i-1];
9   }

10  WRITE:for(int i=0;i<N_REGS;i++)
11     dout[i] = regs[i];
12 }
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What Figure 7-1 illustrates is that the register-based description of a shift register is inefficient 
when arrays are mapped to memory. It takes about 12 clock cycles to shift all four taps. This is 
because each tap that is shifted requires reading then writing the memory. Furthermore, the 
conditional write of “regs[0]” on line 6 of Example 7-1 causes an additional write operation to 
be scheduled for each loop iteration, even though the condition only evaluates to true when 
i==0. Although this extra write could be eliminated by using a temporary variable to choose 
between writing “din” or regs[i-1], it would not solve the bigger problem that the read/write 
array access pattern is not efficient when the array is mapped to memory.

Note
C++ written for register based memory architectures is often unsuitable for memory 
based architectures.

Circular Buffer
The most efficient implementation for a memory-based shift register is to use the same 
approach that would be used when writing code for a micro-processor. In this case read and 
write pointers can be used to implement a circular buffer. This moves the write and read pointer 
locations as new data is shifted in, rather than moving the data for each tap. Figure 7-2 shows 
how the read and write pointers circulate. Note that the read pointer runs in the opposite 
direction as the write pointer.

Figure 7-2. Circular Buffer Pointer Motion

Example 7-2 shows a circular buffer implementation of a shift_register class.
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Example 7-2. Circular Buffer Shift Register Class

The details of Example 7-2 are:

• Line 4 allows both the type and number of shift register elements to be specified as a 
template parameter.

• Lines 8, 9, and 24 uses the log2_ceil function that is built in to the ac_int bit accurate 
data types library to compute the minimum number of bits based on the array size “N”. 
In “Sequential and Combinational Hardware” on page 113, the log2ceil was computed 
using helper classes to illustrate the usefulness of classes and enumerated types for 
computing static values based on template parameters. Since log2ceil is already 
available in the ac_int.h library it is used from this point forward.

• Lines 11 through 17 - The class constructor is used to initialize the read and write 
pointers to zero and to initialize the “mem” array” to don’t care. See Initialization loops 
for more detail on un-initializing arrays mapped to memories.

• Lines 18 through 23 implement the shift operator “<<“. The writes to “mem” are limited 
to one write per call to “<<“ since “mem” is mapped to memory. Each shift cause a new 
data value to be written into “mem[wptr]” after which “wptr” is incremented. When the 
end of the memory is reached, line 21, the write pointer “wptr” is moved back to the 

1 #ifndef __SHIFT__
2 #define __SHIFT__
3 #include <ac_int.h>
4 template<typename T, int N>
5   class circular_shift{
6  private:
7   T mem[N];
8   ac_int<ac::log2_ceil<N>::val+1,false> wptr;
9   ac_int<ac::log2_ceil<N>::val+1,true> rptr;

10  public:
11   circular_shift(){
12     T dummy;
13     wptr = 0;
14     rptr = 0;
15     for(int i=0;i<N;i++)
16       mem[i] = dummy;
17   }
18   void operator <<(T data){
19     mem[wptr] = data;
20     wptr++;
21     if(wptr==N)
22       wptr=0;
23   }     
24   T operator [](ac_int<ac::log2_ceil<N>::val,false> idx){  
25     rptr = (wptr-1-idx);
26     if(rptr<0)
27       rptr = rptr+N;
28     return mem[rptr];
29   }
30 };
31 #endif
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beginning of the memory. Hence the write pointer continuously circulates through the 
memory addresses.

• Lines 24 through 30 implement the “[]” operator for reading the shift register taps. The 
read pointer “rptr” runs in the opposite direction as the write pointer. If the read pointer 
becomes negative, line 26, it is moved to the top of the memory. 

Initialization loops
Note
Care should be taken when mapping arrays to memory if the array has been declared 
static. C++ requires that static arrays or variables are reset to zero, which in turn causes 
the creation of an “initialization loop” when a design is synthesized with static arrays 
mapped to memory. 

This in turn implies that hardware is generated to step through every address of the memory and 
set the data stored at that location equal to zero. Not only does this cost extra cycles of latency 
when the design is reset, but also increases area, and may limit pipelining. In many cases a 
memory does not have to be reset to zero because it is known that it is written before it is read. 
For situations such as these it is desirable to remove the initialization loop, while still leaving 
the array declared static. To do this the array must be initialized to “don’t care”. Lines 11 
through 17 of Example 7-2 shows how this is done in the class constructor. Line 12 defines a 
variable “dummy” which is left un-initialized (don’t care). This variable is then assigned to all 
elements of “mem” on lines 15 and 16. Doing this removes the initialization loop from the 
design. Example 7-2 explicitly codes the un-initialization if the array into the constructor based 
on the data type “T”. There are built-in utility functions in the Algorithmic C libraries that can 
be used if the data type is either native C++ or ac_int or ac_fixed (See “Helper/Utility 
Functions” on page 33).

Memory Organization
The introduction to this chapter discussed the abilities of HLS to automatically solve memory 
bottleneck problems by allows memories to be split, interleaved, or reorganized. However, there 
often situations where these automatic optimizations may not be optimal. This is often caused 
by having arrays, or operations on arrays, that are not a power-of-two. This section deals with 
how the C++ code, and memory access, should be manually reorganized if the automatic 
optimizations do not provide adequate results.

Interleaving Memories
Interleaving in hardware design is the process of rearranging sequential data storage into two or 
more non-contiguous storage blocks to increase performance. 
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Automatic Interleaving
The reasons for interleaving memory accesses becomes apparent by examining Example 7-3.

Example 7-3. Accessing Multiple Array/Memory Locations

Design Constraints
“x_in”, x, and y mapped to singleport memory
All loops left rolled
NUM_WORDS = 9

The details of Example 7-3 are:

• Line 4 defines an internal array “x” which is mapped to memory.

• Line 7 tests “load”, and if true loads the internal memory.

• Lines 11 and 12 increment the index in multiples of three and adds three sequential 
values of “x”. Using the specified constraints, this design cannon be pipelined with II=1 
because “x” is mapped to a singleport RAM. Three separate reads from “x” are required 
each clock cycle, which is not possible from a singleport RAM.

If automatic interleaving is set on “x” , it can be partitioned into three separate singleport RAMs 
as shown in Figure 7-3. The memories are organized so that each one of the three reads on Line 
12 of Example 7-3 occur from a separate memory, allowing the design to run with II=1. 
Although the use of automatic memory interleaving may be sufficient, manually coding it into 
the design usually results in smaller area when the interleaving factor is not a power of two. In 
this design example the interleave factor is by three.

1 #include “interleave.h”
2 void interleave(ac_int<8> x_in[NUM_WORDS], ac_int<8> y[NUM_WORDS/3], 
3                 bool load){
4   static ac_int<8> x[NUM_WORDS];
5   int idx = 0;
6
7   if(load)
8     for(int i=0;i<NUM_WORDS;i+=1)
9       x[i] = x_in[i];

10   else
11     for(int i=0;i<NUM_WORDS;i+=3)
12       y[idx++] = x[i]+x[i+1]+x[i+2];
13   
14 }
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Figure 7-3. Interleaving by Three

Manual Interleaving with Random Access
Example 7-3 can be rewritten with relative ease to manually interleave three memories, while 
still maintaining random access into the original array “x”. Doing this has the advantage of 
reducing area by explicitly coding the interleaving control into the C++, which can yield better 
results than automatic interleaving for non power of two interleaving. A class based approach 
can be taken to encapsulate the interleaved memory architecture, helping to minimize the code 
changes in the original algorithm. Example 7-4 shows the rewritten C++.

Example 7-4. Manual Interleaving with Random Access

Design Constraints
“x_in”, x, and y mapped to singleport memory
All loops left rolled
All sub-loops pipelined with II=1
NUM_WORDS = 9

The details of Example 7-4 are:

1 #include “interleave.h”
2 #include “interleave_mem.hpp”
3 void interleave_manual(ac_int<8> x_in[NUM_WORDS], 
4                        ac_int<8> y[NUM_WORDS/3], bool load){
5   static interleave_mem<ac_int<8>,NUM_WORDS> x;
6   int idx = 0;
7   
8   if(load)
9     for(int i=0;i<NUM_WORDS;i+=1)

10       x.write(i,x_in);
11   else
12     for(int i=0;i<NUM_WORDS;i+=3)
13       y[idx++] = x.read(i,0) + x.read(i,1) + x.read(i,2);
14 }
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• Line 5 declares a static instance of a class that implements memory interleaving by 
three. The class takes both the data type and number of array elements as its template 
arguments.

• Line 10 calls the interleave memory class “write” method and passes the index value “i” 
and the input array “x_in”.

• Line 13 accesses the data from the interleaved memory class using the “read” method. 
The “read” method takes the index “i” and the constant offset as separate function 
arguments. Passing the constant offset as a separate argument allows simultaneous 
scheduling of mutually exclusive memory reads. This is discussed further when delving 
into the details of the interleaved memory class.

Example 7-5 shows the class definition for the interleaved memory class.

Example 7-5. Interleaved Memory Class with Random Access

The details of Example 7-5 are:

• Line 4 allows the type and number of array elements to be specified as a class template 
parameter.

• Lines 6 through 8 define three separate arrays with N/3 elements. Note that there is no 
check here to guarantee that N is evenly divisible by three, so the designer would have to 
make sure that this is instantiated correctly. Alternatively the class could be enhanced to 
support any value for N.

• Lines 12 and 13 define the class read and write methods and use the log2_ceil helper 
functions from the ac_int data type library to make sure that the index “i” is reduced to 
the minimum number of bits.

• Lines 15 and 16 include the header files that implement the class read and write 
methods. Usually the code for these methods would be inlined in the same header file, 
but they are kept separate in this style guide so that the size of any one piece of code 
under discussion is kept as small as possible.

1 #ifndef __INTERLEAVE_MEM__
2 #define __INTERLEAVE_MEM__
3 #include <ac_int.h>
4 template<typename T, int N>
5   class interleave_mem{
6   T x0[N/3];
7   T x1[N/3];
8   T x2[N/3];
9  public:

10   interleave_mem(){
11   }
12   void write(ac_int<ac::log2_ceil<N>::val,false> i, T x_in[N]);
13   T read(ac_int<ac::log2_ceil<N>::val,false> i, int offset);
14 };
15 #include “read_mem.hpp”
16 #include “write_mem.hpp”
17 #endif
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Example 7-6 shows the implementation of the “write” method for the interleaved memory class.

Example 7-6. Interleaved Memory Class Random Access Write Method

The details of Example 7-6 are:

• Line 7 reads “x[i]” into a temporary variable to limit reading of the array mapped to 
memory to once per clock cycle.

• Line 8 selects between one of the three memories by taking the mod3 of the index “i”.

• Lines 9 through 18 implement the writing of the three internal memories, x0, x1, and x2. 
The original index “i” is divided by three since each memory has N/3 elements. The use 
of both the constant divide and the constant modulus can be costly in terms of bigger 
area. It is often possible to eliminate these if the access to the memory is know to always 
be sequential rather than random access. This is discussed in the next section.

Example 7-7 shows the implementation of the “read” method for the interleaved memory class.

1 #ifndef __WRITE_MEM__
2 #define __WRITE_MEM__
3 #include <ac_int.h>
4 template<typename T, int N>
5 void interleave_mem<T,N>::write(ac_int<ac::log2_ceil<N>::val,false> i, 
6                                 T x_in[N]){
7     T tmp = x_in[i];
8     switch(i%3){
9     case 0:

10       x0[i/3] = tmp;
11       break;
12     case 1:
13       x1[i/3] = tmp;
14       break;
15     case 2:
16       x2[i/3] = tmp;
17       break;
18     }
19   }         
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Example 7-7. Interleaved Memory Class Random Access Read Method

The details of Example 7-7 are:

• Line 8 uses the “offset” input argument to select between the three arrays defined in the 
class. Constant propagation guarantees that only one memory read is scheduled per call 
to “read” since the “offset” is always passed as a constant (Shown in Example7-4).

• Lines 9 through 18 implement the three separate memory reads based on “offset”. The 
index “i” is divided by three for each of the internal arrays( x0,x1,x2) since each array 
has N/3 elements and the incoming index ranges from 0 to N. This constant divide can 
be costly in terms of area. In many cases it can be eliminated if the design always 
accesses the memory in sequential order. This is covered in the next section.

Manual Interleaving with Sequential Access
The previous section “Manual Interleaving with Random Access” on page 165 showed how 
arrays mapped to memories can be manually interleaved to give the best possible performance 
as well as improved area over automatic interleaving. However, the algorithm that used the 
interleaved memory class in Example 7-4 on page 165 did not require random access into the 
array, which means that the interleaved memory class was overbuilt for the application. The 
interleaved memory class in Example 7-4 always writes and reads in sequential order. This 
behavior makes it possible to eliminate the constant modulus and constant divide operations 
used in the “write” and “read” methods of the class. Example  shows Example 7-4 rewritten to 
exploit the sequential nature of the memory accesses.

1 #ifndef __READ_MEM__
2 #define __READ_MEM__
3 #include <ac_int.h>
4 template<typename T, int N>
5 T interleave_mem<T,N>::read(ac_int<ac::log2_ceil<N>::val,false> i,
6                             int offset){
7     T tmp=0;
8     switch(offset){      
9     case 0:

10       tmp = x0[i/3];
11       break;
12     case 1:
13       tmp = x1[i/3];
14       break;
15     case 2:
16       tmp = x2[i/3];
17       break;      
18     }
19     return tmp;
20   }
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Example 7-8. Manual Interleaving with Sequential Access

The only change that was made to the algorithm itself is on line 12 of Example 7-8. In the 
original algorithm the loop iterated from 0 to NUM_WORDS incrementing by three. Instead the 
loop can be incremented from 0 to NUM_WORDS/3 by one since each call to “x.read” accesses 
on of three arrays with NUM_WORDS/3 elements. This allows the removal of the constant 
divider in the “read” method”. 

Example 7-9 shows the interleaved memory class definition rewritten to take advantage of the 
sequential nature of the array accesses. 

Example 7-9. Interleaved Memory Class with Sequential Access

The details of Example 7-9 are:

1 #include “interleave.h”
2 #include “interleave_mem_improved.hpp”
3 void interleave_manual(ac_int<8> x_in[NUM_WORDS], 
4                        ac_int<8> y[NUM_WORDS/3], bool load){
5   static interleave_mem<ac_int<8>,NUM_WORDS> x;
6   int idx = 0;
7   
8   if(load)
9     for(int i=0;i<NUM_WORDS;i+=1)

10       x.write(i,x_in);
11   else
12     for(int i=0;i<NUM_WORDS/3;i+=1)
13       y[idx++] = x.read(i,0) + x.read(i,1) + x.read(i,2);
14 }
15

1 #ifndef __INTERLEAVE_MEM__
2 #define __INTERLEAVE_MEM__
3 #include “interleave.h”
4 template<typename T, int N>
5 class interleave_mem{
6   int x0[N/3];
7   int x1[N/3];
8   int x2[N/3];
9   ac_int<ac::log2_ceil<N>::val,false> idx;

10   ac_int<2,false> sel;
11 public:
12   interleave_mem(){
13     idx=0;
14     sel = 0;
15   }
16   void write(ac_int<ac::log2_ceil<N>::val,false> i, T x_in[N]);
17   T read(ac_int<ac::log2_ceil<N>::val,false> i, int offset);
18 };
19 #include “write_mem_improved.hpp”
20 #include “read_mem_improved.hpp”
21 #endif
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• Line 9 defines an index that is used for the “read” method. The bit width of “idx” is set 
to the optimal number of bits, log2_ceil(N).

• Line 10 defines a two bit counter variable “sel” that is used to select the current memory 
for writing. 

• Lines 12 through 15 define the default constructor to reset the counters. This is required 
and is based on the assumption that the sequential reads and writes begin at address 
location zero.

Example 7-10 shows the “write” method rewritten to exploit the sequential nature of the 
memory accesses.

Example 7-10. Interleaved Memory Class Sequential Access Write Method

The details of Example 7-10 are:

• Line 8 has been changed to select the array to be written based on the “sel” counter. 
Each time the “write method is called the case based on the value of “sel” is executed 
and “sel” is post-incremented. This has the exact behavior as “switch(i%3)” as long as 
the array is written sequentially starting from address zero. 

• Lines 10, 13, and 16 writes the current using the “idx” counter. Once the third array, x2, 
is written “idx” is incremented. Using “idx” as the array index eliminates the need for 
the constant divider “i/3” and reduces area.

• Lines 19 and 20 reset “idx” back to zero when the last element of all the memories is 
written. Thus this memory architecture is customized to match the algorithm behavior 

1 #ifndef __WRITE_MEM__
2 #define __WRITE_MEM__
3 #include <ac_int.h>
4 template<typename T, int N>
5 void interleave_mem<T,N>::write(ac_int<ac::log2_ceil<N>::val,false> i, 
6                                 T x_in[N]){
7   int tmp = x_in[i];
8     switch(sel++){
9     case 0:

10       x0[idx] = tmp;
11       break;
12     case 1:
13       x1[idx] = tmp;
14       break;
15     case 2:
16       x2[idx++] = tmp;
17       break;
18     }
19     if(idx==N/3)
20       idx = 0;
21     if(sel==3)
22       sel = 0;
23   } 
24 #endif



Memory Architecture

 171

and expects all memory addresses to be written starting from zero. If this were not true, 
additional control would be needed in the class to account for this.

• Lines 21 and 22 check “sel” and reset it back to zero once “x2” has been written. This 
also relies on sequential writes starting from address zero.

Example 7-11 shows the “write” method rewritten to account for sequential array accesses.

Example 7-11. Interleaved Memory Class Sequential Access Read Method

The only change that was made to Example 7-11 was to remove the constant divider “i/3” for 
the array index. This was possible because Line 12 of Example 7-8 was changed to iterate to 
NUM_WORDS/3 incrementing by one instead of three.

Widening the Word Width of Memories

Automatic Word Width
Similar to interleaving some HLS tools allow designers to automatically widen the width of a 
memory so that data can be organized side by side. However, non-power of two array sizes, as 
well as read-modify-write issues sometimes make it desirable to manually code the word width 
expansion into the C++.

Manually Increasing Word Width with Sequential Access
Instead of interleaving memories, another possible solution to reading multiple sequential 
locations (Example 7-3)from a singleport memory every clock cycle is to widen the word width 
of the array mapped to memory. Then the sequential data can be written and read side-by-side. 
There are a few limitations to this approach. One is that there is a limit on how wide one can 
make the memory. And two is that writing a single value into the memory requires a read-

1 #ifndef __READ_MEM__
2 #define __READ_MEM__
3 #include <ac_int.h>
4 template<typename T, int N> 
5 T interleave_mem<T,N>::read(ac_int<ac::log2_ceil<N>::val,false> i, 
6                             int offset){
7   T tmp=0;
8   switch(offset){      
9   case 0:

10     tmp = x0[i];
11     break;
12   case 1:
13     tmp = x1[i];
14     break;
15   case 2:
16     tmp = x2[i];
17     break;      
18   }
19   return tmp;
20 }
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modify-write, which may limit pipelining the design, especially if using true singleport RAM. 
Figure 7-4 shows how the data can be rearranged within the memory to place three words side 
by side. The memory is now three times as wide, but one third the number of elements.

Figure 7-4. Placing Words Side by Side in Memory 

The original example used for demonstrating interleaving, “Accessing Multiple Array/Memory 
Locations” on page 164, is rewritten to show how to manually widen the word width. In this 
case it is assumed that the entire array is accesses sequentially from location zero to the end of 
the array. Example 7-12 shows the rewritten design using a memory class that widens the word 
width.

Example 7-12. Manually Widening the Word Width

The details of Example 7-12 are:

• Line 5 declares an instance of the “word_width_mem” class. This class takes the width, 
signedness, and number of array elements as the template arguments.

• Line 10 uses the class “write” method to write each element of the array.

1 #include “word_width.h”
2 #include “word_width_mem.hpp”
3 void word_width_manual(ac_int<8> x_in[NUM_WORDS], 
4                        ac_int<8> y[NUM_WORDS/3], bool load){
5   static word_width_mem<8,true,NUM_WORDS> x;
6   int idx = 0;
7   
8   if(load)
9     for(int i=0;i<NUM_WORDS;i+=1)

10       x.write(i,x_in);
11   else
12     for(int i=0;i<NUM_WORDS/3;i+=1)
13       y[idx++] = x.read(i,0) + x.read(i,1) + x.read(i,2);
14 }
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• Line 12 adjusts the number of loop iterations to NUM_WORDS/3 and increments by 
one. 

• Line 13 call the class “read” method and passes the index and the offset rather than 
“i+1”, i+2”. Similar to the interleaving example the word width class can take advantage 
of the offset specified as a constant to build more efficient hardware.

Example 7-13 shows the class definition for the “word_width_mem” memory class.

Example 7-13. Word Width Expansion Memory Class with Sequential Access

The details of Example 7-13 are:

• Line 4 takes the width “W”, the signedness “S”, and the number of array elements “N” 
as the class template parameters. This class explicitly uses the ac_int data types in order 
to easily perform word width expansion.

• Line 6 defines an array “x” of unsigned ac_int that is W*3 times as wide as the original 
data and that has one third (N/3) as many elements. It should be noted that this class 
assumes that N is evenly divisible by three. If this was not true there would need to be 
more complicated control built into the class. There are no checks to test if this is true.

• Lines 8 and 9 define counters that are used for read and write slicing.

• Lines 10 and 11 define internal variables that are W*3 times as wide as the original data. 
These variables are used to access the array “x”.

• Line 13 initializes the slice counters to zero.

• Lines 14 through 18 define the prototypes for the read and write methods.

• Lines 19 and 20 include the header files that define the read and write methods.

1 #ifndef __INTERLEAVE_MEM__
2 #define __INTERLEAVE_MEM__
3 #include <ac_int.h>
4 template<int W, bool S, int N>
5 class word_width_mem{
6   ac_int<W*3,false> x[N/3];
7   ac_int<ac::log2_ceil<N>::val,false> idx;
8   ac_int<2,false> sel_rd; 
9   ac_int<2,false> sel_wr;

10   ac_int<W*3,false> write3; 
11   ac_int<W*3,false> read3;
12 public:
13   word_width_mem():sel_rd(0),sel_wr(0){}
14   void write(ac_int<ac::log2_ceil<N>::val,false> i, 
15      ac_int<W,S> x_in[N]);
16   ac_int<W,S> read(ac_int<ac::log2_ceil<N>::val,false> i,
17    const int offset);
18 };
19 #include “read_mem.hpp”
20 #include “write_mem.hpp”
21 #endif
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Example 7-14 shows the implementation of the word_width_mem class read method.

Example 7-14. Word Width Expansion Class Read Method

The details of Example 7-14 are:

• Line 5 - the read method returns an ac_int withe the same width and signedness as the 
original data type.

• Line 7 uses log2_ceil to ensure that the minimum number of bits are used for the index 
“i”.

• Lines 12 and 13 post increments “the read counter “sel_rd” and reads from the data 
member array “x” once every three calls to the read function. The data read from “x[i]” 
is stored in read3 which is W*3 bits wide. The index “i” has already been adjusted from 
the calling function to account for three words stored side-by-side.

• Line 14 checks the read counter to see when the read function has been called three 
times, and then resets it back to zero, initiating the next read of the array “x”.

• Lines 16 through 26 checks “offset” passed to the read method and selects one of the 
three side-by-side data values. Note that each time the read method is called the sel_rd 
counter is advanced so this class expects all three offsets to be read. Otherwise the 
functionality does not match the original algorithm.

Example  7-15 shows the implementation of the word_width_mem class write method.

1 #ifndef __READ_MEM__
2 #define __READ_MEM__
3 #include <ac_int.h>
4 template<int W, bool S, int N>
5 ac_int<W,S> word_width_mem<W,S,N>::read
6 (
7  ac_int<ac::log2_ceil<N>::val,false> i, 
8  const int offset
9  ){

10   ac_int<W,S> tmp=0;
11
12   if(sel_rd++==0)//read once every 3 calls
13     read3 = x[i];
14   if(sel_rd==3)
15     sel_rd = 0;
16   switch(offset){      
17   case 0:
18     tmp = read3.template slc<W>(0);
19     break;
20   case 1:
21     tmp = read3.template slc<W>(W);
22     break;
23   case 2:
24     tmp = read3.template slc<W>(2*W);
25     break;      
26   }
27   return tmp;

}
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Example 7-15. Word Width Expansion Class Write Method

The details of Example 7-15 are:

• Line 9 - a write slice is made into “write3” each time the write method is called. 
“write3” is W*3 bits wide and is used as intermediate storage to store three sequential 
array elements side by side. This architecture assumes that all array elements are written 
in order for the entire array. Random access is not possible with this implementation and 
would require more complicated control. This memory architecture has been matched to 
the original algorithm.

• Lines 10 through 14 - the write counter “sel_wr” is incremented each time the write 
method is called. The data member array “x” is written when three array elements have 
been stored side-by-side into the intermediate storage “write3”. The write index “idx” is 
incremented on each write to “x”. Once the data is written the write counter is cleared 
and the next write begins.

• Lines 15 and 16 check to see when the write index reaches the end of the array/memory 
“x” and clears the index. Once again the assumption has been made that all array 
elements are written in sequential order, and the original array size “N” is evenly 
divisible by three. If this was not the case, and random access was required, more 
complicated control would need to be coded into the implementation.

1 #ifndef __WRITE_MEM__
2 #define __WRITE_MEM__
3 #include <ac_int.h>
4 template<int W, bool S, int N>
5 void word_width_mem<W,S,N>::write
6 (ac_int<ac::log2_ceil<N>::val,false> i, 
7  ac_int<W,S> x_in[N]
8  ){
9   write3.set_slc(sel_wr*W,x_in[i]);

10   sel_wr++;
11   if(sel_wr==3){
12     x[idx++] = write3;
13     sel_wr = 0;
14   }
15   if(idx==N/3)
16     idx = 0;  
17 } 
18 #endif
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Caching

Using True Single Port RAM as a Dualport RAM
A recurring theme when using arrays mapped to memories in high level C++ synthesis is that 
multiple simultaneous array accesses are often the cause of scheduling failures when trying to 
pipeline with II=1. This is even true when trying to implement something as simple as a line 
buffer using only singleport memories. A line buffer is used to store a single line of video from 
an image. The buffer must be able to be read and written every clock cycle. The simplest 
solution would be to map the line buffer storage array to a RAM that has both a read port and a 
write port. These types of RAM are usually referred to as RAM with separate read/write ports. 
The drawback to using these types of RAMs is that they require as much as 50% more area than 
a true singleport RAM. The problem with using singleport RAM is that it cannot be read and 
written in the same clock cycle, which makes implementing something like a line buffer a little 
tricky. A simple line buffer example (Example 7-16) is presented below to better understand 
why this can be a problem. 

Example 7-16. The Problem with Using Singleport RAM

Design Constraints
“din”, dout, and ram mapped to singleport memory
All loops left rolled
Main loop pipelined with II=1

Example 7-16 fails to schedule due to a pipelining failure. In the design the “ram” array mapped 
to a singleport RAM is always read inside of the loop, and can also be written in the same loop 
iteration. Pipelining with II=1 would mean that both the read and the write would have to be 
scheduled in the same clock cycle. Figure 7-5 shows the “failed” schedule for this design. A 
singleport RAM usually has a read data port, a write data port, and a single address port. Each 
memory operation in the schedule requires its own address. Thus it is not possible to 
simultaneously address a singleport RAM for reading and writing. 

1 #include <ac_int.h>
2 void test_sp_orig(ac_int<10,false> din[720], ac_int<10,false> 

dout[720], bool write){
3   static ac_int<10,false> ram[720];
4   static bool dummy = ac::init_array<AC_VAL_DC>(ram,720);
5   for(int i=0;i<720;i++){
6     dout[i] = ram[i];
7     if(write)
8       ram[i] = din[i];
9   }

10 }
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Figure 7-5. Failed Schedule for Reading and Writing a Singleport RAM with II=1

The solution to being able to simultaneously read and write to a singleport RAM and pipeline 
with II=1 is to write the C++ code so that reads and writes are cached, and forced into different 
loop iterations or clock cycles. This also requires changing the word width of the array mapped 
to memory. Using a C++ class allows most of these changes to be encapsulated so that the 
original code looks mostly the same. Example 7-17 shows an implementation of a class that 
accomplishes this. Like many of the other examples covered previously, this class assumes that 
the array accesses consistently start on an even word boundary and then read the next sequential 
location which would be on an odd word boundary. This class is restricted to using Algorithmic 
C++ integer types to easily allow manipulation of the word width.

Example 7-17. Singleport RAM Class that Supports II=1

The details of Example 7-17 are:

• Line 4 defines the template parameters for number of array elements “N”, word width 
“W”, and signedness of the base type.

1 #ifndef __SINGLEPORT__
2 #define __SINGLEPORT__
3 #include <ac_int.h>
4 template<int N, int W, bool S>
5 class singleport_ram{
6   ac_int<ac::log2_ceil<N>::val ,false> addr_int;
7   ac_int<W*2,false> ram[N/2];
8   ac_int<1,false> cnt;
9   ac_int<W*2,false> read_data;

10   ac_int<W*2,false> write_data;
11 public:
12   singleport_ram():cnt(0),read_data(0),write_data(0){
13     bool dummy = ac::init_array<AC_VAL_DC>(ram,N/2);
14   }
15 #include “exec.hpp”
16 };
17 #endif
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• Line 6 uses log2_ceil to ensure that the internal address width is reduced to the 
minimum number of bits.

• Line 7 defines an internal array “ram” that is “W*2” wide and “N/2” elements. In other 
words the array is twice as wide and half as many elements. Note that this 
implementation expects “N” to be evenly divisible by two. Support for an odd number 
of array elements would require more complex control in the C++.

• Line 8 defines a single bit counter that is used to control reading and writing of data.

• Lines 9 and 10 define two variables that are width “W*2” and are used to perform the 
internal caching.

• Lines 12 and 13 initialize the counters and use the ac::init_array function to remove the 
initialization of the “ram” array that ‘s mapped to memory.

• Line 15 includes “exec.hpp” which implements the read/write method for the class. 
Although this is not considered the best C++ style it was done simply to allow the code 
to be discussed in smaller fragments. The code defined in “exec.hpp” is simply inlined 
where it is included in the class definition.

Example 7-18. Read/Write Method for Singleport RAM Class

Example 7-18 shows the implementation of the singleport ram class method that allows reading 
and writing to the singleport emory. The details are:

• Line 1 returns the data read from the array as an ac_int<W,S> ,which is the same data 
type as the original data type. The “exec” function takes as its arguments the data to be 

1 ac_int<W,S> exec(ac_int<W,S> data_in,int addr, bool write){
2     ac_int<W,S> tmp;
3     addr_int = addr;
4     if(write){
5       if(cnt==0)
6         write_data.set_slc(0,data_in);
7       else
8         write_data.set_slc(W,data_in);  
9     }

10     if(cnt==0){//read on even
11       read_data = ram[addr_int>>1];
12     }
13     else{//write on odd
14       if(write){
15         ram[addr_int>>1] = write_data;
16       }
17     }
18     if(cnt==0)
19       tmp = read_data.template slc<W>(0);
20     else
21       tmp = read_data.template slc<W>(W); 
22     ++cnt;
23     return tmp;
24   }
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written “data_in”, the read/write address “addr”, and a flag “write” to indicate if the 
write should occur. Thus the array can be read-only if the “write” flag is false. 

• Line 3 assigns the address supplied on the interface of “exec” to the data member 
“addr_int”. “addr_int” has been constrained to the minimum number of bits needed to 
index the memory when the class was defined.

• Lines 4 through 9 are executed when data is written, “write==true”. The ac_int write 
slice method is used to alternate between writing the data to the lower and upper halves 
of the “write_data” data member. The single bit counter “cnt” is used to decide which 
half should be written. 

• Lines 10 through 17 control whether the internal array “ram” is read or written. Reads 
occur only on even addresses (cnt ==0) and writes, when “write==true”, on odd 
addressed (cnt==1). The address is adjusted (addr_int>>1) to account for the memory 
being “N/2” locations and “W*2” wide.

Example 7-19. Using the Singleport RAM Class

“Windowing” of 1-D Data Streams
The previous section on memory-based shift registers illustrated how array/memory access 
patterns can restrict the performance of a design. The solution was to limit the number of 
memory reads and writes to match the memory bandwidth. There are many classes of 
algorithms that are often expressed in a style, that while natural for algorithm development, are 
not well written from a high-level synthesis quality of results point of view. The key to 
achieving high quality hardware is to analyze the way data moves through the algorithm, and to 
express that movement efficiently in the underlying memory architecture. A simple moving 
average filter is a good example that can illustrate the limitations of a poorly coded memory 
architecture, as well as show how restructuring the C++ code can lead to optimal hardware.

Pure Algorithmic Description with Poor Memory Architecture
Example 7-20 shows a simple moving average filter that sums three weighted samples from an 
array on the design interface that is mapped to memory. It’s not unreasonable to expect that this 
type of algorithm, when implemented in hardware, can compute a new value of “dout[i]” every 
clock cycle. However, as the design schedule shows, the coding style of Example 7-20 limits 
the design performance due to a memory bottleneck.

1 #include “singleport_ram.hpp”
2 void test_sp(ac_int<10,false> din[720], ac_int<10,false> dout[720], 

bool write){
3   static singleport_ram<720,10,false> ram;
4   for(int i=0;i<720;i++){   
5     dout[i] = ram.exec(din[i],i,write);
6   }
7 }
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Example 7-20. Simple Moving Average with Poor Memory Architecture

Design Constraints
No pipelining
“din” and dout mapped to singleport memory
All loops left rolled

The approximate schedule for Example 7-20 is shown in Figure 7-6. For clarity the schedule 
only shows the memory accesses.

Figure 7-6. Schedule for Moving Average with Poor Memory Architecture

Figure 7-6 shows the un-pipelined schedule for the moving average example. Each loop 
iteration requires that the “din” memory is read three times. Thus, trying to pipeline this design 
with II=1 to achieve one value of “dout[i]” per clock cycle is impossible. Figure 7-7 shows the 

1 #include “window_1d.h”
2
3 int clip(int i){
4   int tmp = i;
5   if(tmp < 0)
6     tmp = 0;
7   else if(tmp > NUM_WORDS-1)
8     tmp = NUM_WORDS-1;
9   return tmp;

10 }
11
12 void avg(ac_int<8,false> din[NUM_WORDS], 
13  ac_int<8,false> dout[NUM_WORDS]){
14   const ac_fixed<3,1,false> coeffs[3] = {0.25, 0.5, 0.25};
15   ac_fixed<13,11,false> tmp;
16  COMP:for(int i=0;i!=NUM_WORDS;i++){
17     tmp = din[clip(i-1)]*coeffs[0] + din[i]*coeffs[1] 
18       + din[clip(i+1)]*coeffs[2];
19     dout[i] = tmp.to_int();
20   }
21 }
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failed schedule when trying to pipeline Example 7-20 with II=1. Since “din” is mapped to a 
singleport memory only one memory read per clock is possible. However trying to pipeline with 
II=1 would mean overlapping the loop iterations such that three reads per clock cycle are 
required, which is impossible. This illustrates how an algorithmic coding style may not have 
sufficient architectural detail to realize good quality hardware. The next step that should be 
taken is to analyze the array access patterns of the algorithm to see if the C++ code can be 
restructured to achieve the desired performance.

Figure 7-7. Failed Schedule for Moving Average with II=1

Analyzing Array Access Patterns
Figure 7-8 shows the general access pattern for the moving average algorithm. By writing out a 
few of the loop iterations a general pattern appears. Each loop iteration reads three values from 
“din”, but the computation of “dout[i]” always uses two values of “din[i]” that were read in the 
previous iteration. In other words, only one new value of “din[i]” needs to be read for each 
iteration, and the other values that were previously read can be reused. This implies that storage 
is required. The reason why this is referred to as windowing is because only a small portion of 
“din” is required for processing each loop iteration. That small portion of “din” can be though of 
as a window that slides over the entire array. This sliding window behavior is easily mapped to 
a shift register. Since the first loop iteration cannot reuse old values of “din” it needs special 
handling to account for the “startup” of the hardware as well as the boundary condition defined 
by the “clip” function”.
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Figure 7-8. Moving Average Access Pattern

Shift Register Sliding Window Implementation
The simple moving average example discussed above can be re-written to take advantage of the 
array access patterns in order to reduce the memory access of “din” to once per clock cycle. 
Example 7-21 shows the moving average filter that is written using a sliding window. There are 
two principal components, the shift register to store previous values of “din”, and the clipping 
function to handle the boundary conditions.

Example 7-21. Sliding Window Moving Average Filter

Design Constraints
Main loop pipelined with II=1
“din” and dout mapped to singleport memory
Shift register loops fully unrolled, all other loops left rolled

1 #include “window_1d.h”
2 #include “shift_class.h”
3 void window_avg(ac_int<8,false> din[NUM_WORDS], 
4          ac_int<8,false> dout[NUM_WORDS]){
5   const ac_fixed<3,1,false> coeffs[3] = {0.25, 0.5, 0.25};
6   shift_class<ac_int<8,false>, 3> shift_reg;
7   ac_int<8,false> window[3];
8   ac_fixed<13,11,false> mac;
9   ac_int<8,false> din_tmp; 

10   
11  COMP:for(int i=0;i!=NUM_WORDS+1;i++){
12     if(i<NUM_WORDS)//prevent overread of din
13       din_tmp = din[i];
14     shift_reg << din_tmp;
15     clip_window(shift_reg,i,window);
16     mac = window[0]*coeffs[0] + window[1]*coeffs[1] 
17       + window[2]*coeffs[2];
18     if(i>=1)//startup
19       dout[i-1] = mac.to_int();
20   }
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The details of Example 7-21 are:

• Line 6 declares a shift register class variable with three taps. This is used to store the 
previous values of “din”.

• Line 7 declares a three element array “window” that is used to apply the boundary 
conditions to the sliding shift register.

• Line 11 has added an additional iteration to the “COMP” loop. This is done to handle the 
requirement that “dout[0]” requires two reads from “din”.

• Lines 12 and 13 reads “din[i]” into “din_tmp” and prevents “din” from being over-read 
since the “COMP” loop runs for NUM_WORDS+1 iterations. Since “din” is only read 
once per loop iteration it is possible to pipeline the main loop with II=1.

• Line 14 shifts each new value of “din[i]” into the sliding shift register.

• Line 15 passes the shift register to the clipping function which handles the boundary 
conditions. It returns the windowed and clipped data in “window”.This is discussed 
next.

• Lines 16 and 17 perform the multiple and accumulate, using the “window” array, which 
has stored current and past values of “din”.

• Lines 18 and 19 begin conditionally writing the output “dout” once enough data has 
been read to compute “dout[0]”. The index of “dout” is adjusted to account for the 
startup iteration so that the first write begins from location zero.

Boundary Conditions
The “clip” function in Example 7-21 processes the sliding window “shift_reg” so that the 
returned array “window” has the same boundary behavior based on the index “i”. This is shown 
in Example 7-22.

Example 7-22. Clipping Function for Sliding 1-D Window

The details of Example 7-22 are:

1 #include “window_1d.h”
2 #include “shift_class.h”
3 void clip_window( shift_class<ac_int<8,false>, 3> shift_reg, 
4            int i, ac_int<8,false> window[3]){
5   
6   window[0] = (i==1) ? shift_reg[1]:shift_reg[2];
7   window[1] = shift_reg[1];
8   window[2] = (i==NUM_WORDS) ? shift_reg[1]:shift_reg[0];
9 }

10
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• Line 6 implements the equivalent of “din[clip(i-1)]” from the original design. The shift 
register stores the newest data in “shift_reg[0]” so when “i” equals one, the shift register 
has “din[0]” stored in “shift_reg[1]” and “din[1]” stored in “shift_reg[0]”. Figure 7-8 
showed that clipping the index from going negative has the effect of duplicating the 
value of “din[0]”. When the index “i” equals one the value of “din[0]” stored in 
“shift_reg[1]” is copied into “window[0]”, implementing the lower clipping.

• Line 8 implements upper clipping when the index “i” equals NUM_WORDS. This 
comparison is adjust to account for the startup of the window.

Instead of clipping the array index like Example 7-20, the clip function for the sliding window 
implementation uses the index to control a selection MUX which implements the boundary 
condition. The hardware synthesized form Example 7-22 is shown in Figure 7-9.

Figure 7-9. Clipping Function for 1-D Sliding Window

2-D Windowing
1-D windowing showed that a register based memory architecture could be used to cache 
previous sequential reads from a one dimensional array mapped to memory, allowing designs to 
run at the maximum output data rate. These same design principles can be applied to two 
dimensional algorithms, where the implementation of the caching requires a slightly more 
complicated memory architecture.

Pure Algorithmic Description with Poor Memory Architecture
Example 7-23 shows another moving average filter, but in this case the input is a two 
dimensional array. The averaging is performed across rows of the array instead of sequential 
locations like the 1-d moving average example. This example has the same type of bandwidth 
limitations that were shown in the 1-d example when “din” is mapped to a memory (See 
““Windowing” of 1-D Data Streams” on page 179). 
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Example 7-23. 2-d Moving Average

Analyzing Array Access Patterns
Figure 7-10 shows how the array accesses occur for Example 7-23.

Figure 7-10. 2-d Moving Average Access Arrays Patterns

1 #include “window_2d.h”
2 int clip(int i){
3   int tmp = i;
4   if(tmp < 0)
5     tmp = 0;
6   else if(tmp > 480-1)
7     tmp = 480-1;
8   return tmp;
9 }

10 void avg(ac_int<8,false> din[480][720], 
11  ac_int<8,false> dout[480][720]){
12   const ac_fixed<3,1,false> coeffs[3] = {0.25, 0.5, 0.25};
13   ac_fixed<13,11,false> tmp;
14   
15  ROW:for(int r=0;r!=480;r++){ 
16   COL:for(int c=0;c!=720;c++){
17       tmp = din[clip(r-1)][c]*coeffs[0] + din[r][c]*coeffs[1] 
18 + din[clip(r+1)][c]*coeffs[2];
19       dout[r][c] = tmp.to_int();
20     }
21   }

}



186

Memory Architecture
 

The input array “din” is read in what is known as raster order, which means that the elements of 
“din” are read sequentially. Each row is read column by column before proceeding to the next 
row. Although there is no commonality between adjacent columns, writing out a few of the 
adjacent row computations shows a trend. Excluding the array boundary, the current 
computation of a row output “dout[r][c]” depends on one new row value and two row values 
used in the previous row computation. Thus to compute “dout[2][0]” requires reading in one 
new value “dout[3][0]”. The values “dout[1][0]” and “dout[2][0]” were used to compute 
“dout[1][0] in the previous row computation. This array access pattern shows that only one new 
value must be read to compute an output if the two previous rows of data are stored locally.

Circular Line Buffer Sliding Window Implementation
The analysis of the array access patterns of the 2-d moving average filter showed that each new 
row computation uses data read from the previous two rows. If the previous row data is stored 
internally, it can be reused rather than having to re-fetch it from external memory. 
Unfortunately using registers for the internal storage, like what was done for the 1-d sliding 
window, is not practical since each row contains 720 elements. This means that memories are 
required to store the two rows of data. The most efficient implementation from a power and area 
standpoint is to use two singleport RAMS to store the previous two rows of data, while using 
the current row data directly. The RAM buffers are written and read in a circulating fashion to 
minimize power consumption from switching. The output of the RAMs, along with the current 
data are then “clipped” in the same fashion as the 1-d window example, where the row index “r” 
is used to determine when the boundary condition is applied. Figure 7-11 shows the general 
hardware structure of the implementation.

Figure 7-11. Circular Buffer Window Implementation

Example 7-24 shows the implementation of the circular buffer portion of the design. 
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Example 7-24. Circular Buffer for Storing Multiple Rows of Data

The details of Example 7-24 are:

• Line 1 includes the singleport RAM class that was described in “Using True Single Port 
RAM as a Dualport RAM” on page 176.

• Lines 3 and 4 takes the inputs “din”, the current address or column position “c”, and 
returns column aligned data from three different rows.

• Lines 5 and 6 instantiate the two line buffers using the singleport RAM class.

• Line 9 defines a one bit counter that is used to select between the two line buffers.

• Line 11 and 12 check the current address or column position “c” and increments “sel” at 
the start of a new row.

• Lines 13 and 14 call the singleport RAM “exec” function. The input data “din” is passed 
to both memories along with the address “c”. “sel” is only active for one memory at a 
time so only one of the memories is written. Thus the memories are written in 
circulating, or alternating, fashion. Both memories are read and return the data in “t1” 
and “t0”

• Lines 16 through 18 return data from three different rows. The newest data is “din” 
which is returned directly. The older data stored in “buffer0” and “buffer1” are returned 
in circulating fashion based on the value of “sel”.

The clipping of the boundary conditions is implemented slightly differently from the 1-d case 
since there is no shift register class used in this design. However the design principles are the 
same (Example 7-25).

1 #include “singleport_ram.hpp”
2 #include “window_2d.h”
3 void buffer(ac_int<8,false> din, int c, 
4     ac_int<8,false> window[3]){
5   static singleport_ram<720,8,false> buffer0;
6   static singleport_ram<720,8,false> buffer1;
7   ac_int<8,false> b0,b1,b2;
8   ac_int<8,false> t0,t1;
9   static ac_int<1,false> sel=1;

10
11   if(c==0)//switch buffer write at start of line
12     sel += 1;;
13   t1 = buffer1.exec(din,c,sel);
14   t0 = buffer0.exec(din,c,!sel);
15
16   window[0] = (sel==1) ? t1:t0;  
17   window[1] = (sel==1) ? t0:t1;  
18   window[2] = din;       
19 }
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Example 7-25. Clipping Function for 2-d Sliding Window

The details of Example 7-25 are:

• Lines 2 and 3 - the function takes the input argument “r” the current row index, and 
“window[3]” the data from the circular buffer. “window[3]” also returns the buffer 
data with the boundary conditions applied.

• Lines 6 and 7 makes a copy of the original buffer data and stores it in “w”

• Line 8 applies the lower boundary condition when “r==1”. The reason why it is 
“r==1” instead of “r==0” is because the data must be read sequentially. Thus the first 
two rows must be read “r==0” and “r==1” before there is enough data to start 
computing the output. 

• Line 10 applies the upper boundary condition when “r==480”.

Example 7-26 shows the rewritten 2-d averaging filter using the circular buffer and clipping 
function.

Example 7-26. 2-d Moving Average Using 2-d Windowing

The details of Example 7-26 are:

1 #include <ac_window.h>
2 #include “window_2d.h”
3 void clip_window(int r, ac_int<8,false> window[3]){
4   ac_int<8,false> w[3];
5  
6   for(int i = 0;i<3;i++)
7     w[i] = window[i];
8   window[0] = (r==1) ? w[1]:w[0];
9   window[1] = w[1];

10   window[2] = (r==480) ? w[1]:w[2];
11 }

1 #include “window_2d.h”
2 void window_avg(ac_int<8,false> din[480][720], 
3                 ac_int<8,false> dout[480][720]){
4   const ac_fixed<3,1,false> coeffs[3] = {0.25, 0.5, 0.25};
5   ac_fixed<13,11,false> tmp;
6   ac_int<8,false> w[3];
7   ac_int<8,false> din_tmp;
8  ROW:for(int r=0;r!=480+1;r++){ 
9   COL:for(int c=0;c!=720;c++){

10       if(r != 480)
11         din_tmp = din[r][c];
12       buffer(din_tmp,c,w);
13       clip_window(r,w);     
14       tmp = w[0]*coeffs[0] + w[1]*coeffs[1] + w[2]*coeffs[2];
15       if(r!=0)
16         dout[r-1][c] = tmp.to_int();
17     }
18   }
19 }
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• Line 8 extends the ROW loop by one iteration. This is required since the first two rows 
must be read before the output can start being written.

• Lines 10 and 11 read the input “din” until the last, or extra, iteration of the ROW loop. 
When on the last ROW iteration “r==480” the reads are disable so that the array is not 
over-read.

• Line 12 calls the circulating buffer and passes the current data “din_tmp”, the column 
address “c”, and the storage for the windowed row data “w”.

• Line 13 calls the hardware clipping function. It passes the current row index “r” and the 
data from the circular buffer “w”. “w” is returned with the boundary conditions applied.

• Line 14 uses the windowed data “w” to perform the filter computation.

• Lines 15 and 16 write the output data. The data is not written until the second ROW 
iteration is in progress “r!=0”. The output row index is adjusted to account for this 
startup delay “dout[r-1][c]”.
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Chapter 8
Hierarchical Design

Introduction
Up until this point the focus of this book has been on simple block level design. Most of the 
blocks that were discussed consisted of a single set of loops, or sequential loops, that were 
completely unrolled. The reality is that many hardware designers are required to build systems, 
or sub-systems, that contain multiple blocks that run concurrently to one another. Adding this 
type of concurrency can be done by applying HLS constraints in combination with a 
recommended coding style, while still leaving the C++ untimed and single threaded. The 
synchronization of data flow between blocks is added automatically during the synthesis 
process. 

Arrays Shared Between Blocks
One of the most common needs for explicit hierarchy is when two or more functions read and 
write the same array. These functions typically contain loops that cannot be merged 
automatically, and manual merging of the loops is time consuming as well as unnatural. 
Although user-defined hierarchy is most often required as design or control complexity 
increases, it can easily be illustrated here using very simple, yet somewhat contrived, examples. 

Out-of-order Array Access
Consider the following two-block design, shown in Example 8-1, where an array is copied 
between two blocks. The design is very simple and consists of two blocks “BLOCK0” and 
“BLOCK1” which copy the top level input array “din” to the output “dout”. The only difference 
between the two blocks in this design is that the array indexing is done in the opposite order. 
“BLOCK0” indexes the arrays in ascending order, and “BLOCK1” indexes the arrays in 
descending order. Although this is a trivial example it illustrates why explicit hierarchy is 
needed.
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Example 8-1. Out of Order Array Access

Example 8-1 is synthesized as a flat design with the following constraints:

Design Constraints
Main loop pipelined with II=1
All loops left rolled
All arrays mapped to registers

The “WRITE” and “READ” loops in functions “BLOCK0” and “BLOCK1” are not 
automatically merged because the respective array indexing is in the opposite order. Figure 8-1 
shows the approximate scheduling of the “BLOCK0” and BLOCK1” functions. Although the 
last and first loop iterations of the two blocks are overlapped, the loops still execute 
sequentially, each one having to wait till the other is finished, limiting the overall throughput of 
the design.

Figure 8-1. Out of Order Array Accesses in a Flat Design

Arrays Mapped to Registers
The throughput limitation shown in Figure 8-1 can be overcome by constraining high-level 
synthesis to insert user defined hierarchy. 

1 void BLOCK0(int din[3],int dout[3]){
2  WRITE:for(int i=0;i<3;i++){
3     dout[i] = din[i];
4   }
5 }
6 void BLOCK1(int din[3],int dout[3]){
7  READ:for(int i=2;i>=0;i--){
8     dout[i] = din[i];
9   }

10 }
11 void top(int din[3],int dout[3]){
12   int tmp[3];
13   BLOCK0(din,tmp);
14   BLOCK1(tmp,dout);
15 }
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Note
There are a number of ways to define explicit hierarchy, the most common being the 
application of synthesis constraints at the function level. 

When C++ functions are constrained to be hierarchical, they are synthesized as individual 
blocks, with communications channels between the blocks automatically created based on the 
arrays and/or variables passed between the functions. The implementation of the 
communications channels depends on not only whether the design was constrained to use 
registers or memories, but also on the order of array accesses as well as the read/write control 
complexity.

Example 8-1 is re-synthesized with the following constraints:

Design Constraints
BLOCK0 and BLOCK1 mapped to hierarchy
BLOCK0 and BLOCK1 pipelined with II=1
All loops left rolled
All arrays and channels mapped to registers

Synthesizing the design with the constraints given above results in the hardware shown in 
Figure 8-2. “BLOCK0” makes a local copy of “tmp”, the shared array, and writes the entire 
copy. The array copy is then written from “BLOCK0” to the channel FIFO, which is wide 
enough to pass the entire array in parallel. “BLOCK1” reads the entire array in parallel from the 
FIFO and makes a local copy which is then used internally. The FIFO is sized automatically 
during synthesis but can be overridden with a user defined size. In this example, since there is 
no handshake on the output (BLOCK1 cannot be stalled) the FIFO size could be set to zero. If 
the output did have a handshake (BLOCK1 can be stalled) the FIFO can be sized by the user to 
the appropriate value to prevent loss of data. The FIFO flags are connected to BLOCK0 and 
BLOCK1 to control both startup as well as stalling behavior. These flags are transparent to the 
user and are inserted to enforce that the hardware behavior matches the C++ exactly.

Figure 8-2. Out of Order Array Accesses Using Hierarchy and Registers
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Figure 8-3 shows both the schedule and FIFO flag timing for Example 8-1 when using 
hierarchy. BLOCK0 runs for three clock cycles after which the FIFO is loaded with the output 
from BLOCK0. In this example the FIFO and control logic were synthesized with a 
combinational path through the FIFO, so data is available immediately. This allows BLOCK1 to 
begin processing immediately. More importantly the schedule shows that the next call of 
BLOCK0 can begin running while BLOCK1 is processing. Thus the design can run with a 
continuous throughput after an initial startup latency. 

Note
This example uses a FIFO with combinational control for zero latency response to 
illustrate one aspect of hierarchy. The FIFO control behavior can be made sequential via 
synthesis constraints. 

Figure 8-3. Schedule for Out of Order Array Accesses Using Hierarchy

What was shown in this section is that a design with rolled loops that can’t be merged can run 
with maximum throughput by using explicit hierarchy to synthesize functions as separate 
modules. The control of data flow between the blocks or modules is handled automatically. One 
possible limitation to this approach would be that as the array sizes of the design become large, 
the required area for the temporary storage and FIFOs can become excessive. In these cases it is 
more likely that a memory based hierarchical design may be needed.

Arrays Mapped to Memories
As array sizes become large it is typical to map them to memories during synthesis because the 
area and power costs of mapping to registers becomes prohibitive. Mapping shared arrays 
between blocks to memories in a hierarchical design results in a ping-pong memory structure 
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automatically inferred to implement the communications channel. This ping-pong memory 
structure can consist of two or more memories that are written and read in such an order as to 
allow the blocks to run concurrently.

Example 8-1 is re-synthesized with the following constraints:

Design Constraints
BLOCK0 and BLOCK1 mapped to hierarchy
BLOCK0 and BLOCK1 pipelined with II=1
All loops left rolled
All arrays and channels mapped to singleport RAM

Synthesizing the design results in the hardware shown in Figure 8-4. In this case the array “tmp” 
shared between BLOCK0 and BLOCK1 is stored in a ping-pong memory. The “sync” signal is 
created to initially stall BLOCK1 until RAM0 is completely written. Once RAM0 is written 
BLOCK1 can begin reading while BLOCK0 begins writing RAM1. The ping-pong control is 
generated by BLOCK0 and controls which RAM is written and which is read. The schedule for 
this ping-pong memory design is identical to the schedule shown in Figure 8-3.

Figure 8-4. Out of Order Array Accesses Using Hierarchy and Memories

One of the drawbacks to a ping-pong memory hierarchical design is that memories are costly in 
terms of area. One memory is bad enough, but two is often unacceptable. There are some 
algorithms, such as the Discrete Cosine Transform (DCT), that often require such an out-of-
order memory architecture, but many algorithms can be expressed such that the data transfer 
between blocks is in the same order.

In-order Array Access
The hardware complexity of the communications channel implementation can be greatly 
simplified if high-level synthesis can prove that the shared array between blocks is accessed in 
the same order. The reason why the requirement of proof is highlighted in bold is an important 
point to understand. In general HLS attempts to build hardware that has a one-to-one IO 
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relationship to the underlying C++ algorithm. This is done so that the RTL generated from 
synthesis always behaves the same as the C++ algorithm. If this was not enforced people would 
either think that the RTL was in error, or else they would spend a great deal of time trying to 
understand why the results were different. Because of this HLS must PROVE that any 
transformation does not change the functionality. When dealing with shared arrays between 
blocks this means proving that the indexing of the arrays is the same. 

Automatic Streaming
Consider the following simple example that makes a small modification to Example 8-1 on 
page 192 so that the array indexing is performed in the same order by BLOCK0 and BLOCK1.

Example 8-2. In-Order Array Access

Design Constraints
BLOCK0 and BLOCK1 mapped to hierarchy
BLOCK0 and BLOCK1 pipelined with II=1
All loops left rolled
All arrays and channels mapped to registers

In Example 8-2 HLS can prove that BLOCK1 reads “tmp” in the same order it’s written by 
BLOCK0. This means that the values written to “tmp” by BLOCK0 do not have to be passed all 
at once. Rather they can be “streamed” or sent one at a time. Figure 8-5 shows the approximate 
schedule and FIFO flags for Example 8-2. The values of “tmp” are written one at a time by 
BLOCK0. BLOCK1 is able to begin reading “tmp” one at a time immediately after the first 
write by BLOCK0. BLOCK1 stalls on the first clock cycle before the channel FIFO is written, 
after which it can run every clock cycle.

1 void BLOCK0(int din[3],int dout[3]){
2  WRITE:for(int i=0;i<3;i++){
3     dout[i] = din[i];
4   }
5 }
6 void BLOCK1(int din[3],int dout[3]){
7  READ:for(int i=0;i<3;i++){
8     dout[i] = din[i];
9   }

10 }
11 void top(int din[3],int dout[3]){
12   int tmp[3];
13   BLOCK0(din,tmp);
14   BLOCK1(tmp,dout);
15 }
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Figure 8-5. Schedule for In-Order Array Accesses Using Hierarchy

The hardware for Example 8-2 is shown in Figure 8-6. Because the array can be “streamed” the 
blocks do not have to make internal copies of “tmp”, reducing the area. Furthermore the FIFO 
width needs only to be one element wide, reducing area. The FIFO depth is controllable via 
synthesis constraints, and can be removed completely if desired. 

Figure 8-6. Hardware for In-Order Array Accesses Using Hierarchy
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Algorithmic C Channel Class
Caution
Automatic streaming of arrays shared between blocks happens when the array indexing is 
in the same order and the index computation is unconditional. If these conditions are not 
met, FIFOs or ping-pong memories are used, leading to larger area.

To put it another way, automatic streaming occurs when the data rates are matched between 
blocks. Unfortunately there are many classes of algorithms, such as decimation and 
interpolation, where the array indexing is in the same order, but the index computation has to be 
conditional. For these class of algorithms HLS can’t stream the arrays because it can’t prove 
that doing so would be functionally equivalent. Example 8-3 shows a design that is not 
streamed. The conditional increment of the index “idx” on line 6 of BLOCK1 prevents 
streaming. This design would be synthesized with both blocks making copies of the “tmp” 
array, which would then be passed from BLOCK0 to BLOCK1, resulting in an area-inefficient 
design.

Example 8-3.  Design that Breaks Streaming Between Blocks

For designs that cannot be automatically streamed, the streaming behavior can be coded directly 
into the algorithm using the Algorithmic C channel class. The reference manual for the 
Algorithmic C channel class is available as part of the Catapult Synthesis reference manuals. 

Note
The ac_channel class is essentially a C++ FIFO that guarantees that the reading and 
writing of data between blocks occurs in the same order. 

1 void BLOCK0(int din[4],int dout[2]){
2   static int idx;
3  WRITE:for(int i=0;i<4;i++){
4     if((i&1)==0){
5       dout[idx] = din[i]+din[i+1];
6       idx++;//conditional index modification
7       if(idx==2)
8         idx = 0;
9     }

10   }
11 }
12 void BLOCK1(int din[2],int dout[2]){
13  READ:for(int i=0;i<2;i++){
14     dout[i] = din[i];
15   }
16 }
17 void top(int din[4],int dout[2]){
18   int tmp[2];
19   BLOCK0(din,tmp);
20   BLOCK1(tmp,dout);
21 }
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Similar to the coverage of Algorithmic C data types, this book attempts to provide enough of an 
introduction to AC channels in order to begin writing good quality synthesizable algorithms.

The Algorithmic C Channel class library is included using the following statement:

#include <ac_channel.h>

Declaration
The ac_channel class is a templatized class which allows specification of the data type passed 
through the channel. It is declared as:

ac_channel<T > my_channel;

Where T can be any native, Algorithmic C, SystemC, or user defined data type. For example:

ac_channel<ac_fixed<12,6> > my_channel;

Note
You must put a space between any two ">" characters or you get a compiler error because 
the parser treats ">>" as a right shift operator.

Channel Read: T read()
Data is read from the channel using the “read” member function. The member function returns 
valid data from the channel/FIFO as long as it is not empty. The C++ simulation asserts if the 
channel/FIFO is read when empty. The synthesized hardware will “block” when attempting to 
read an empty FIFO. This results in a potential stall of the entire design and is covered in more 
detail later.

Example:

ac_fixed<12,6> tmp = my_channel.read();

Note
Channel reads are considered to be a blocking read. What this means is that the reads 
from a channel must match the writes to a channel or else the system may stall. If a read 
was allowed on the channel FIFO when it is empty it would underflow, invalidating the 
data produced by the system. Because of this the read must be “blocked” until data is 
available in the channel. 

Channel Write: write(T)
Data is written to the channel using the “write” member function. The C++ simulation asserts if 
the FIFO is written when full. The synthesized hardware will “block” when attempting to write 
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a full FIFO. This also results in a potential stall of the entire design and is covered in more detail 
later.

Example:

my_channel.write(tmp);

Channel data available: available(int N)
The “available” member function is used to prevent reading an empty channel during C++ 
simulation, which causes an assertion. It is synthesized as a handshake in hardware so care must 
be taken when using it since there is the potential for stalling or deadlocking a design. The next 
chapter covers designs requiring“ reactive control”, where something else must be done when 
data is not available.

Example:

void test(ac_channel<int> din, ac_channel<int> dout){
if(din.available()){//Hardware stalls until data ready

int tmp =din.read();

Using Explicit Channels
Example 8-3 showed a simple case where the conditional increment of the array index prevents 
streaming. The example can easily be rewritten using ac_channel to enforce the streaming 
behavior. This is shown in Example 8-4

Example 8-4. Using ac_channel to Enforce Streaming Between Blocks

Design Constraints
BLOCK0 and BLOCK1 mapped to hierarchy
BLOCK0 and BLOCK1 pipelined with II=1

1 #include <ac_channel.h>
2 void BLOCK0(int din[4],ac_channel<int> &dout){
3   static int idx;
4  WRITE:for(int i=0;i<4;i++){
5     if((i&1)==0)
6       dout.write(din[i]+din[i+1]);    
7   }
8 }
9 void BLOCK1(ac_channel<int> &din,int dout[2]){

10  READ:for(int i=0;i<2;i++){
11     dout[i] = din.read();
12   }
13 }
14 void top_chan(int din[4],int dout[2]){
15   static ac_channel<int> tmp;
16   BLOCK0(din,tmp);
17   BLOCK1(tmp,dout);
18 }
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All loops left rolled
All arrays and channels mapped to registers

The details of Example 8-4 are:

• Line 1 includes the ac_channel class library.

• Line 2 has changed the “dout” interface variable of BLOCK0 from an array to a channel. 
It should be noted that “dout” is declared as a reference because it is an output. 

• Line 6 performs a channel write into “dout”.

• Line 9 has changed the BLOCK1 interface variable “din” from an array to a channel. It 
should be noted that “dout” is declared as a reference. This is required because passing 
by value would imply making an internal copy, which would lead to larger area.

• Line 11 performs a channel read.

• Line 15 defines a channel at the top level design which is used to connect BLOCK0 and 
BLOCK1. It must be declared static so that data stored in the channel persists between 
calls to the top-level design.

Synthesizing Example 8-4 gives a similar schedule and hardware to those shown in Figure 8-5 
and Figure 8-6 on page 197.

Note
Channels must always be declared as references when used on a function interface.

Note
Channels must be declared as static when used at the top-level design to connect blocks 
together.

Using Channels at the Top-level Interface and Testbench
In general transforming a design to use ac_channel is straightforward. Typically ac_channel is 
used to replace arrays when the array access patterns reflect “streaming” behavior. In other 
words the array data is written and read in the same order. The general rules for transforming 
designs and test benches to use ac_channel are:

• Arrays must be read and written in the same order.

• The data rates of reading and writing the array must match. Otherwise the system stalls.

• Array accesses should be replaced with channel reads and writes.

• ac_channel used as formal arguments on functions must be declared using references.

• ac_channel used as interconnections between hierarchical blocks must be declared as 
static variables.
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• ac_channel read by the top-level design must be pre-loaded with data in the C++ 
testbench before calling the function. Otherwise the C++ simulation asserts.

The following simple design and testbench show an array based design that reads and multiplies 
two arrays in order and writes the result to an output array.

Example 8-5. Simple Array Based Design

Example 8-6. Testbench for Simple Array Based Design

The testbench in Example 8-6 initializes the 32 element arrays “din0” and “din1” with data 
which are then passed to the function “top”. The function, shown in Example 8-5, reads all 32 
elements of “din0” and “din1” in order, multiplies them and writes all 32 elements of “dout” in 
order. This behavior must be replicated when converting to channels.

The examples shown below show the design and testbench of Examples 8-5 and 8-6 
transformed to use ac_channel.

1 void top(int din0[32], int din1[32], int dout[32]){
2   for(int i=0;i<32;i++){
3     dout[i] = din0[i]*din1[i];
4   }
5 }
6

7 #include <stdio.h>
8 #include <stdlib.h>
9 #include “top_array.h”

10 int main(){
11   int din0[32];
12   int din1[32];
13   int dout[32];
14   
15   for(int i=0;i<32;i++){
16     din0[i] = rand();
17     din1[i] = rand();
18   }
19   top(din0,din1,dout); 
20   for(int i=0;i<32;i++)
21     printf(“dout[%d] = %d\n”,i,dout[i]);
22   return 0;
23 }
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Example 8-7. Simple Array based Design Transformed to use Channels

The details of Example 8-7 are:

• Lines 2 through 4 have converted the interface arrays from Example 8-5 to ac_channel. 
References are use for the declarations.

• Line 6 has replaced the array read accesses with channel reads.

• Line 7 has replaced the array write accesses with channel writes.

Example 8-8. Testbench Using Channels

The details of Example 8-8 are:

• Lines 6 through 8 - The testbench arrays have been converted to ac_channel.

• Lines 9 through 12 - instead of initializing the elements of an array, the channels read by 
the top-level function are written with the initialization data. 

• Line 15 - the output from the top level design must be read out of the channel one 
element at a time.

1 #include <ac_channel.h>
2 void top(ac_channel<int > &din0, 
3          ac_channel<int > &din1, 
4          ac_channel<int > &dout){
5   for(int i=0;i<32;i++){
6     int tmp = din0.read()*din1.read();
7     dout.write(tmp);
8   }
9 }

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include “top_channel.h”
4 #include <ac_channel.h>
5 int main(){
6   ac_channel<int > din0;
7   ac_channel<int > din1;
8   ac_channel<int > dout;
9   for(int i=0;i<32;i++){

10     din0.write(rand());
11     din1.write(rand());
12   }
13   top(din0,din1,dout); 
14   for(int i=0;i<32;i++)
15     printf(“dout:%d = %d\n”,i,dout.read());
16   return 0;
17 }
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Blocks with Common Interface Control Variables
Multi-block designs often use top-level interface variables to configure the different blocks in 
the system. It is not uncommon to have a single variable control the behavior of multiple blocks. 
A good example of this would be a control variable that sets the maximum number of loop 
iterations for each block. The style in which the control should be written into the C++ depends 
on the application.

Passing Control Variables Between Blocks
Communications algorithms tend to have the requirement that the system runs without 
interruption. For these types of designs the control variables should be copied between blocks 
along with the data to ensure a one to one match between the RTL and the C++. By keeping the 
control synchronized with the data, upstream changes can be made without having to wait for 
the system to flush. Example 8-9 illustrates how to pass the control through a channel.

Example 8-9. Passing Control Variables Between Blocks

Design Constraints
BLOCK0 and BLOCK1 mapped to hierarchy
BLOCK0 and BLOCK1 pipelined with II=1
All loops left rolled
All channels mapped to registers

The details of Example 8-9 are:

1 #include “passing_control.h”
2 void BLOCK0(ac_channel<int> &din,ac_channel<int> &dout,
3             ac_channel<ac_int<WIDTH,false> > &ctrl,
4             ac_channel<ac_int<WIDTH,false> >&ctrl_out){
5   ac_int<WIDTH,false> ctrl_int = ctrl.read();
6   ctrl_out.write(ctrl_int);//one write
7  WRITE:for(int i=0;i!=ctrl_int;i++){
8     dout.write(din.read()*13);    
9   }

10 }
11 void BLOCK1(ac_channel<int> &din,ac_channel<int> &dout, 
12             ac_channel<ac_int<WIDTH,false> > &ctrl){
13   ac_int<WIDTH,false> ctrl_int = ctrl.read();//one read
14  READ:for(int i=0;i!=ctrl_int;i++){
15     dout.write( din.read());
16   }
17 }
18 void top(ac_channel<int> &din,ac_channel<int> &dout, 
19          ac_channel<ac_int<WIDTH,false> > &ctrl){
20   static ac_channel<int> data_int; 
21   static ac_channel<ac_int<WIDTH,false> > ctrl_int;
22   BLOCK0(din,data_int,ctrl,ctrl_int);
23   BLOCK1(data_int,dout,ctrl_int);
24 }
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• Lines 18 and 19 define the top level interface using channels for all interface variables. 
It is generally a good rule of thumb to not mix channel and non-channel variables in 
order to avoid deadlocking the system.

• Lines 20 and 21 define two static channels that are used to pass the data and the control 
between blocks.

• Line 5 reads the BLOCK0 control input “ctrl” and stores it in a temporary variable. This 
is done so that the control interface is only read once. The temporary variable “ctrl_int” 
is then used internally to avoid generating multiple read strobes on the top-level control 
interface. Reading the BLOCK0 control multiple times has the potential to deadlock the 
system.

• Line 6 writes the control to the BLOCK0 output “ctrl_out” using the internal copy 
“ctrl_int”. It is important to note that this is done outside of the loop to avoid writing the 
control multiple times. Writing the control to the output of BLOCK0 multiple times also 
has the potential to deadlock the system if it’s not read the same number of times by 
BLOCK1.

• Lines 7 through 9 copy the BLOCK0 data input channel “din” to the data output channel 
“dout”. The loop is run for “ctrl_int” iterations. The internal copy of the control 
“ctrl_int” is used to avoid reading the control channel “ctrl” multiple times.

• Line 13 reads the BLOCK1 control channel and stores the result in an internal variable 
“ctrl_int”. This single read of the control channel matches the single write of the channel 
in BLOCK0. If the number reads and the writes did not match the system would 
deadlock due to FIFO overflow or underflow.

• Lines 14 through 16 copies the BLOCK1 input data channel “din” to the output data 
channel “dout”. The number of loop iterations is controlled by the internal copy of the 
control channel “ctrl_int”.

Figure 8-9 shows the general hardware structure for Example 8-9. The control variable “ctrl” 
can be changed dynamically without having to flush the pipeline because it is synchronized with 
the movement of the data through the pipeline. The drawback of this approach is that it requires 
larger area since the control storage requires as many registers as there are pipeline stages. Thus 
this technique should only be used when needed.

Figure 8-7. Passing Control Variables Between Blocks
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Connecting Interface Control Variables to Multiple Blocks
For video or image processing algorithms data tends to flush completely from the system before 
the next transaction is processed. This allows plenty of time for changing the control while the 
system is idle, avoiding the problem of mismatching between the RTL and C++. Driving the 
control directly from the top-level interface to multiple blocks is typically done for these 
designs. The control pipeline registers can be bypassed because it does not have to be 
synchronized to the data. This leads to smaller designs in general. However, the RTL 
mismatches with the C++ if the control input is changed while the system is running. The 
mismatches last for the amount of time it takes to flush the old data from the pipeline. If this 
type of “direct” input is desired, it requires that the control input is defined as a reference at the 
design interface. Use of an ac_channel does not work since it requires synchronization. 
Example 8-10 shows how control inputs can simultaneously drive multiple blocks.

Example 8-10. Connecting Interface Control Variables to Multiple Blocks

Design Constraints
BLOCK0 and BLOCK1 mapped to hierarchy
BLOCK0 and BLOCK1 pipelined with II=1
All loops left rolled
All channels mapped to registers
ctrl mapped to a direct input

The details of Example 8-10 are:

• Lines 3, 11 and 19 - the control variables “ctrl” is passed on all interfaces as a reference. 
This is required in order to map it to a direct input. Passing by value would require 
making a copy, which in turn would create an additional level of hierarchy at the top-
level.

1 #include “direct_input.h”
2 void BLOCK0(ac_channel<int> &din,ac_channel<int> &dout,
3             ac_int<WIDTH,false> &ctrl){
4  WRITE:for(int i=0;i<1024;i++){
5     if(i==ctrl)
6       break;
7     dout.write(din.read()*13);    
8   }
9 }

10 void BLOCK1(ac_channel<int> &din,ac_channel<int> &dout, 
11             ac_int<WIDTH,false> &ctrl){
12  READ:for(int i=0;i<1024;i++){
13     if(i==ctrl)
14       break;
15     dout.write( din.read());
16   }
17 }
18 void top(ac_channel<int> &din,ac_channel<int> &dout, 
19          ac_int<WIDTH,false> &ctrl){
20   static ac_channel<int> data_int; 
21   BLOCK0(din,data_int,ctrl);
22   BLOCK1(data_int,dout,ctrl);
23 }
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• Lines 5 and 13 - “ctrl” can be used directly if it is mapped to a direct input. Direct inputs 
are considered wire type interfaces and cannot stall the design.

Figure 8-8 show the approximate hardware structure of Example 8-10. By mapping “ctrl” to a 
direct input it is connected directly to the loop control, bypassing all pipeline register stages. 
Thus a change on “ctrl” has an instantaneous effect, making all the current data in the pipeline 
invalid. 

Figure 8-8. Connecting Interface Control Variables to Multiple Blocks

Duplicating Control IO
Some classes of designs require that the control is simultaneously broadcast to multiple blocks, 
while still remaining synchronized with the data. For these types of designs, it requires making 
multiple copies of the control signal and then broadcasting the copies. The recommended way 
of doing this is to create a separate block of hierarchy that makes the control copies and sends 
them to all blocks. This is shown below in Example 8-11.

Design Constraints
CONTROL, BLOCK0 and BLOCK1 mapped to hierarchy
CONTROL, BLOCK0 and BLOCK1 pipelined with II=1
All loops left rolled
All channels mapped to registers

The details of Example 8-11 are:

• Lines 2 through 9 implement the control copy block. This function simply reads the 
control channel “ctrl” once, and then writes it to two output channels “ctrl0” and “ctrl1”.

• Lines 12 and 21 - Both BLOCK0 and BLOCK1 read the control channel once, and store 
it internally in a local variable. The internal copy is then used for the loop control.

• Lines 33 and 34 define two static channels used for copying the control “ctrl”.
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Example 8-11. Duplicating Control IO

Figure 8-9 shows the approximate hardware synthesized from Example 8-11. The control is 
duplicated in the CONTROL block and passed to the rest of the system. 

Note
There are no FIFOs shown for the CONTROL block output channels, but these can be 
added/removed via synthesis constraints.

1 #include “duplicate_control.h”
2 void CONTROL(ac_channel<ac_int<WIDTH,false> > &ctrl,
3              ac_channel<ac_int<WIDTH,false> > &ctrl0,
4              ac_channel<ac_int<WIDTH,false> > &ctrl1){
5   ac_int<WIDTH,false> ctrl_int;
6   ctrl_int = ctrl.read();
7   ctrl0.write(ctrl_int);
8   ctrl1.write(ctrl_int);
9 }

10 void BLOCK0(ac_channel<int> &din,ac_channel<int> &dout,
11             ac_channel<ac_int<WIDTH,false> > &ctrl){
12   ac_int<WIDTH,false> ctrl_int = ctrl.read();//one read
13  WRITE:for(int i=0;i<1024;i++){
14     if(i==ctrl_int)
15       break;
16     dout.write(din.read()*13);    
17   }
18 }
19 void BLOCK1(ac_channel<int> &din,ac_channel<int> &dout, 
20             ac_channel<ac_int<WIDTH,false> > &ctrl){
21   ac_int<WIDTH,false> ctrl_int = ctrl.read();//one read
22  WRITE:for(int i=0;i<1024;i++){
23     if(i==ctrl_int)
24       break;
25     dout.write( din.read()*111);
26   }
27 }
28 void top(ac_channel<int> &din0,
29          ac_channel<int> &din1,
30          ac_channel<int> &dout0, 
31          ac_channel<int> &dout1, 
32          ac_channel<ac_int<WIDTH,false> > &ctrl){
33   static ac_channel<ac_int<WIDTH,false> > ctrl0; 
34   static ac_channel<ac_int<WIDTH,false> > ctrl1;
35   CONTROL(ctrl,ctrl0,ctrl1);
36   BLOCK0(din0,dout0,ctrl0);
37   BLOCK1(din1,dout1,ctrl1);
38 }
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Figure 8-9. Duplicating Control IO

Reconvergence: Balancing the Latency Between 
Blocks

Many multi-block designs require additional delay registers between blocks to allow the system 
to run at the maximum throughput. These delay registers, implemented using FIFOs, are used to 
solve the problem of reconvergence.

Note
Reconvergence occurs when a stream of data travels through blocks with different 
latencies and is then brought back together. 

When the data streams are brought back together they must be aligned in order for the RTL to 
match the original C++. This alignment is performed by setting the channel FIFO depths large 
enough so that they can absorb the different latencies between blocks. HLS can automatically 
size the FIFOs for simple designs, but designers typically have to choose the appropriate FIFO 
sizes for complex designs. 

Caution
Failing to set the appropriate FIFO size, or setting all FIFOs to zero size, can have the 
effect of causing the design to either “stutter”, where the inputs and outputs are not 
read/written continuously, or deadlock where the system does not operate. 
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Deadlock
Consider the following multi-block design shown in Example 8-12. This design is so simple 
that it really doesn’t need user defined hierarchy because there are no loops, but it easily shows 
the impact of not balancing latency between blocks.

Example 8-12. Multi-Block Design with Reconvergence

Design Constraints
BLOCK0,BLOCK1,BLOCK2, and BLOCK3 mapped to hierarchy
All blocks pipelined with II=1
All channels mapped to registers
All FIFO depts set eqyal to zero
BLOCK1 uses two-stage pipelined multiplier

Figure 8-10 shows the approximate hardware synthesized for Example 8-12. This design 
deadlocks for the synthesis constraints described above. After the second clock cycle, BLOCK2 
is ready to write to BLOCK3. The problem is that the BLOCK2 data must be aligned with the 

1 #include <ac_channel.h>
2 void BLOCK0(ac_channel<int> &din0, ac_channel<int> &din1, 

ac_channel<int> &dout0,ac_channel<int> &dout1){
3   int tmp0,tmp1;
4     tmp0 = din0.read();
5     tmp1 = din1.read();
6     dout0.write(tmp0+tmp1);
7     dout1.write(tmp0-tmp1);
8 }
9 #include <ac_channel.h>

10 void BLOCK1(ac_channel<int> &din, ac_channel<int> &dout){
11   int tmp;
12     tmp = din.read()*13;
13     dout.write(tmp);
14 }
15 void BLOCK2(ac_channel<int> &din1, ac_channel<int> &dout){
16   int tmp;
17     tmp = din1.read() + 111;
18  dout.write(tmp);
19 }
20 void BLOCK3(ac_channel<int> &din0, ac_channel<int> &din1, 

ac_channel<int> &dout){
21   int tmp;
22     tmp = din0.read()-din1.read();
23     dout.write(tmp); 
24 }
25 void top_chan(ac_channel<int> &din0, ac_channel<int> &din1, 

ac_channel<int> &dout){
26   static ac_channel<int> b1_in; 
27   static ac_channel<int> b2_in; 
28   static ac_channel<int> b3_in_0; 
29   static ac_channel<int> b3_in_1;
30   BLOCK0(din0,din1,b1_in,b2_in);
31   BLOCK1(b1_in,b3_in_0);  
32   BLOCK2(b2_in,b3_in_1);
33   BLOCK3(b3_in_0,b3_in_1,dout);
34 }
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BLOCK1 data. However, BLOCK1 has a longer latency, hence the BLOCK1 data is not 
available for a few more clock cycles. Since BLOCK2 cannot complete the write it stalls 
BLOCK0. Since BLOCK0 has to stop writing data to BLOCK2 and BLOCK1, BLOCK1 must 
also stall, leaving the data stuck in the pipeline. This design never finishes. There are two 
possible solutions to fix this design, one is two balance the latency between blocks by setting 
the appropriate FIFO depths, the other is to enable automatic pipeline flushing.

Figure 8-10. Multi-Block Design with Reconvergence

Automatic Pipeline Flushing
The default synthesis flow, because it is the least costly in terms of design area, is to stall the 
pipeline when data cannot be read or written. This is a result of the ready/acknowledge 
handshakes that are used for the channel FIFOs. The handshake is connected directly between 
blocks if the FIFO depth is set equal to zero. Thus if no new data is available at the input, the 
hardware can stall, leaving data stuck in the pipeline. The pipeline can be made to flush even if 
there is no new data by enabling automatic pipeline flushing. Figure 8-11 shows the 
approximate schedule of Example 8-12 when automatic pipeline flushing is enabled.
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Figure 8-11. Multi-Block Design with Automatic Pipeline Flushing

Figure 8-11 shows that even though BLOCK0 and BLOCK2 stall, BLOCK1 is able to 
complete, allowing BLOCK3 to write the output. The limitation here is that the pipeline is under 
utilized which can be seen by the blocks starting and stopping continuously.

Manually Setting FIFO Depths
Note
Most reasonably complex design require that the designer manually set the depth of the 
channel FIFOs to prevent deadlock or stuttering. 

Determination of the FIFO depths requires scheduling the design to get the latency information 
of each block. Once the block latencies are known the designer can assign the appropriate FIFO 
depths based on how blocks are interconnected. The interconnect information is provided 
graphically in some HLS tools via block level constraints, or can be determined by inspection. 
The FIFO depths should be set so that the different latencies in the data stream due to 
reconvergence are balanced. Figure 8-12 shows Example 8-12 where the FIFO depths have 
been set to prevent deadlock. Figure 8-10 showed that the reconvergence problem occurred 
because BLOCK2 was ready to write BLOCK3 two clock cycles before BLOCK1. The 
deadlock or stuttering can be eliminated by setting the FIFO depth equal to two on the channel 
between BLOCK2 and BLOCK3.
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Figure 8-12. Manually Setting FIFO Depths

Figure 8-13 shows the effect of setting the FIFO depths to balance latency between blocks. By 
adding the two element FIFO all of the blocks can start every clock cycle after the initial 
rampup of the system. 

Figure 8-13. Schedule when FIFO Depths Set to Balance Block Latency
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Chapter 9
Advanced Hierarchical Design

Introduction
The previous chapter covered basic hierarchical design and included concepts such as ping-
pong memory and communications channel management using the ac_channel class. One of the 
limitations that was discussed was the potential for stalling the hardware when trying to read an 
empty channel. There are a number of types of designs where it is essential to be able to “do 
something else” if data is not available in the channel. Some examples would be memory 
arbiters, simple bus interfaces, multi-rate designs, and designs with non-deterministic feedback 
or data flow.

Because of the problems associated with reading empty channels, advanced hierarchical design 
introduces the concept of a “non-blocking read”, which allows transparent accesses to the 
channel FIFO fullness count. Being able to probe the FIFO size allows designs to be built that 
never stall the system. Although this is essential when designing the types of designs listed 
above, it can break the one-to-one relationship between the C++ and generated RTL. Because of 
this, HLS design environments must support more advanced verification methodologies for 
proving the correctness of the system, or the resulting hardware must be simulated against the 
specification instead of the C++ model.

ac_channel Methods
The ac_channel class (“Algorithmic C Channel Class” on page 198) provides two methods to 
support non-blocking reads. 

Channel size: int size()
This member function returns the number of elements in the channel FIFO. A non-blocking 
read is implemented by using the “size” member function to conditionally read the channel.
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Example 9-1. Reading the Channel Size

The read of the channel size is combinational so it can be performed in the same clock cycle as 
the channel read.

Non-blocking Read: bool nb_read(T &val)
The non-blocking read member function returns true if data is read from the channel. The data is 
returned in “val”. If data is not read from the channel the function returns false.

Example 9-2. Non-blocking Read

Recommended Coding Style 
Non-blocking reads and the testing of the “size” member function should be used 
unconditionally when possible. This is because scheduling can’t move them out of conditions, 
which can lead to less than optimal hardware. Consider the following code fragment where the 
size of different channels is read conditionally

Example 9-3. Bad Coding Style for Reading Channel Size

Figure 9-1 shows an approximate schedule for Example 9-3. Because the channel size is read 
conditionally there is a scheduling dependency chain that requires that the channels sizes are 

ac_channel<int> input;
int data;
bool flag;
...
flag = input.size()>0;
if(flag)//if data in the FIFO

data = input.read()
else

//do something else

ac_channel<int> input;
int data;
bool flag;
...
flag = input.nb_read(data);
if(flag)//if data read from FIFO

//process data
else

//do something else

ac_channel<int> input0;
ac_channel<int> input1;
int data;
...
if(input0.size()>4)

data = input0.read();
else if(input1.size()>2)

data = input1.read();
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read sequentially. This has the potential to increase the latency of the design which can lead to 
larger area and failure to pipeline.

Figure 9-1. Schedule of Bad Coding Style for Reading Channel Size

Note
The channel size should always be read unconditionally and stored in a temporary 
variable.

Example 9-4 shows Example 9-3 rewritten using the recommended coding style. The read of 
the channel sizes is done unconditionally at the beginning of the design and stored in temporary 
variables. The temporary variables can then be used directly within the design.

Example 9-4. Recommended Coding Style for Reading Channel Size

Figure 9-2 shows the approximate schedule for Example 9-4. By making the reads of the 
channel sizes unconditional, all of the size comparisons can be done in parallel. The conditional 
selection logic for the channel reads are then fed with the results of the size comparisons. This 
logic is minimal and is not shown in the schedule diagram.

ac_channel<int> input0;
ac_channel<int> input1;
int data;
bool p[2];
...
p[0] = input0.size()>4;
p[1] = input1.size()>2;
if(p[0])

data = input0.read();
else if(p[1])

data = input1.read();
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Figure 9-2. Recommended Coding Style for Reading Channel Size

Arbitration
Arbitration is typically required when two or more processes are trying to access the same bus 
or memory. The bus or memory arbiter processes the requests from the different processes and 
decides who gets access to the bus/memory. The granting of access can be done based on either 
priority, or in round-robin fashion where every process is given equal access to the bus/memory. 
Non-blocking reads are required in order to build things like arbiters. Consider the following 
simple frame buffer example, shown in Figure 9-3, that consists of two processes accessing the 
same memory. One process, BLOCK0, writes the memory and the other process, BLOCK1, 
reads the memory. An arbiter decides who gets access to the memory if both processes are 
requesting. There is synchronization that controls when, and which half of the memory, the 
reader can start reading

Figure 9-3. Memory Arbiter Block Diagram

Care must be taken when describing systems like that shown in Figure 9-3. This is because the 
code typically consists of a combination of both blocking and non-blocking reads. 
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Note
Reading an empty channel causes a C++ assertion.

The use of non-blocking reads allows us to model parallelism in a sequential C++ description. 
However sequential calls to functions that communicate via channels can lead to problems 
because an empty channel cannot be read without asserting during C++ simulation. Changing 
the order of execution of the functions may sometimes solve this problem, but in general 
reactive systems cannot be effectively modelled this way. The recommended style is to use a 
class based approach, where one or more functions are encapsulated in a class. The instance of 
that class can then be passed to other classes or functions via a reference. Passing a reference to 
a class allows direct access to that class instance within a function, eliminating the problems 
associated with sequential execution. Example 9-5 uses this technique for implementing the 
design shown in Figure 9-3.

Example 9-5. Memory Arbiter

Design Constraints:
Block0 and Block1 mapped to hierarchy
All loops pipelined with II=1

1 #include “memclass.h”
2 #include<ac_channel.h>
3 void block0( ac_channel<int> &data_in,
4      ac_channel<bool> &sync,
5      memclass<int,128> &mem){
6   int tmp;
7   static bool buf_sel = false;
8   int offset = buf_sel ? 0:64;
9   for(int i=0;i<64;i++){

10     mem.write_port(i+offset,data_in.read()*10);
11   } 
12   sync.write(buf_sel);
13   buf_sel = !buf_sel;
14 }
15 void block1( ac_channel<int> &data_out, 
16      ac_channel<bool> &sync,
17      memclass<int,128> &mem){
18   int tmp;
19   bool buf_sel;
20   if(sync.size()>0){
21     buf_sel = sync.read();
22     int offset = buf_sel ? 0:64;
23     for(int i=0;i<64;i++){
24       data_out.write(mem.read_port(i+offset)-1);
25     }  
26   }
27 }
28 void top(ac_channel<int> &data_in,
29  ac_channel<int> &data_out){
30   static memclass<int,128> mem;
31   static ac_channel<bool> sync;
32   block0(data_in,sync,mem);
33   block1(data_out,sync,mem);
34 }
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Arbiter member function of memclass mapped to heirarchy.

The details of Example 9-5 are:

• Lines 28 and 29 define the top-level function which has an input data channel and an 
output data channel. These must be defined as references.

• Line 31 - The internal memory and the arbiter are encapsulated inside of a class 
“memclass”. The class is templatized for the data type and number of memory words. 
This is covered in detail next.

• Line 31 defines the channel used to send the synchronization signal from BLOCK0 to 
BLOCK1.

• Lines 32 and 33 call the block0 and block1 functions and each function is passed a 
reference to the memclass variable “mem”. By passing a reference to “mem” each 
function has direct access to the arbiter and internal memory. This prevents reading an 
empty channel.

• Lines 3 through 5 define the block0 function interface. The arbiter/memory is passed as 
a reference on this interface. 

• Lines 7 and 8 define a static variable that determines which half of the memory should 
be written. This variable is used to calculate the offset into the memory.

• Lines 9 though 11 reads the input channel and calls the memclass “write_port” member 
function. The input data, address, and offset are passed to “write_port”.The “write_port” 
member function accesses the internal memory via the arbiter.

• Line 12 sends the synchronization signal to block1 indicating which half of the memory 
can be read.

• Lines 15 through 17 define the block1 function interface. This function also has access 
to the memclass variable via a reference.

• Line 20 tests the “sync” FIFO size to see if the synchronization signal has been sent. 
NOTE: This has a very important effect on the synthesized hardware for block1. For the 
C++ simulation this condition is always true since block0 is always executed before 
block1. However, the synthesized hardware for block1 begins running immediately after 
reset. Because of this block1 must not be allowed to read until block0 has finished 
writing the memory. Adding this non-blocking read of “sync” gives the desired 
behavior.

• Lines 21 and 22 read the “sync” signal when it is available and calculates the offset into 
the memory.

• Line 25 calls the memclass “read_port” member function with the current address and 
offset. The “read_port” member function accesses the internal memory via the arbiter.

Example 9-6 shows the memclass class definition.
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Example 9-6. Arbiter with Internal Memory Class

The details of Example 9-6 are:

• Line 5 - the class is templatized for data type “T” and number of array elements “N”.

• Lines 8 through 11 define channels that are used to connect to both the writer function 
“block0” and the reader function “block1”. Separate channels are needed for each 
function that needs to access the internal memory. 

• Line 12 defines a variable “priority” that is used by the arbiter to decided who gets 
access to the memory.

• Line 13 defines the internal array “ram” which is mapped to memory and accessed via 
the arbiter.

• Lines 16 through 18 define the member function prototypes for the class. Only the 
“arbiter” member function is mapped to hierarchy. The “read_port” and “write_port” 
methods used by block0 and block1 are left alone and are inlined and synthesized where 
they are called. 

Examples 9-7, 9-8, and 9-9 show the memclass member functions. 

1 #ifndef __ARBITER__
2 #define __ARBITER__
3 #include <ac_channel.h>
4 #include <ac_int.h>
5 template<typename T, int N>
6   class memclass{
7  private:
8   ac_channel<ac_int<ac::log2_ceil<N>::val,false> > addr_rd;
9   ac_channel<T > data_rd;

10   ac_channel<ac_int<ac::log2_ceil<N>::val,false> > addr_wr;
11   ac_channel<T > data_wr;
12   bool priority;
13   T ram[N];
14  public:
15   memclass():priority(false){};
16     T read_port(ac_int<ac::log2_ceil<N>::val,false> addr);
17     void write_port(ac_int<ac::log2_ceil<N>::val,false> addr, T data);
18     void arbiter();
19 };
20 #include “memclass_read.h”
21 #include “memclass_write.h”
22 #include “memclass_arbiter.h”
23 #endif
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Example 9-7. Memclass Read Method

The details of Example 9-7 are:

• Line 3 writes the current address “addr” into the memclass’s “addr_rd” channel. This 
channel is read by the arbiter.

• Line 4 calls the arbiter member function.

• Line 5 reads data from the memclass’s “data_rd” channel. This channel is written by the 
arbiter. NOTE: this read is a blocking read and expects the data to be available. If it’s 
possible that the “data_rd” channel may not be written by the arbiter, additional checks 
must be added. This is covered later.

Example 9-8. Memclass Write Method

Example 9-8 writes the address and data into the memclass channels that connect to the arbiter. 
This function should not block as long as the channel FIFOs do not overflow.

Example 9-9. Memclass Arbiter

The details of Example 9-9 are:

• Lines 4 and 5 check to see if any addresses are available in either the read or write 
channel and assigned the results to flags p[0] and p[1]. Being able to test whether valid 

1 template<typename T, int N> 
2   T memclass<T,N>::read_port(ac_int<ac::log2_ceil<N>::val,false> addr){
3     addr_rd.write(addr);
4     arbiter();
5     return data_rd.read();
6   }

1 template<typename T, int N>
2   void memclass<T,N>::write_port(ac_int<ac::log2_ceil<N>::val,false> 

addr, T data){
3   addr_wr.write(addr);
4   data_wr.write(data);
5   arbiter();
6 }

1 template<typename T, int N>
2   void memclass<T,N>::arbiter(){
3   bool p[2]; 
4   p[0] = addr_rd.size()!=0;
5   p[1] = addr_wr.size()!=0;    
6   if(p[0] & (priority | !p[1])){
7     data_rd.write(ram[addr_rd.read()]);   
8     priority = !priority;
9   }

10   else if(p[1]&(!priority | !p[0])){
11     ram[addr_wr.read()] = data_wr.read();  
12     priority = !priority;  
13   }
14 }
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address data is in either channel without actually reading it prevents a read from 
blocking.

• The arbiter uses a round-robin priority to decided whether the read or write channel is 
serviced. Each time the reader or writer is serviced the priority is switched.

• Lines 6 and 7 checks to see if the reader has sent an address “p[0]==true” and whether 
the reader has priority “priority==true” or if the writer is not trying to write 
“p[1]==false”. If the reader is granted access the read channel “data_rd” is written with 
the data from the internal array “ram” using the address read from the reader 
“addr_rd.read()”.

• Line 8 switches the priority to the writer after each read.

• Lines 10 through 12 check to see if the writer is granted access in the same fashion as the 
reader. The priority is switched to the reader after each write.

Note
Each call to the arbiter by the read_port function always returns data, so the read never 
blocks. Thus it is only necessary to call the arbiter once. However, in more complicated 
designs it is possible that the arbiter does not always return data to the read_port function. 
In this case more sophisticated coding is required to prevent the read data channel from 
asserting.

Preventing C++ Assertions from Reading Empty 
Channels

The previous arbitration example showed how a mixture of both non-blocking reads and 
blocking reads could be used to model concurrency. The C++ from that example simulates 
correctly because the arbiter is always able to return data when called by the reader. If this 
didn’t happen the reader would read an empty channel which causes an assertion in C++ 
simulation. This cannot be allowed to happen. 

Consider the following example where the arbiter does not always return data to the reader. This 
can happen for a number of reasons. Perhaps there is still data in the write channels while the 
reader is calling the arbiter, or the arbiter may be responding to some other event. In either case 
the reader must be enhanced. Example 9-10 shows how to code the read_port function so that it 
never asserts. Now after the address is issued on Line 3, a “while” loop repeatedly calls the 
arbiter until a non-zero size is detected on the read data channel. The read of the data channel on 
line 6 does not happen until the arbiter returns valid data.
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Example 9-10. Enhanced read_port Member Function

Feedback
It was discussed earlier in “Pipeline Feedback” on page 73 that intra-block feedback can 
prevent the ability to pipeline and schedule a design. With the introduction of channels and 
hierarchy it is now possible to have inter-block feedback, which can cause the C++ or RTL 
simulation to assert or deadlock respectively. There is also the possibility that the C++ may 
simulate while the RTL still deadlocks. This usually happens because feedback in the untimed 
C++ description is instantaneous, while in the RTL it is dependent on the total latency of the 
feedback path. A feedback channel will “block” if it is read when empty. Sometimes designs 
can be made to work using only blocking reads by balancing the feedback latency. However 
many designs require non-blocking reads to make the system function as desired.

C++ Assertion
The following simple example is used to illustrate how feedback can cause the C++ simulation 
to assert. Examples 9-11, 9-12, and 9-13 illustrate a simple two block design that contains 
feedback between the blocks. Although this example is somewhat contrived, it clearly illustrates 
the problems associated with feedback. The block0 function reads the input data and coefficient 
from the top-level interface and multiplies them together on line 8 of Example 9-11. It also 
reads the channel called “feedback” and subtracts that data from the input times the coefficient. 
However the feedback channel is written on line 11 of the block1 function in Example 9-12. 
Since block0 is called before block1 in Example 9-13, the feedback channel is empty the first 
time it is read, and causes an assertion in the C++ simulation. This design never functions as 
desired.

Example 9-11. Asserting on Empty Feedback Channel Read - BLOCK0

1 template<typename T, int N> 
2   T memclass<T,N>::read_port(ac_int<ac::log2_ceil<N>::val,false> addr){
3     addr_rd.write(addr);
4     while(!data_rd.size()>0)//while no read data
5       arbiter();
6     return data_rd.read()*37;
7   }

1 #include “assert.h”
2 #include<ac_channel.h>
3 void block0( ac_channel<int> &data_in,
4      ac_channel<int> &coeff,
5      ac_channel<int> &data_out,
6      ac_channel<int> &feedback){
7   data_out.write(data_in.read()*coeff.read()-feedback.read());
8 }
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Example 9-12. Asserting on Empty Feedback Channel Read - BLOCK1

Example 9-13. Asserting on Empty Feedback Channel Read - Top

Preloading the Channels/FIFOs
Example 9-13 asserts because the empty feedback channel is read the first time block0 executes. 
The ac_channel class allows channels to be pre-loaded with data using the class constructor.

Usage:

ac_channel<int> my_channel(<prefil_number>, <prefill vallue>)

The reason why Example 9-13 asserts is because the first read of the feedback channel is done 
on an empty channel. Thus if the channel is preloaded with just a single value the first call to 
block0 can complete without asserting. Example 9-14 shows the code modification of the top-
level design. Line 6 declares the “feedback” ac_channel and initializes it to be preloaded with 1 
value equal to zero. This allows the C++ to simulate without asserting. However, although the 
C++ simulates correctly, the RTL deadlocks or stutters. This is discussed in the next section.

1 #include “assert.h”
2 void block1( ac_channel<int> &data_in,
3      ac_channel<int> &data_out, 
4      ac_channel<int> &feedback){
5   int fb;
6   int tmp = data_in.read();
7   if(tmp>MAX)
8     fb = tmp - OFFSET;
9   else

10     fb = 0;
11   feedback.write(fb);
12   data_out.write(tmp);
13 }

1 #include “assert.h”
2 void top(ac_channel<int> &data_in, 
3  ac_channel<int> &coeff,
4  ac_channel<int> &data_out){
5   static ac_channel<int> data;
6   static ac_channel<int> feedback;
7   block0(data_in,coeff,data,feedback);
8   block1(data,data_out,feedback);
9 }



226

Advanced Hierarchical Design
 

Example 9-14. Preloading the Channel

Deadlock
Example 9-14 solved the problem of asserting when reading an empty channel by allowing the 
channel to be preloaded with one or more pieces of data. However, there is still a potential for 
deadlocking or stuttering in the RTL if this is not done correctly, and in fact this is what happens 
when Example 9-14 is synthesized and simulated in RTL. Figure 9-4 shows the hardware 
diagram for Example 9-14. 

Figure 9-4. Stuttering or Deadlock

By preloading the feedback FIFO, BLOCK0 can read the FIFO and its inputs and produce its 
first output. However once the feedback FIFO is read it becomes empty and BLOCK0 must 
then stall. BLOCK1 can start once BLOCK0 produces an output. BLOCK1 writes the output 
and the feedback channel and then stalls, waiting for the next value from BLOCK0. BLOCK0 
can now start again since the feedback FIFO is no longer empty. Thus in this example BLOCK0 
and BLOCK1 “stutter” and data is only produced every other clock cycle. If the latency of 
either block was greater than one clock cycle the entire system would deadlock. 

Note
In general the feedback FIFO should be preloaded with enough data to match the feed 
forward latency.

Figure 9-5 shows the feedback FIFO preloaded with enough data to keep the design running 
every clock cycle.

1 #include “deadlock.h”
2 void top(ac_channel<int> &data_in, 
3  ac_channel<int> &coeff,
4  ac_channel<int> &data_out){
5   static ac_channel<int> data;
6   static ac_channel<int> feedback(1,0);
7   block0(data_in,coeff,data,feedback);
8   block1(data,data_out,feedback);
9 }
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Figure 9-5. Balancing the Feed Forward Latency

Variable Rate or Data Dependent Feedback
If the feedback rate is variable the system always deadlocks when using blocking reads, and the 
method of preloading the FIFOs does not help. Example 9-15 shows the block1 function from 
Example 9-14, but now the feedback channel is only written intermittently. Lines 7 through 10 
show that block1 only writes the feedback channel when the data exceeds the value set by 
MAX. However, block0 still always reads the feedback channel each time it is called. At some 
point the feedback channel is read when empty (underflow), which causes an assertion or 
deadlock, illustrating the need for non-blocking reads. 

Note
If the feedback rate matches the feed forward rate, preloading the FIFOs to match the 
feed forward latency allows the system to run without deadlocking when using blocking 
reads. However, if the rates are different, the system always deadlocks when using 
blocking reads. In this case non-blocking reads must be used.

Example 9-15. Variable Rate Feedback with Blocking Read

If non-blocking reads are used, the feedback channel can be read conditionally only when there 
is valid data in the channel. This eliminates any possibility of asserting or deadlocking due to 
under flowing the channel/FIFO. Example 9-16 shows the block0 function of Example 9-14 
rewritten to use non-blocking reads so that the feedback channel is only read when data is 
available. Line 6 defines a variable “fb” that is set equal to zero each time the function is called. 
Lines 7 and 8 check to see if any data is in the feedback channel/FIFO, and reads the data from 
the channel into “fb” if valid data is present. Otherwise “fb” is left initialized to zero. Line 9 

1 #include “variable.h”
2 void block1( ac_channel<int> &data_in,
3      ac_channel<int> &data_out, 
4      ac_channel<int> &feedback){
5   int fb;
6   int tmp = data_in.read();
7   if(tmp>MAX){
8     fb = tmp - OFFSET;
9     feedback.write(fb);

10   }
11   data_out.write(tmp);
12 }
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then subtracts “fb” from the multiplication. Thus if there is no data in the feedback channel the 
function can still complete. One detail to keep in mind is that use of non-blocking reads has the 
potential to break the one-to-one relationship between the C++ and synthesized RTL. However, 
this is to be expected since the C++ feedback is available immediately, while the scheduled and 
synthesized design always has one or more cycles of latency. Other methods of verification can 
be used to verify the design by testing the RTL output for signal-to-noise ratio, bit error rate, 
etc.

Example 9-16. Variable Rate Feedback with Non-blocking Reads
1 #include “variable.h”
2 void block0( ac_channel<int> &data_in,
3              ac_channel<int> &coeff,
4              ac_channel<int> &data_out,
5              ac_channel<int> &feedback){
6   int fb = 0;
7   if(feedback.size()>0)
8     fb = feedback.read();
9   data_out.write(data_in.read()*coeff.read()-fb);

10 }
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Chapter 10
Digital Filters

Introduction
Up till this point each chapter has introduced different concepts related to high level synthesis. 
These concepts included simple C++ examples, both contrived as well as concrete, to illustrate 
how hardware is synthesized from C++. This chapter builds upon this foundation by covering 
design concepts using real world designs. There is no better place to begin applying the 
principles of high level C++ synthesis hardware design than the topic of digital filters. Digital 
filters are something that most hardware engineers are familiar with, and are ideal for showing 
off the power of HLS. One of the main reasons for this is that filters tend to have an 
“explorable” memory architecture, where the use of loop unrolling and pipelining allow 
designers to tune the area and performance to meet the design specification.

FIR Filters
The finite impulse response (FIR) filter is encountered in a wide range of applications in both 
communications and video. The theory behind filter design is beyond the scope of this chapter. 
The intent here is to introduce some common filter structures and concepts, and how to best 
implement them in C++.

A FIR filter can be expressed as a difference equation:

y[n] = h0x[n] + h1x[n-1] + ... + hNx[n-N]

where:

• x[n] is the input signal

• y[n] is the output signal

• hi are the filter coefficients

Another way to look at this is that the output y[n] is a weighted sum of the current and previous 
values of x[n]. This is often expressed as:

y n[ ] hkx n k–[ ]
k 0=

N

∑=
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The equation above is usually represented in block diagram form, shown below in Figure 10-1 
where “i” in this example equals three, meaning that four filter taps are required. The delay 
elements are realized as a shift register in hardware, and the coefficient multiplies and 
summation are usually explorable via HLS design constraints.

Figure 10-1. Block Diagram of FIR Filter with i==3

Register Based Filters
Filters that have their delay elements mapped to registers are easy to express in C++. These type 
of filters have a memory architecture that is highly explorable via loop unrolling and pipelining.

External Coefficients
Example 10-1 shows the C++ implementation for Figure 10-1, where the filter coefficients are 
read from the top-level design interface.

Example 10-1. FIR Filter with External Coefficients

Design constraints:
All IO mapped to wire interfaces with enable
All internal arrays mapped to registers

1 #include “fir_filter.h”
2 #include “shift_class.h”
3 void fir_filter (ac_fixed<8,1> *x, 
4                  ac_fixed<8,1> h[4], 
5                  ac_fixed<19,4> *y){
6   static shift_class<ac_fixed<8,1>,4> regs;
7   ac_fixed<19,4> temp = 0;
8   regs << *x;
9   MAC:for (int i = 0; i<4; i++) {

10     temp += h[i]*regs[i];
11   }
12   *y = temp;
13 }
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Main loop pipelined with II=1
Shift register loops fully unrolled
MAC loop left rolled

The details of Example 10-1 are:

• Line 2 - the shift register class covered in “Class Based Shift Register” on page 119 is 
included and used to implement the FIR tap delays.

• Lines 3 through 5 define the input data and coefficients and filter output. Fixed point 
data types are used for this design.

• Line 6 creates a static instance of the shift register class which is then used as the tap 
shift register. This is declared static so the tap data persists between function calls. The 
data type is the same type as the input data.

• Line 8 shifts in new data each time the filter function is called.

• Lines 9 through 11 multiply all taps and coefficients.

The hardware diagram for Example 10-1 is shown below in Figure 10-2. Because the MAC 
loop is left rolled the multiplier and adder can be shared to compute the filter output. Of course 
this also means that the filter throughput equals four in this case since each multiply and 
accumulate takes one clock cycle.

Figure 10-2. FIR Filter with External Coefficients

The MAC loop of Example 10-1 can be partially or fully unrolled to increase performance. 
Figure 10-3 shows Example 10-1 with the loops fully unrolled. It is assumed that the clock is 
slow enough so that the multipliers and adder tree have been scheduled in the same clock cycle. 
HLS automatically inserts additional pipeline registers as needed.
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Figure 10-3. Fully Parallel FIR Filter with External Coefficients

Constant Coefficients
The previous example had external filter coefficients that could be programmed outside of the 
top-level design. In that example each tap/coefficient multiplication required a hardware 
multiplier. This can become very costly in area as the size of the filter taps and bit widths 
increases. In may designs the coefficients do not need to be programmable because they do not 
change. In other words they are constant. When this is the case the coefficients should be 
directly coded into the design as constants. This allows HLS to perform constant propagation 
and optimize the multipliers as constant multipliers. Example 10-2 shows the FIR filter coded 
with constant coefficients. Line 6 defines a constant array which is initialized with the constant 
coefficients.

Example 10-2. FIR Filter with Constant Coefficients
1 #include “fir_filter.h”
2 #include “shift_class.h”
3 void fir_filter (ac_fixed<8,1> *x, 
4                  ac_fixed<19,4> *y){
5   const ac_fixed<8,1> h[4] = {0.30011, 0.90032, 0.90032, 0.30011};
6   static shift_class<ac_fixed<8,1>,4> regs;
7   ac_fixed<19,4> temp = 0;
8   regs << *x;
9  MAC:for (int i = 0; i<4; i++) {

10     temp += h[i]*regs[i];
11   }
12   *y = temp;
13 }
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Loadable Coefficients
There are two ways to implement filters with loadable coefficients. One is to use an interface 
synthesis component that contains both storage and a cpu-like interface for programming the 
coefficients. Another way is to code it directly in the C++ source. This is shown below in 
Example 10-3. Lines 10 through 12 of this example test the interface variable “ld” to see if the 
coefficients should be updated from the top-level interface. The loading of the coefficients 
happens along with the filter computation. Thus the coefficients can be updated and used 
immediately.

Example 10-3. Filter with Loadable Coefficients

Symmetric Coefficients
The previous filter examples for both dynamic and constant coefficients were written with no 
assumptions made about the coefficient properties. In other words the coefficient values could 
be randomly chosen and the filter would still produce a predictable result. In reality filter 
coefficients are often related and their properties can be exploited to give better performance 
and area. Coefficients are often symmetrical around the center tap, or two innermost taps, of the 
filter. This symmetry allows the number of multiplications to be reduced.

Even Symmetric
Consider the example “FIR Filter with External Coefficients” on page 230 where the 
coefficients on the interface are:

ac_fixed<8,1> h[4] = {0.3, 0.9, 0.9, 0.3};

Manually unrolling the MAC loop results in:

1 #include “fir_filter.h”
2 #include “shift_class.h”
3 void fir_filter (ac_fixed<8,1> &x, 
4                  ac_fixed<8,1> h[4], 
5                  ac_fixed<19,4> &y,
6                  bool &ld){
7   static shift_class<ac_fixed<8,1>,4> regs;
8   ac_fixed<19,4> temp = 0;
9   static ac_fixed<8,1> h_int[4];

10   if(ld==true)
11     for(int i=0;i<4;i++)
12       h_int[i] = h[i];
13   regs << x;
14   MAC:for (int i = 0; i<4; i++) {
15     temp += h_int[i]*regs[i];
16   }
17   y = temp;
18 }
19
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temp = h[0]*regs[0] + h[1]*regs[1] + h[2]*regs[2] + h[3]*regs[3];

Or:

temp = 0.3*regs[0] + 0.9*regs[1] + 0.9*regs[2] + 0.3*regs[3];

This can be re-factored to:

temp = 0.3*(regs[0] + regs[3]) + 0.9*(regs[1] + regs[2]);

By pre-adding the tap values together half the number of multipliers can be eliminated. 
Example 10-4 shows Example 10-1 rewritten assuming that the coefficients at the interface are 
symmetrical.

Example 10-4. FIR Filter with Even Symmetry

The details of Example 10-4 are:

• Line 4 - because the coefficients are symmetrical only half the coefficient array is 
needed on the interface.

• Line 9 - the loop only has to run for half the number of iterations as the original loop. 
This is because the indices into the shift register can be generated simultaneously for the 
pre-add. So there is an improvement in throughput and latency even if the loop is left 
rolled.

• Line 10 - the tap registers are symmetrically added together and then multiplied.

Figure 10-4 shows the hardware when the loops are fully unrolled and the main loop is 
pipelined with II=1.

1 #include “fir_filter.h”
2 #include “shift_class.h”
3 void fir_filter (ac_fixed<8,1> *x, 
4                  ac_fixed<8,1> h[2], 
5                  ac_fixed<19,4> *y){
6   static shift_class<ac_fixed<8,1>,4> regs;
7   ac_fixed<19,4> temp = 0;
8   regs << *x;
9   MAC:for (int i=0;i<4/2;i++){

10     temp += h[i]*(regs[i]+regs[4-1-i]);
11   }
12   *y = temp;
13 }
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Figure 10-4. FIR Filter with Even Symmetry

Odd Symmetric
Odd-symmetric filters are coded slightly differently than even symmetric filters. The center tap 
must be handled separately because there is no pre-add. Other than that the approach is the same 
as covered above. For a 5-tap filter assume the following coefficients, which are symmetrical 
about the center coefficient. 

ac_fixed<8,1> h[5] = {0.078, 0.253, 0.335, 0.253, 0.078};

Manually unrolling the MAC loop results in:

temp = h[0]*regs[0]+h[1]*regs[1]+h[2]*regs[2]+h[3]*regs[3]+h[4]*regs[4];

This can be re-factored to:

temp = 0.78*(regs[0] + regs[4])+0.335*regs[2]+0.253*(regs[1] + regs[3]);

Example 10-5 shows an example of a 5-tap FIR filter where the coefficients are symmetric. 
Lines 11 through 14 handle the pre-add of the taps. The center tap is simply passed through, 
which can be seen in the hardware diagram of Figure 10-5. 
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Example 10-5. FIR Filter with Odd Symmetry

Figure 10-5. FIR Filter with Odd Symmetry

Transposed
The previous discussion of FIR filters was based on the direct form FIR, where the tap-values 
are multiplied against the coefficients and accumulated. For the fully parallel implementations 
this results in an adder tree, shown in Figure 10-3. Some of the disadvantages of an adder tree 
are that it can have multi-cycle latency for high clock speeds and large number of taps. It may 
also be more difficult to route due to the large number of interconnects between the adders. An 
alternative implementation is the transposed form of the FIR, which has single cycle latency 
independent of the number of taps. However it is more limited in terms of FMax due to fanout. 
Figure 10-6 presents a DSP block diagram that shows the general structure and data flow of a 
transposed FIR. The figure shows that rather than shifting the input data, the partial products of 
the current input “x” and the coefficients is shifted and accumulated.

1 #include “fir_filter.h”
2 #include “shift_class.h”
3 void fir_filter (ac_fixed<8,1> *x, 
4                  ac_fixed<8,1> h[3], 
5                  ac_fixed<19,4> *y){
6   static shift_class<ac_fixed<8,1>,5> regs;
7   ac_fixed<19,4> temp = 0; 
8   ac_fixed<9,2> sum = 0;
9   regs << *x;

10   MAC:for (int i=0;i<5/2+1;i++){
11     if(i==2)
12       sum = regs[5/2];//middle tap
13     else
14       sum = regs[i]+regs[5-1-i];
15     temp += h[i]*sum;
16   }
17   *y = temp;
18 }
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Figure 10-6. Block Diagram of Transposed FIR

Example 10-6 shows the transposed FIR implementation of a four tap filter.

Example 10-6. Transposed FIR Filter

Design constraints:
All IO mapped to wire interfaces
All internal arrays mapped to registers
Main loop pipelined with II=1
MAC loop fully unrolled

The details of Example 10-6 are:

• Line 5 - the shift register class can’t be used in this design so a static array is declared 
internally. The bit width is set to account for the bit growth due to the multiply and 
accumulation. In general the transposed FIR has larger register area than the direct form 
which only needs to be as wide as the input data.

• Lines 7 through 13 - Starting with the right most register, the partial products are 
computed, accumulated, and then stored.

Figure 10-7 shows the synthesized hardware for Example 10-6. The synthesized hardware 
illustrates both the benefits and drawbacks of the transposed implementation. The benefit is that 
the latency is always equal to one regardless of the clock frequency. Each read of a new input 

1 #include “fir_filter.h”
2 void fir_filter (ac_fixed<8,1> *x, 
3                  ac_fixed<8,1> h[4], 
4                  ac_fixed<19,4> *y){
5   static  ac_fixed<19,4> regs[4];
6   ac_fixed<19,4> temp = 0;
7   MAC:for (int i=3; i>=0; i--) {
8     if(i==0)
9       temp = 0;

10     else
11       temp = regs[i-1];         
12     regs[i] = *x * h[3-i] + temp;
13   }
14   *y = regs[3];
15 }
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“x” produces an output on the next clock edge. However, there is a limit on how fast you can 
clock this implementation because “x” fans out to ever tap.

Figure 10-7. Hardware for Transposed FIR

Systolic
It was shown that the direct form and transposed FIR implementations both have benefits as 
well as limitations. The direct form can run at higher clock frequencies, but at the cost of longer 
latency as well as more complex routing. The transposed always has a latency of one but is 
limited in FMax based on the total number of taps. The third option is to use a systolic array 
implementation, which should have the fastest clock frequency and routing, but longer 
latencies. The systolic architecture is presented here without explanation since this topic is well 
beyond the scope of this book. What is important is to understand the impact of using this 
architecture as well as how to code it in C++. Figure 10-8 shows the hardware diagram of a 
systolic implementation of a four-tap FIR filter. The implementations consists of an array of 
processing elements (PE) that are cascaded. Inspection of the figure shows that the worst-case 
timing path is limited to just the multiply and adder for each PE. However it can also be seen 
that the latency is proportional to the number of taps. 

Figure 10-8. Systolic Architecture

A C++ class based approach can be used to allow efficient implementation of the systolic 
architecture shown in Figure 10-8. Since each PE is identical it would seem that creating a PE 
class and then instantiating it multiple times would be the most efficient solution. Example 10-7 
shows the C++ class that implements one of the PEs shown in Figure 10-8. An important thing 
to point out with this example is that describing behavior at a fairly low level is still possible 
using C++. The number of register stages is explicitly coded into the class. However all this low 
level detail can be abstracted away when the class is used to construct the filter. Thus the low 
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level details are written once to describe the PE, after which they become transparent to the 
design.

Example 10-7. Systolic Processing Element Class

The details of Example 10-7 are:

• Line 1 - the class is templatized for the input, coefficient, and output data types.

• Line 4 through 6 define the member variables that implement the three shift registers in 
the PE of Figure 10-8.

• Lines 9 and 10 - the registered values of x and y are written to the PE output.

• Lines 11 and 12 - the two output registers on “y” are implemented. The PE mult-add 
feeds the first register stage of “y”.

• line 13 - the current value of “x_in” is stored in a register.

Example 10-8 shows how the systolic FIR is implemented using the PE class.

1 template<typename T0, typename T1, typename T2>
2 class pe_class{
3 private:
4   T0 x;
5   T2 y0;
6   T2 y1;
7 public:
8   void exec(T0 &x_in, T1 &h, T2 &y_in,T0 &x_out, T2 &y){
9     y = y1;

10     x_out = x;
11     y1 = y0;
12     y0 = x * h + y_in;
13     x = x_in;
14   }
15 };
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Example 10-8. Systolic FIR implementation

Design constraints:
All IO mapped to wire interfaces
All internal arrays mapped to registers
Main loop pipelined with II=1
CONN loop fully unrolled

The details of Example 10-8 are:

• Line 1 - the PE class from Example 10-7 is included.

• Line 6 - a static four element array of the “pe_class” is defined. The pe_class template 
arguments are set based on the input, coefficient, and output data types. The array is 
defined as static because the internal registers in the PEs must persist between function 
calls to “fir_filter”.

• Lines 7 and 8 define temporary arrays to connect the PEs.

• Lines 11 through 15 - A loop iterates from zero to four (the number of PEs) and connects 
the PEs together. The first iteration “i==0” feeds the top-level input “x” to the first PE 
and sets the “y” input equal to zero for the first PE.

Multi-rate Filtering
Multi-rate filters use different sample rates within a system to achieve more area efficient 
designs. The general principle is to convert a signal to a lower sample rate (down sample or 
down convert), process at the lower rate, and then convert back to the original rate (up sample or 
up convert). Processing the signal at a lower rate means fewer multipliers and adders are 
required to implement the algorithm.

1 #include “pe_class.hpp”
2 #include “fir_filter.h”
3 void fir_filter (ac_fixed<8,1> *x, 
4                  ac_fixed<8,1> h[4], 
5                  ac_fixed<19,4> *y){
6   static pe_class<ac_fixed<8,1>,ac_fixed<8,1>,ac_fixed<19,4> > pe[4];
7   ac_fixed<8,1> x_int[4];
8   ac_fixed<19,4> y_int[4];
9   ac_fixed<19,4> tmp = 0;

10   
11  CONN:for(int i=0;i<4;i++)
12     if(i==0)
13       pe[0].exec(*x, h[i],tmp,x_int[i],y_int[i]);
14     else
15       pe[i].exec(x_int[i-1], h[i],y_int[i-1],x_int[i],y_int[i]);   
16   *y = y_int[3];
17 }
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Decimation
Decimation, or down sampling, is used to lower the sample rate of a signal. This is done by 
periodically discarding enough samples to match the desired rate reduction. A reduction by M 
means keeping every Mth sample and throwing away the rest. However simply throwing the 
data away is not usually possible due to frequency aliasing. As the sample rate is reduced the 
replicated frequency spectra of the sampled signal comes together and overlaps at some point, 
making the signal unusable. To keep this from happening the signal must be lowpass filtered to 
prevent aliasing. By combining the lowpass FIR filter with the discarding of samples, the FIR 
can be made to operate at the lower data rate, reducing area. 

There are two approaches towards designing a decimator in C++. One is to use algorithmic code 
along with loop pipelining to get the desired down sampled rate, the other is to manually code 
resource sharing into the C++ based on the down sampled data rate.

Algorithmic Decimation
The key to designing an efficient decimation filter when coding more abstractly is to make sure 
that you pipeline the design at the down sampled rate while reading the data at the original rate. 
This allows scheduling to share operations across multiple clock cycles, minimizing the area. 
Examples 10-9 shows a templatized implementation of a decimation filter. Readers should be 
familiar with templatization at this point, which allow construction of highly reusable designs. 
The decimation FIR covered here is used in later sections as well.

Example 10-9. Templatized Decimation FIR

The details of Example 10-9 are:

1 #include <ac_fixed.h>
2 #include <ac_channel.h>
3 #include “shift_class.h”
4 template<int W0, int W1, int N>
5 struct _WN{
6   enum { val = W0 + W1 + ac::log2_ceil<N>::val };
7 };
8 template<int ID, 
9  int W0, int I0, 

10  int W1, int I1,
11  int N, int RATE>
12 void dec(ac_channel<ac_fixed<W0,I0> > &x, 
13  ac_fixed<W1,I1> h[N], 
14  ac_channel<ac_fixed<_WN<W0,W1,N>::val,_WN<I0,I1,N>::val> > &y){
15   static shift_class<ac_fixed<W0,I0>,N> regs;
16   ac_fixed<_WN<W0,W1,N>::val,_WN<I0,I1,N>::val> acc = 0;
17   ac_fixed<W0,I0> x_int;
18   READ:for(int i=0;i<RATE;i++)
19     x_int = x.read();
20     regs << x_int;
21   MAC:for (int i = 0; i<N; i++) {
22     acc += h[i]*regs[i];
23   }
24   y.write(acc);

}
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• Lines 4 through 7- a helper struct is created to calculate the number of integer and 
fractional bits for the output and internal accumulator data types. The assumption is that 
the required number of bits equals the sum of the input bits plus the log2 bit growth 
based on the number of taps N.

• Lines 8 through 11 - the function template parameters allow specification of the input 
data and coefficient fixed points widths and signedness, the number of taps N, and the 
decimation rate RATE. The ID parameter is needed for creating multiple unique 
instances of the function.

• Lines 14 and 16 - the helper struct _WN is used to calculate the required number bits for 
the output and internal accumulator. 

• Lines 18 and 19 - the input data should be read in the beginning of the function call. It is 
read RATE times where RATE is the decimation rate. The READ loop should be fully 
unrolled. If the top-level design is pipelined with II=RATE, the RATE reads of the input 
are spread out during scheduling allowing resources to be shared.

• Line 24 - the write of the output happens every RATE clock cycles if the design is 
pipelined with II=RATE.

Example 10-10 shows the templatized decimation filter function instantiated in a top-level 
design. The template parameters are set to eight bit data and coefficients and four filter taps. The 
decimation rate is set equal to two.

Example 10-10. Using the Templatized Decimation Filter

Design constraints:
All IO mapped to wire enable interfaces
IO input rate=1 sample/clock
All arrays mapped to registers
Main loop pipelined with II=2
All loops fully unrolled

Figure 10-9 shows the approximate schedule for Example 10-10 and the constraints listed 
above. The schedule shows that the multiplications of the four filter taps can be distributed over 
the schedule based on the II, requiring only two multipliers in this case. For this design example 
the II was set equal to two because the filter decimates by two and the input data rate equals one. 
In general the II should be set equal to the output data rate which can be calculated as:

Output Rate = Input Rate * Decimation Rate

1 #include <ac_channel.h>
2 #include “shift_class.h”
3 #include “fir_filter.h”
4 #include “decimate.hpp”
5 void fir_filter(ac_channel<ac_fixed<8,1> > &x, 
6                 ac_fixed<8,1> h[4], 
7                 ac_channel<ac_fixed<18,4> > &y){
8   dec<0,8,1,8,1,4,2>(x,h,y);
9 }
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Figure 10-9. Schedule of Decimation by Two

Note
Reading multiple inputs and pipelining at the output rate is only intended for single block 
decimation. If the design contains multiple decimation filters within the same block of 
hierarchy a different approach is needed, and is covered in the upcoming sections.

Manual Decimation
The previous example showed how pipelining can be used to synthesize a decimator from a 
straightforward FIR description. HLS automatically is able to share resources when pipelining 
with II greater than one. It is also possible to directly code resource sharing into a decimating 
filter. While it requires more effort, it may have some benefits in terms of smaller area when 
designing multi-stage decimation with a single block. However, unlike the high-level example 
which requires almost no understanding about the mechanics of decimation, the low-level 
implementation requires that we understand how data is processed. The key is to understand 
how data moves through the tap shift register, and when output data is produced by the filter. 
This is best understood by looking at the pure algorithmic implementation, shown in 
Example 10-11. This example would have to be pipelined at the input rate since only one value 
is read per function call. The output is written conditionally every other call. This may be an 
inefficient implementation since the full MAC computation is required when “cnt” equals one, 
and it is pipelined at the input rate. When “cnt” equals zero the data is just shifted.
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Example 10-11. Pure Algorithmic Decimation

Figure 10-10 shows the contents of the tap shift register for two calls to the function in 
Example 10-11. Decimating by M creates M phases, where the output is discarded every M-1 
phases, and one phase where the output is computed and written out. Since the discard phase 
only shifts data it would seem like a good idea to distribute the computation across all phases, 
reducing the total number of required multipliers and adders. This is what scheduling can do 
automatically when pipelining with II greater than one.

Figure 10-10. Understanding Decimation

The filter computation of y[n] in Phase 1 is:

Phase1: y[5] = h[0]*regs[0] + h[1]*regs[1] + h[2]*regs[2] + h[3]*regs[3]

1 #include <ac_channel.h>
2 #include “shift_class.h”
3 void dec2(ac_channel<ac_fixed<8,1> > &x, 
4                 ac_fixed<8,1> h[4], 
5                 ac_channel<ac_fixed<19,4> > &y){
6   static shift_class<ac_fixed<8,1>,4> regs;
7   ac_fixed<19,8> temp = 0;
8   static ac_int<1,0> cnt;
9   

10   regs << x.read();
11   MAC:for (int i = 0; i<4; i++) {
12     temp += h[i]*regs[i];
13   }
14   if(cnt==1)//Phase 1
15     y.write(temp);
16   cnt++;
17 }
18
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This can be rewritten to compute the multiply and accumulate of the last two taps in Phase 0. 
The tap data is read from the tap shift register accounting for the difference in position between 
the phases.

Phase 0: temp = h[2]*regs[1] + h[3]*regs[2]

Thus: 

Phase1: y[5] = h[0]*regs[0] + h[1]*regs[1] + temp

Example 10-12 shows a four-tap decimation filter that manually codes sharing across clock 
cycles. The input data rate for this example is assumed to be one sample per clock. Unlike 
Example 10-9, this example is pipelined with II=1 and conditionally writes the output based on 
an internal count. The sharing is coded into the design by manually computing part of the filter 
during each phase.

Example 10-12. Manual Decimation by Two, Input Rate = 1 samp/clock

Design constraints:
All IO mapped to wire enable interfaces
All arrays mapped to registers
Main loop pipelined with II=input rate
MAC loop fully unrolled

The details of Example 10-12 are:

• Line 11 - the input data is read once per function call and the design is pipelined with 
II=input rate which means the synthesized hardware matches the upstream data rate.

• Lines 12 through 14 - since this filter decimates by two the computation of all four taps 
can be divided into two parts. A one bit counter “cnt” is used to offset the indices into 

1 #include <ac_channel.h>
2 #include “shift_class.h”
3 #include “fir_filter.h”
4 void dec_i1(ac_channel<ac_fixed<8,1> > &x, 
5                  ac_fixed<8,1> h[4], 
6                  ac_channel<ac_fixed<19,4> > &y){
7   static shift_class<ac_fixed<8,1>,4> regs;
8   static ac_fixed<19,8> acc;
9   static ac_int<1,false> cnt;

10
11   regs << x.read();
12   MAC0:for (int i = 0; i<2; i++) {
13     acc += h[i+((1-cnt)<<1)]*regs[i+1-cnt];
14   }
15   if(cnt==1){
16     y.write(acc);
17     acc = 0;
18   }
19   cnt++;
20 }
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the tap shift registers and coefficient array. The static variable “temp” accumulates the 
result calculated in each phase.

• Lines 15 through 17 - the output is conditionally written, in other words samples are 
discarded, based on the decimation rate. Once the output is written the accumulator is 
cleared and the process starts over.

Example 10-12 showed how to explicitly share resources based on the input and output rate. 
This decimate by two design is hard coded for an input rate of 1 sample/clock or II=1. If the 
input rate is not 1 sample/clock, but the design must still be pipelined with II=1, then the design 
must be further refined to explicitly share resources based on the ratio of input to output rate. 
The reasons for coding in this fashion become obvious when performing multi-stage decimation 
within a single block design. Example 10-13 shows a manual approach to a four tap decimation 
filter class that decimates by two, but has an input rate of two. This class is reused when talking 
about multi-stage decimation in a later section.

Example 10-13. Decimation Class for Decimate by 2, Input Rate = 2

The details of Example 10-13 are:

3 #include <ac_fixed.h>
4 #include “shift_class.h”
5 template<int W0, int I0, int W1, int I1>
6 class dec2_i2{
7 private:
8   shift_class<ac_fixed<W0,I0>,4> regs;
9   ac_fixed<W0+W1,I0+I1+2> acc;

10   ac_int<2,false> cnt;
11   bool vld;
12   bool go;
13 public:
14   dec2_i2():vld(false), acc(0), go(false), cnt(0){}
15   bool exec(ac_fixed<W0,I0> &x,
16             ac_fixed<W1,I1> h[4], 
17             ac_fixed<W0+W1+2,I0+I1+2> &y,
18             bool &vld_in,
19             bool &vld_out){
20     vld = false;
21     if(vld_in)
22       go = true;
23     if(go){
24       if(!(cnt&1))//read with rate 2
25         regs << x;   
26       acc += h[cnt + 2 - (cnt[1]<<2)]*regs[cnt+(1>>cnt[1])-cnt[1]];
27       if(cnt==3){//write with rate 4
28         y = acc;
29         acc = 0;
30         vld = true;
31       }
32       cnt++;
33       vld_out = vld;
34     }
35   }
36 };
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• Line 5 - the class is templatized to allow the integer and fractional bit widths of the input 
data and coefficients to be specified. The class adds the appropriate bits to account for 
internal bit growth.

• Line 10 - the “cnt” data member keeps track of which filter phase is being computed. 
Since the input rate equals two and the decimation rate equal two, four phases are 
required.

• Lines 15 through 19 - the “exec” function is the class member function that performs the 
filtering. The interface variables are defined in terms of the class template parameters, 
and the full precision is maintained at the output. The “vld_in” and “vld_out” variables 
are used to synchronize the flow of data into and out of the filter.

• Lines 21 through 23 - The filter is implemented such that it does nothing until the first 
valid data is detected. Once this happens the “go” bit is set true and the filter runs 
forever.

• Lines 24 and 25 - the input data is read every other call to the function, or when “cnt” 
equals zero or two.

• Line 26 - four phases means that only one multiplier is required to implement the four 
tap filter. The “cnt” variable is used to compute the index into the tap shift register and 
coefficients similar to what was shown in Figure 10-10 on page 244.

• Lines 27 through 31 - every fourth call to the function “cnt==3” the output is written and 
the “vld_out” flag is set equal to true.

Interpolation
Interpolation, or up sampling, is used to increase the sample rate of a signal. This is 
accomplished by inserting one or more zeros between each sample. Up sampling by a factor of 
L means inserting L-1 zeros between each sample. Similar to the decimation filter, interpolation 
filters have the potential of distortion due to replication of the original frequency spectrum into 
frequencies in the interpolated spectrum. To prevent this the original signal must be low pass 
filtered. The low pass filtering can be performed at the input rate, reducing computational 
overhead. 

Algorithmic Interpolation
The construction of a templatized interpolation filter is very similar to the decimation filter, 
shown below in Example 10-14.
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Example 10-14. Interpolation Filter

The details of Example 10-14 are:

• Lines 3 through 15 are identical to the description of Example 10-9 on page 241.

• Line 17 - the WRITE loop controls the interpolation rate, and iterates RATE times. Each 
iteration of this loop produces a new output. This loop should be completely unrolled.

• Lines 18 though 21 - each call to the interpolate function only reads one input, which 
happens in the WRITE loop when i==0. This input is shifted into the tap shift register. 
All other iterations of the write loop shift zeros into the tap shift register.

• Lines 22through 24 - The MAC loop is completely unrolled and pipelining II is set to 
match the input rate, allowing scheduling to share resources. This is very similar to the 
approach that was taken with decimation except that decimation pipelined based on the 
output rate. Constant propagation occurs on the zeros in the tap shift register because 
both the WRITE and MAC loops are unrolled. This minimizes the required number of 
multipliers.

• Line 25 - an output is produced for each iteration of the WRITE loop. A total of RATE 
outputs are produced for each function call.

1 #include <ac_channel.h>
2 #include “shift_class.h”
3 template<int W0, int W1, int N>
4 struct _WN{
5   enum { val = W0 + W1 + ac::log2_ceil<N>::val };
6 };
7 template<int ID, 
8  int W0, int I0, 
9  int W1, int I1,

10  int N, int RATE>
11 void inter(ac_channel<ac_fixed<W0,I0> > &x, 
12    ac_fixed<W1,I1> h[N], 
13    ac_channel<ac_fixed<_WN<W0,W1,N>::val,_WN<I0,I1,N>::val> > &y){
14   static shift_class<ac_fixed<W0,I0>,N> regs;
15   ac_fixed<_WN<W0,W1,N>::val,_WN<I0,I1,N>::val> acc = 0;
16
17   WRITE:for(int i=0;i<RATE;i++){
18     if(i==0)
19       regs << x.read();
20     else
21       regs << 0;
22   MAC:for (int j = 0; j<N; j++) {
23       acc += h[j]*regs[j];
24     }
25     y.write(acc);
26     acc = 0;
27   }
28 }
29
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Example 10-15 shows the templatized interpolation filter function instantiated in a top-level 
design. The template parameters are set to eight bit data and coefficients and four filter taps. The 
interpolation rate is set equal to two.

Example 10-15. Using the Templatized interpolation Filter

Design constraints:
All IO mapped to wire enable interfaces
All arrays mapped to registers
Main loop pipelined with II=input rate, input rate = 2
All loops fully unrolled

Figure 10-11 shows the approximate schedule for Example 10-15. Pipelining at the input rate, 
II=2, allows resources to be shared during scheduling. In addition to that unrolling both the 
WRITE loop and the MAC loop allows half the number of multipliers to be optimized away 
since they are multiplying by zero. 

Figure 10-11. Schedule of Interpolation by Two

Manual Interpolation
In the same fashion as decimation, interpolation filters can also be written using a more manual 
approach. This approach also requires analyzing the data movement through the tap shift 
register to manually code sharing for the most area efficient implementation. Figure 10-12 
shows the data movement through the tap shift register for interpolation by two. The main point 

1 #include “shift_class.h”
2 #include “fir_filter.h”
3 #include “interpolate.hpp”
4 void fir_filter(ac_channel<ac_fixed<8,1> > &x, 
5                 ac_fixed<8,1> h[4], 
6                 ac_channel<ac_fixed<18,4> > &y){
7
8   inter<0,8,1,8,1,4,2>(x,h,y);
9 }
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illustrated by this figure is that half the tap values are zero for an interpolate by two filter. Each 
filter phase can take advantage of this when computing its output.

Figure 10-12. Manual Interpolation

Writing output the filter equations for Figure 10-12 results in:

Phase 0:

y[2] = h[0]*x[1] + h[1]*0 + h[2]*x[0] + h[3]*0 = h[0]*x[1] + h[2]*x[0]

Phase 1:

y[3] = h[0]*0 + h[1]*x[1] + h[2]*0 + h[3]*x[0] = h[1]*x[1] + h[3]*x[0]

In other words each filter phase only needs two multipliers to compute the output. In general the 
total number of multipliers is proportional to TAPS/L, where TAPS is the number of filter taps 
and L is the interpolation factor. Example 10-16 shows the C++ implementation of an 
interpolate by two filter using manual coding methods. Although this is written at a much lower 
level than the previous version it has the advantage of explicitly coding sharing which may 
provided slightly better area.
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Example 10-16. Manual Interpolation

Design constraints:
All IO mapped to wire enable interfaces
All arrays mapped to registers
Main loop pipelined with II=input rate
MAC loop fully unrolled

The details for Example 10-16 are:

• Line 10 defines a 1-bit counter that is used to control which filter phase is active.

• Lines 11 through 14 - read and shift input data on the first phase and insert and shift 
zeros on all other phases.

• Lines 15 through 17 - only compute non-zero taps for each phase. The phase count “cnt” 
is used to compute the offset into the tap shift register.

• Line 18 - each call to the filter produces an interpolated output.

• Line 20 - each call to the filter advances the phase count.

Multi-stage Decimation
The previous section showed several approaches towards performing decimation in a single 
function/block. However it is usually the case that several decimation filters are cascaded 
together to achieve higher decimation rates. One of the challenges of doing this is coding in 
such a way as to maximize the amount of sharing that can happen. If a decimation filter has an 
input rate of one sample/clock its resources cannot be shared with other filters because a filter 
phase is computed every input clock. However when the input rate is greater than one, resources 
can often be shared. The slower the input rate and the higher the total decimation rate directly 

1 #include <ac_channel.h>
2 #include “shift_class.h”
3 #include “fir_filter.h”
4 #include “shift_class.h”
5 void fir_filter (ac_channel<ac_fixed<8,1> > &x, 
6                  ac_fixed<8,1> h[4], 
7                  ac_channel<ac_fixed<19,4> > &y){
8   static shift_class<ac_fixed<8,1>,4> regs;
9   static ac_fixed<19,8> temp;

10   static ac_int<1,false> cnt;
11   if(cnt==0)
12     regs << x.read();
13   else
14     regs << 0;
15   MAC0:for (int i = 0; i<2; i++) {
16     temp += h[i*2+cnt]*regs[i*2+cnt];
17   }
18   y.write(temp);
19   temp = 0;
20   cnt++;
21 }
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influences how much resources can be shared. The actual amount of sharing depends on the 
coding style used to implement the cascaded decimation filters. 

Multi-block
If sharing of resources between cascaded decimation filters is not needed, the simplest 
implementation is to use explicit hierarchy for each filter. The filter implementation can then be 
more algorithmic, like what was shown in Example 10-9 on page 241. Consider the following 
two stage decimation example, where each stage decimates by two. The top-level input rate is 
one sample per clock. This example uses the algorithmic decimate by two example that was 
covered in Example 10-9.

Example 10-17. Multi-Block, Multi-stage Decimation

Design constraints:
All IO mapped to wire enable interfaces
All arrays mapped to registers
Both instances of “dec”, BLOCK0 and BLOCK1, mapped to hierarchy
All loops fully unrolled
Block0 pipelined with II=2
BLOCK1 pipelined with II=4

In Example 10-17 BLOCK0 is pipelined with the output rate, or II=2. This is because the input 
to BLOCK0 comes every clock, and the output every other clock. This requires two multipliers 
to implement the BLOCK0 filter, similar to what was shown in Figure 10-9 on page 243. 
However, BLOCK1 now has an input rate of every other clock. Since it also decimates by two, 
the output rate equals four. This is why BLOCK1 is pipelined with II=4, which in turn means 
that only one multiplier is required since there are four clock cycles between each output. 
Lastly, line 8 of Example 10-17 checks the number of elements in the channel FIFO and only 
calls the BLOCK1 function when there are two elements in the FIFO. This is done for C++ 
simulation purposes only to prevent assertions caused by reading an empty channel. The 
hardware is synthesized with a handshake that causes BLOCK1 to stall until data is ready to be 
read. The use of “available” is required in this example since we want BLOCK1 to begin 
running as soon as data is available. The “size” method would not work in this case since 
BLOCK1 would have to wait until there were two elements in the channel FIFO, causing the 
design to stutter.

1 #include “decimate.hpp”
2 void dec2_2stage(ac_channel<ac_fixed<8,1> >  &x, 
3                  ac_fixed<8,1> h[4], 
4                  ac_channel<ac_fixed<28,7> > &y){
5   static ac_channel<ac_fixed<18,4> > y_int;
6
7   BLOCK0:dec<0,8,1,8,1,4,2>(x,h,y_int);
8   if(y_int.available(2))
9     BLOCK1:dec<1,18,4,8,1,4,2>(y_int,h,y);

10 }
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Note
The use of the ac_channel available member function is to prevent assertions in the C++ 
simulation. It is synthesized as a handshake in hardware so care must be taken when 
using available to prevent deadlock.

Note
Reducing the input rate of a block of hierarchy allows pipelining with an II greater than 
one, allowing resources to be shared.

Single-block
Combining multiple decimation filters within a single block can increase resource sharing by 
taking advantage of the decreasing rate of computation for each stage. However, the amount of 
resource sharing is related to both the overall decimation rate and the style in which the cascade 
of filters is described. 

The most straightforward approach is to use an algorithmic coding style, along with manually 
generating a rate count in order to make the execution of the different filters mutually exclusive. 
Mutual exclusivity allows the resources of the filters to be shared. If the first filter stage runs 
with an input rate of one sample/clock it is not shared, and can be excluded from the following 
examples. Because of this, these examples assume that the input rate into the block is one 
sample every four clocks so that the concept of coding for sharing can be better illustrated. 
Example 10-18 shows a templatized decimate by two function that is used to build a multi-stage 
decimator. This decimator design was covered previously in Example 10-11 on page 244.

Example 10-18. Templatized Decimate by Two

Example 10-19 shows a two-stage, single block, decimator design. Each stage decimates by 
two. The input data rate is assumed to be one input every four clock cycles.

1 #include <ac_channel.h>
2 #include <ac_fixed.h>
3 #include “shift_class.h”
4 template<int ID, int W0, int I0, int W1, int I1>
5 void dec2(ac_fixed<W0,I0> &x,
6           ac_fixed<W1,I1> h[4], 
7           ac_fixed<W0+W1+2,I0+I1+2> &y){
8   static  shift_class<ac_fixed<W0,I0>,4> regs;
9   ac_fixed<W0+W1,I0+I1+2> acc = 0;

10   static ac_int<1,0> cnt;
11   regs << x;
12  MAC:for (int i = 3; i>=0; i--) {
13     acc += h[i]*regs[i];
14   }
15   if(cnt==1)//Phase 1
16     y = acc;
17   cnt++;
18 }
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Example 10-19. Single-Block High-Level Decimation

Design constraints:
All IO mapped to wire enable interfaces
All arrays mapped to registers
All loops fully unrolled
Top-level design pipelined with II=2

The details of example 10-19 are:

• Line 5 defines the intermediate variables used to connect the two decimation stages 
together. It is declared static because the top-level function be exited after it is written 
and before it is read. Making it static allows the data to persist between function calls.

• Line 6 defines a static internal counter that controls when each of the decimation stages 
executes.

• Lines 7 through 13 - to simplify the inlining of the decimation functions, the control is 
pre-calculated outside of the switch statement that selects which decimator is active. The 
first decimation stage is run for even values of “cnt” and the second stage runs when 
“cnt==3”. Coding the control this way in general gives better area. Alternatively, “cnt” 
could be used directly as the “switch” selection, which would mean explicitly writing all 
of the switch cases. If this is done the decimation functions should be made into 
components to allow course grain sharing.

• Line 14 - the switch statement case is selected based on the “sel” variable which is 
calculated based on the value of “cnt”.

1 #include “dec2_alg.h”
2 void dec2_2stage(ac_fixed<8,1>   &x, 
3                  ac_fixed<8,1> h[4], 
4                  ac_fixed<28,7>  &y){
5   static  ac_fixed<18,4>  y0_int=0;
6   static ac_int<2,false> cnt;
7   ac_int<2,false> sel;
8   if(!cnt[0])//sel for cnt==0 and cnt==2
9     sel = 0;

10   else if(cnt==3)
11     sel = 1;
12   else 
13     sel = 2;  
14   switch(sel){
15   case 0:
16     dec2<0>(x,h,y0_int);//read x every 4 clocks with II=2
17     break;
18   case 1:
19     dec2<1>(y0_int,h,y);
20     break;
21   default:
22     break;         
23   }
24   cnt++;
25 }
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• Lines 15 through 17 - the input “x” is read for “cnt==0” and “cnt==2”. Since the design 
is pipelined with II=2 this is equal to reading every four clock cycles. The first 
decimation filter runs at this rate. Since it decimates by two, it produces an output every 
8 clock cycles.

• Lines 18 through 20 - The second decimation stage runs every time “cnt” reaches three. 
Pipelining with an II=2 gives a rate of every eight clock cycles. Since the function 
decimates by two an output is produced every 16 clock cycles.

Note
Because the filters are in mutually exclusive condition branches their resources can be 
shared.

Note
Pipelining with II>1 allows even more sharing.

Example 10-19 showed that using a course grained count allowed the different decimation 
stages to be shared by putting them in mutually exclusive branches of a condition. This 
approach gives reasonably good sharing without sacrificing high-level coding style. If even 
better area is needed a lower-level approach can be used. By creating a count that explicitly 
counts every decimation phase, we can manually schedule the filters to get the minimum 
number of resources. However to do this the decimators must be coded to match the 
input/output rate. Example 10-19 had and input rate of four and an output rate of 16. 
Example 10-20 shown below implements a four-tap decimate by two filter class that assumes an 
input rate of at least two. E.g. one input every two clock cycles. This class is designed so that it 
reads an input every other time it is called, and produces an output every fourth time it is called. 
It only requires a single multiplier to implement the filter. Flags have been added to the class to 
allow it to be synchronized to the flow of data.
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Example 10-20. Manual Decimation Class

The details of Example 10-20 are:

• Line 5 - the class is templatized to set the integer and fractional bits of the data and 
coefficients.

• Line 9 - the internal accumulator bit width is set based on the data and coefficient bit 
widths plus the bit growth due to a four-tap filter.

• Line 10 - an internal count is used to determine the filter phase.

• Lines 11 and 12 - the “vld” flag indicates when data is available at the filter output. The 
“go” flag controls when the filter can begin executing.

• Lines 15 through 19 - the filter class “exec” method is called to run the filter. The 
“valid_in” and “valid_out” flags allow multiple instances of the filters to be connected 
and synchronized.

1 #ifndef _DEC2_H
2 #define _DEC2_H
3 #include <ac_fixed.h>
4 #include “shift_class.h”
5 template<int W0, int I0, int W1, int I1>
6 class dec2_i2{
7 private:
8   shift_class<ac_fixed<W0,I0>,4> regs;
9   ac_fixed<W0+W1,I0+I1+2> acc;

10   ac_int<2,false> cnt;
11   bool vld;
12   bool go;
13 public:
14   dec2_i2():vld(false), acc(0), go(false), cnt(0){}
15   bool exec(ac_fixed<W0,I0> &x,
16             ac_fixed<W1,I1> h[4], 
17             ac_fixed<W0+W1+2,I0+I1+2> &y,
18             bool &vld_in,
19             bool &vld_out){
20     vld = false;
21     if(vld_in)
22       go = true;
23     if(go){
24       if(!(cnt&1))//read with rate 2
25         regs << x;   
26       acc += h[cnt + 2 - (cnt[1]<<2)]*regs[cnt+(1>>cnt[1])-cnt[1]];
27       if(cnt==3){//write with rate 4
28         y = acc;
29         acc = 0;
30         vld = true;
31       }
32       cnt++;
33       vld_out = vld;
34     }
35   }
36 };
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• Lines 21 through 23 - once the first valid data is detected always run the filter every time 
“exec” is called.

• Lines 24 and 25 - read the filter input for even values of “cnt”.

• Line 26 - compute one tap times coefficient each time “exec” is called. “cnt”, which 
determines the filter phase, is sued to select the coefficient and tap based on 
Figure 10-10 on page 244.

• Lines 27 through 31 - the output is written every fourth call to the function. The “vld” 
flag is set to indicate valid data available.

Using the manual approach, “cnt” is used to count all of the phases, 16 in this example, of the 
design while pipelining with II=1. The calls to decimation filters can then be controlled by the 
current count value. This manual scheduling of the design can best be understood by looking at 
it in a tabular view. 

Manual Scheduling of Two Stage Decimator

Table 10-1. The output rate of the design is every 16 clock cycles, so there are 
16 clock phases to this design. This allows the first decimator to be called 

every other clock, and the second decimator to be called every fourth clock. 
Every fourth call to the decimators in this example produces an output. Table  

cnt
read 
input filter1 call filter1 write output filter2 call filter2 write ouput

0000 x x
0001
0010 x
0011 x x
0100 x x
0101
0110 x x
0111 x
1000 x x
1001
1010 x
1011 x
1100 x x
1101
1110 x x
1111 x
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shows that by using the phase count, the decimators can be forced to run in 
different clock cycles, allowing their resources to be explicitly shared.

Example 10-21 uses the decimation class and implements the schedule shown in Table .

Example 10-21. Low-level Multi-stage Decimation

Design constraints:
All IO mapped to wire enable interfaces
All arrays mapped to registers
All loops fully unrolled
Top-level design pipelined with II=1

The details of Example 10-21 are:

• Line 9 - a four bit counter is used to count all sixteen phases.

1 #include <ac_Channel.h>
2 #include “dec2_i2.hpp”
3 void dec2_2stage(ac_channel<ac_fixed<8,1> >  &x, 
4                  ac_fixed<8,1> h[4], 
5                  ac_channel<ac_fixed<28,7> > &y){
6   static  ac_fixed<18,4>  y0_int;
7   ac_fixed<28,7> y1_int;
8   ac_fixed<8,1>  x_int;
9   static ac_int<4,false> phase_cnt;

10   static ac_int<2,0> sel_phase;
11   static dec2_i2<8,1,8,1> f0;
12   static dec2_i2<18,4,8,1> f1;
13   static bool f0_vld_in, f0_vld_out, f1_vld_out;
14  
15   if(!phase_cnt[0])//if even counts
16     sel_phase = 0;
17   else if(phase_cnt.slc<2>(0)==3)//if every 4th odd count
18     sel_phase = 1;
19   else
20     sel_phase = 3;//do nothing
21   if(phase_cnt.slc<2>(0)==0){//read a rate of 4
22     x_int = x.read();
23     f0_vld_in = true;
24   }else
25     f0_vld_in = false;
26   switch(sel_phase){
27   case 0:
28     f0.exec(x_int,h,y0_int,f0_vld_in,f0_vld_out);
29     break;
30   case 1:
31     f1.exec(y0_int,h,y1_int,f0_vld_out, f1_vld_out);
32     if(f1_vld_out)
33       y.write(y1_int);
34     break;
35   default:
36     break;
37   }
38    phase_cnt++;
39 }
40



Digital Filters

 259

• Lines 11 and 12 - two static instances of the decimation filter class from Example 10-20 
are used.

• Lines 15 through 20 - the phase selection control for the design is computed here instead 
of passing “phase_cnt” directly to the switch statement. This reduces the number of 
cases for the switch statement, and should give better area in general. 

• Lines 21 through 25 - the input must be read every fourth call to the top level function. 
The lower two bits of “phase_cnt” are masked to see if the input should be read. When 
the input is read the “vld_in” flag that connects to the first decimator is set equal to true, 
synchronizing the flow of data.

• Lines 26 through 37 - the two decimation filters are called based on “sel_phase” which 
is set based on “phase_cnt” and Table . The final output is only written when the 
“vld_out” flag is set by “f1”.
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Chapter 11
FFT Transform

Introduction
The Fast Fourier Transform (FFT) is one of the best algorithms to illustrate why high-level C++ 
synthesis is simply an evolution in hardware design, still requiring the expertise of an RTL or 
system designer, while facilitating rapid implementation of complex memory architectures and 
control. It is also the perfect example to help understand where many of the common 
misconceptions about HLS come from. 

Because the FFT is a well understood algorithm by both algorithm developers and RTL 
designers, it is more often than not the first design chosen to evaluate when learning HLS. This 
highly ambitious, yet sometimes flawed, approach often consists of taking a purely algorithmic 
description of a floating point FFT and synthesizing it to RTL, with the expectation being an 
optimal hardware implementation. 

Most HLS tools are capable of producing a working design from this pure algorithmic FFT 
description, which is usually either too slow, too big, or both. Because the source language 
description contains no explicit memory architecture, it becomes the job of the HLS tool to 
optimize the design solely based on user-applied constraints such as array to memory mapping, 
memory splitting or interleaving, loop unrolling, and pipelining. The non-linear array index 
access pattern of the pure algorithmic description prevents many of these constraint-based 
optimizations. Furthermore, without the use of bit-accurate data types, the area is undoubtedly 
larger that what one would expect from a hand crafted RTL design. Because this issue is so 
important, it’s worth repeating that the implementation/architectural details required in the 
source language description parallels what RTL designers embed in their designs today. The 
difference is that the abstractness of C++ takes care of the low-level details automatically, 
allowing designers to focus more on the architecture and control. The RTL designer’s expertise 
is an essential ingredient in achieving good quality of results using HLS.

The pure algorithmic description of the FFT, unlike the FIR filter, is not a good algorithm for 
performing architectural exploration. This is primarily due to the non-linear indexing used by 
the algorithm. While in theory it is possible to partially explore a register-based FFT algorithm, 
trading off area versus performance, it usually results in unacceptably large area. Memory-
based algorithms, which cannot be easily explored, suffer from sub-optimal performance 
because of memory access bottle-necks created by non-linear indexing. 

There is no “one size fits all” when it comes to FFTs. The underlying architecture depends on 
many factors from the use of registers v.s. memories to the required throughput and area. It is 
beyond the scope of this chapter to cover all of these implementations. The goal of this chapter 
is to present an efficient memory-based radix-2 in-place FFT that illustrates the types of 
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analysis and C++ code transformations that are required to generate good quality hardware. 
These techniques can be applied to many other types of FFTs. 

Radix-2 FFT
An FFT is an algorithm for computing the discrete Fourier transform (DFT) that is more 
efficient than the straight forward computation of the DFT [1]. The DFT is computed as:

Where . The DFT requires on the order of N2 operations. By recursively 
splitting the FFT computation into odd and even parts the number of operations can be reduced 
to the order of N*LOG2(N). The summation then becomes:

where the first summation is an N/2 point DFT over the even indexed inputs and the second
summation is an N/2 point DFT over the odd indexed inputs. This procedure is applied
recursively and leads to a computation requiring  stages as shown in Figure 11-1. For
example the outputs X(1) and X(5) can be derived as

The above two computations correspond to the computation in the last stage of Figure 11-1 that 
takes input 1 from both the upper (even) and lower (odd) four point outputs of stage 2. The 
complex multiplication by , called twiddle factor, is common for both expressions leaving 
an addition and a subtraction which together are called a radix-2 butterfly [1].
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Figure 11-1. Radix-2 FFT Data Flow Diagram

Floating Point Radix-2 In-place FFT
One of the most commonly used algorithmic implementations of the radix-2 FFT is a floating-
point, in-place implementation. The term “in-place” means that the algorithm uses a single 
array/memory to compute each stage of FFT shown in Figure 11-1. The C++ implementation 
can be expressed very compactly when written using a purely algorithmic style. Example 11-1 
shows a typical floating point implementation. There are a number of coding style problems 
with this implementation that make it unsuitable for synthesis. The details of Example 11-1 are:

1. Lines 5,6, and 8 - the algorithm uses double precision. In other words it has not been 
quantized.

2. Lines 24 and 25 - the cos and sin functions from <math.h> are used to compute the 
twiddles. These are not synthesizable. Additionally it is more likely that a hardware 
implementation uses a lookup table to store the needed twiddle factors.

3. Lines 26 and 27 - the complex multiply of the butterfly uses four multipliers. This is 
inefficient since it can be done using three multipliers.

4. Entire design - the complex arithmetic has been split into real and imaginary parts. This 
leads to more lines of code.
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Example 11-1. Floating-point Radix-2 FFT

Aside from the coding style issues, there is a more fundamental architectural problem with the 
implementation of Example 11-1 when the storage arrays “x_r” and “x_i” are mapped to 
singleport memories. Ideally a radix-2 memory mapped in-place FFT should be able to perform 
one butterfly per clock cycle for optimal throughput. However this is not possible because there 
is a memory address conflict that occurs for butterfly reads and writes [2]. To put it simply each 
butterfly is trying to read/write the singleport memory twice in the same clock cycle (See 
“Memories” on page 104). Using a true dual-port RAM would allow this design to be pipelined 
with II=1, but the area cost would be prohibitive. Figure 11-2 shows the DFG for an 8-point 
radix-2 FFT where the array data “a0, a1, ... a7” are shown for the different butterfly stages. 
Mapping the array to memory results in conflicting addresses for the memory as the butterfly 
attempts to simultaneously read/write the memory. The solution is use two singleport memories 
to implement the FFT. However this requires reordering of the input data as well as 
restructuring the data flow graph so that there is only one read/write to the memories for each 
butterfly computation.

1 #include “fft_float.h”
2 #pragma design top
3 void fft(
4          double x_r[FFT_SIZE],
5          double x_i[FFT_SIZE])
6 {
7   double t_r, t_i,cos_twid,sin_twid;
8   int n1;
9   int idx;

10   int n2 = FFT_SIZE/2;
11
12   n1 = 0;
13   n2 = 1;
14   idx = FFT_SIZE;;
15   for(int i=0;i< FFT_STAGES;i++){
16     n1 = n2;
17     n2 = n2 + n2;
18     idx>>=1;
19     for(int j=0;j< FFT_SIZE/2;j++){
20       int k=j;
21       for(int kk=0;kk<FFT_SIZE/2;kk++){
22         cos_twid = cos(2*pi*j*idx/FFT_SIZE);
23         sin_twid = sin(2*pi*j*idx/FFT_SIZE);
24         t_r = cos_twid * x_r[k+n1] + sin_twid * x_i[k+n1];
25         t_i = cos_twid * x_i[k+n1] - sin_twid * x_r[k+n1];
26         x_r[k+n1] = x_r[k] - t_r;  
27         x_i[k+n1] = x_i[k] - t_i;
28         x_r[k] = x_r[k] + t_r; 
29         x_i[k] = x_i[k] + t_i;
30         k+=n2;
31         if(k>=FFT_SIZE-1) break;
32       }
33       if(j==n1-1) break;
34     }
35   }
36 }
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Figure 11-2. Radix-2 FFT Data Flow Graph

Figure 11-3 shows the radix-2 FFT data flow graph after it has be restructured to avoid any 
address conflicts. The restructuring of the DFG, along with reordering the input data, allows 
two singleport RAMs to be used so that the butterfly can execute every clock cycle. 

Figure 11-3. Re - structured DFG for Radix-2 FFT

The bit-reversed input data in the first butterfly stage is reordered into even and odd halves. By 
mapping the even and odd halves to separate singleport RAMs, the first stage butterflies can run 
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every clock cycle. The address generated to index the Bank0 memory is shifted and masked for 
writes and reads during each stage. If the masked address bit, shown in Figure 11-2, is set equal 
to one, the butterfly write/read data is “swapped”. By the time the last stage is reached the data 
has been written out in the original order.

Example 11-2. Fixed-point Radix-2 FFT
1 #include “fft_fixed.h”
2 void fft(
3          ac_complex<dType > x_l[FFT_SIZE/2], 
4          ac_complex<dType > x_u[FFT_SIZE/2])
5 {
6   ac_complex<dType > x_tmp,data_tmp, data_l, data_u; 
7   ac_complex<mType > t;
8   ac_int<FFT_STAGES+1,false> n1, n2;
9   ac_int<FFT_STAGES+1,false> idx;
10   ac_int<FFT_STAGES,false> addr_mask = 1;
11   ac_int<FFT_STAGES,0> idx_l=0;
12   ac_int<FFT_STAGES-1,0> idx_u = 0;
13   n1 = 0;
14   n2 = 1;
15   idx = FFT_SIZE;
16   for(int i=0;i< FFT_STAGES;i++){//stage
17     idx_l = 0;
18     n1 = n2;
19     n2 = n2 + n2;
20     idx>>=1;
21     for(int j=0;j< FFT_SIZE/2;j++){//segment
22       int k=j;
23       for(int kk=0;kk<FFT_SIZE/2;kk++){//butterfly
24         idx_u = idx_l^(-1<<i);
25         data_l = x_l[idx_l];
26         data_u = x_u[idx_u];
27         swap(addr_mask>>1, idx_l, data_l, data_u);      
28         t = complex_mult(twiddle(j * idx) ,data_u);
29         x_tmp = data_l;
30         data_u = scale(x_tmp - t);
31         data_l = scale(x_tmp + t);
32         swap(addr_mask, idx_l, data_l, data_u);
33         x_u[idx_u] = data_u;
34         x_l[idx_l] = data_l;
35         k+=n2;
36         idx_l += (1<<i);
37         if(idx_l[FFT_STAGES-1]){//if idx overflows, wrap
38           idx_l[FFT_STAGES-1] = 0;
39           idx_l += 1;
40         }
41         if(k>=FFT_SIZE-1) break;
42       }
43       if(j==n1-1) break;
44     }
45     addr_mask <<= 1;
46   }
47 }
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Example 11-2 shows a fixed-point radix-2 FFT that implements the memory architecture 
outlined in Figure 11-3. The details are:

1. Lines 3 and 4 define the two memories required by the architecture. The real and 
imaginary parts are combined using the Algorithmic C complex data type 
“ac_complex”. This type is templatized to allow user specification of the base data type, 
which in this example is type defined as “dType” in a global typedefs header file. Doing 
this allows one to switch between float and fixed point types for debugging. The 
typedefs are shown below in Example 11-3 on page 268.

2. Lines 8 through 12 define a number of index, mask, and counter variables that depend 
on the number of stages of the FFT. The number of FFT stages is determined by taking 
log2 of the FFT size. This is done in a header file (Example 11-4 on page 268), using the 
log2_ceil function supported by the Algorithmic C data types.

3. Lines 18 through 20 are the same as the original floating point FFT. They control the 
segment and butterfly loop iterations as well as the index into the twiddle tables. 

4. Line 24 - the index into the upper, or Bank1, memory is derived from the index into the 
lower memory. It counts in the opposite direction as the lower memory index, and the 
starting position is controlled by the FFT stage of (-1<<i). This expression is derived 
from analyzing the DFG of Figure 11-3.

5. Lines 25 and 26 read a complex value from both the lower and upper memories. This 
data is used for the butterfly computation. Note that these memories are only read once 
per butterfly loop iteration.

6. Line 27 calls the “swap” function (Example 11-5 on page 268) which masks the read 
address for the lower memory. If the masked bit is set the data is swapped as shown in 
Figure 11-3.

7. Line 28 performs the complex multiplication of the complex data against the complex 
twiddle. The twiddles are read from a constant array, Example 11-6 on page 269, and 
the complex multiply is implemented with minimum resources, Example 11-9 on 
page 271.

8. Lines 30 and 31 call the “scale” function, Example 11-10 on page 271, which scales the 
data computed for each butterfly stage by dividing by two. This is done to avoid 
overflow. 

9. Line 32 masks the write address for the lower memory. If the masked bit is set, the lower 
memory and upper memory data is swapped before writing.

10. Lines 33 and 34 write the lower and upper memories. Each memory is only written once 
per butterfly loop iteration.

11. Lines 36 through 40 - the lower memory index is computed based on the current FFT 
stage. The upper bit of the index is checked to detect when the count overflows and the 
count is “wrapped” around to the begging of the memory.
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Example 11-3. FFT Types

Example 11-3 shows how a global typedef file can be used to easily switch between fixed point 
and floating point. This is often useful when debugging a design.

Example 11-4. FFT Constant Header File

Example 11-4 shows how the design can be parametrized based on the size of the FFT. The use 
of the built-in helper function form the Algorithmic C data types allow static computation of the 
log2(FFT_SIZE).

Example 11-5. Data Swapping Based on Address Mask

Example 11-5 simply “and”s the incoming address against the mask and swaps the lower and 
upper data if the masked bit is set.

12 #ifndef __FFT_TYPES__
13 #define __FFT_TYPES__
14 #include <ac_fixed.h>
15 #include <ac_complex.h>
16
17 #define FIXED
18 #ifdef FIXED
19 typedef ac_fixed<14,2> dType;
20 typedef ac_fixed<29,5> mType;
21 typedef ac_fixed<15,2> tType;
22 #else
23 typedef double dType;
24 typedef double bType;
25 typedef double mType;
26 typedef double tType;
27 #endif
28 #endif

1 #ifndef __FFT_CONSTS__
2 #define __FFT_CONSTS__
3 #include <ac_int.h>
4 const int FFT_SIZE = 1024;
5 const int FFT_STAGES = ac::log2_ceil<FFT_SIZE>::val;
6 const int MASK_BITS = FFT_STAGES-1;
7 const double pi = 3.1415;
8 #endif

1 #include “fft_fixed.h”
2 void swap(int addr_mask, int idx_l, ac_complex<dType >  &data_l,
3           ac_complex<dType > &data_u){
4   ac_complex<dType > data_l_tmp;
5   bool swap_d;
6   data_l_tmp = data_l;
7   swap_d = (addr_mask & idx_l);
8   data_l = swap_d ? data_u : data_l;
9   data_u = swap_d ? data_l_tmp : data_u;

10 }
11
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Example 11-6. Computing the Twiddles

Example 11-6 computes the sin and cos, or twiddles, for the FFT. It does this by simply reading 
them from a lookup table, which is implemented as a constant array. Because the quadrants of 
the sin and cos are even and odd symmetrical it is only necessary to store one quarter of the 
waveforms. The table lookup functions are shown below.

Example 11-7. Computing the Sin Twiddles

The details of Example 11-7 are:

1. Lines 3 through 5 show the constant array that stores one quarter, plus one sample,of the 
sin waveform. The lookup table uses the technique covered in “Lookup Tables (LUT)” 
on page 155.

2. Lines 9 through 12 implement the sin form 0 to pi/2.

3. Lines 13 through 16 compute the sine for pi/2 to pi. Note that the index is reversed.

1 #include “fft_fixed.h”
2 ac_complex<tType> twiddle(int n){
3   ac_complex<tType> tmp;
4   
5   tmp.r() = cos_lookup(n);
6   tmp.i() = -sin_lookup(n);
7   return tmp;
8 }

1 #include “fft_fixed.h”
2 tType sin_lookup(int n){
3 tType sin_table[FFT_SIZE/4+1] = {
4   #include “sin_qtable.txt”
5 };
6  tType tmp;
7  int idx;
8  bool sign;
9  if(n<=FFT_SIZE/4){

10    idx = n;
11    sign = 0;
12  }
13  else if( n<FFT_SIZE/2){
14    idx = FFT_SIZE/4-n%(FFT_SIZE/4);
15    sign = 0;
16  }
17  else if(n<3*FFT_SIZE/4){
18    idx =  n%(FFT_SIZE/4);
19    sign = 1;
20  } 
21  else{
22    idx = FFT_SIZE/4-n%(FFT_SIZE/4);
23    sign = 1;
24   } 
25  return sign ? (tType)-sin_table[idx] : (tType)sin_table[idx];
26 }
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4. Lines 17 through 20 compute the sin for pi to 3/2pi. In this case “sign” is set so that the 
sign of the result is made negative.

5. Lines 21 through 24 compute the sin for 3/2pi to 2*pi. The index is reversed and the 
“sign” bit is also set to make the result negative.

6. Line 25 returns either “sin[idx]” or “-sin[idx]” depending on the “sign” bit.

Example 11-8 computes the cos using the same technique as Example 11-7.

Example 11-8. Computing the Cos Twiddles

Example 11-9 implements the complex multiply using a more efficient method that reduces the 
number of multiplications to three[3].

1 #include “fft_fixed.h”
2 tType cos_lookup(int n){
3 tType cos_table[FFT_SIZE/4+1] = {
4   #include “cos_qtable.txt”
5 };
6  tType tmp;
7  int idx;
8  bool sign;
9  if(n<=FFT_SIZE/4){

10    idx = n;
11    sign = 0;
12  }
13  else if(n<FFT_SIZE/2){
14    idx = FFT_SIZE/4-n%(FFT_SIZE/4);
15    sign = 1;
16  }
17  else if(n<3*FFT_SIZE/4){
18    idx =  n%(FFT_SIZE/4);
19    sign = 1;
20  } 
21  else{
22    idx = FFT_SIZE/4-n%(FFT_SIZE/4);
23    sign = 0;
24  }
25  return sign ? (tType)-cos_table[idx] : (tType)cos_table[idx];
26 }
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Example 11-9. Complex Multiply

Example 11-10 implements the scaling function that is used to scale the data from each 
butterfly. This is a very “crude” method for preventing overflow. More advanced methods are 
beyond the scope of this chapter.

Example 11-10. Scaling

Some Final Thoughts
The radix-2 FFT presented in this chapter could be considered a relatively low performance 
design since it is only capable of executing one butterfly per clock cycle. Higher performance 
FFTs require different architectures than what was covered. However the methods used here to 
go from a floating point algorithm to a fixed point implementation are applicable to most 
designs. The important point to take away from this chapter, as well as the book, is to 
understand that a pure algorithmic description is not suitable for creating good quality 
hardware. The architectural and control details must be part of the C++ implementation to 
achieve results that are comparable to hand-coded RTL. This means approaching the design 
creation using many of the same skills that designers use today. No matter what the algorithm, a 
designer using HLS needs to be asking the question “What would the hardware look like if I did 
this by hand”? Understanding the block level structure of what the hardware should look like is 
usually sufficient to know how the C++ should be organized. This means capturing the memory 
architecture in the C++ code. 

1 #include “fft_fixed.h”
2 #pragma map_to_operator
3 ac_complex<mType > complex_mult(ac_complex<tType > twiddle, 

ac_complex<dType > data){
4   tType a,b;
5   dType c,d;
6   mType e;
7   ac_complex<mType > tmp;  
8   a = twiddle.r();
9   b = twiddle.i();

10   c = data.r();
11   d = data.i();
12
13   e = a*(c-d);
14   tmp.r() = d*(a-b) + e;
15   tmp.i() = c*(a+b) - e;
16   return tmp;
17 }

1 #include “fft_fixed.h”
2 ac_complex<dType > scale(ac_complex<mType > data){
3   ac_complex<mType > tmp;
4
5   tmp = data;
6   tmp.r() = tmp.r()>>1;
7   tmp.i() = tmp.i()>>1;
8   return tmp;
9 }
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Remember, High Level Synthesis is only a hardware design methodology. It requires a 
“hardware designer” to realize the productivity gains over RTL design. It isn’t going to turn 
everyone into hardware designers, but it will allow hardware designers to match the ever-
increasing complexity of ASIC design. 
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