
Bounded Model Checking1

ARMIN BIERE

Institute of Computer Systems
ETH Zurich, 8092 Zurich
Switzerland
biere@inf.ethz.ch

ALESSANDRO CIMATTI

Istituto per la Ricerca Scientifica e Technologica (IRST)
via Sommarive 18, 38055 Povo (TN)
Italy
cimatti@irst.itc.it

EDMUND M. CLARKE AND OFER STRICHMAN

Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
USA
{emc,ofers}@cs.cmu.edu

YUNSHAN ZHU

ATG, Synopsys, Inc.
700 East Middlefield Road
Mountain View, CA 94043
USA
yunshan@synopsys.com

1This research was sponsored by the Semiconductor Research Corporation (SRC) under contract no. 99-
TJ-684, the National Science Foundation (NSF) under grant no. CCR-9803774, the Army Research Office
(ARO) under grant DAAD19-01-1-0485, the Office of Naval Research (ONR), and the Naval Research
Laboratory (NRL) under contract no. N00014-01-1-0796. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of SRC, ARO, NSF, ONR, NRL, the U.S. government or any other entity.

ADVANCES IN COMPUTERS, VOL. 58 117 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

118 A. BIERE ET AL.

Abstract
Symbolic model checking with Binary Decision Diagrams (BDDs) has been suc-
cessfully used in the last decade for formally verifying finite state systems such
as sequential circuits and protocols. Since its introduction in the beginning of
the 90’s, it has been integrated in the quality assurance process of several ma-
jor hardware companies. The main bottleneck of this method is that BDDs may
grow exponentially, and hence the amount of available memory restricts the size
of circuits that can be verified efficiently. In this article we survey a technique
called Bounded Model Checking (BMC), which uses a propositional SAT solver
rather than BDD manipulation techniques. Since its introduction in 1999, BMC
has been well received by the industry. It can find many logical errors in com-
plex systems that can not be handled by competing techniques, and is therefore
widely perceived as a complementary technique to BDD-based model checking.
This observation is supported by several independent comparisons that have been
published in the last few years.

1. Introduction . 118
2. Model Checking . 121
3. Bounded Model Checking . 126
4. Reducing Bounded Model Checking to SAT . 129
5. Techniques for Completeness . 134

5.1. The Completeness Threshold . 134
5.2. Liveness . 136
5.3. Induction . 137

6. Propositional SAT Solvers . 138
7. Experiments . 141
8. Related Work and Conclusions . 144

References . 146

1. Introduction

Techniques for automatic formal verification of finite state transition systems have
developed in the last 12 years to the point where major chip design companies are be-
ginning to integrate them in their normal quality assurance process. The most widely
used of these methods is called Model Checking [11,12]. In model checking, the
design to be verified is modeled as a finite state machine, and the specification is
formalized by writing temporal logic properties. The reachable states of the design
are then traversed in order to verify the properties. In case the property fails, a coun-
terexample is generated in the form of a sequence of states. In general, properties
are classified to ‘safety’ and ‘liveness’ properties. While the former declares what
should not happen (or equivalently, what should always happen), the latter declares

BOUNDED MODEL CHECKING 119

what should eventually happen. A counterexample to safety properties is a trace of
states, where the last state contradicts the property. A counterexample to liveness
properties, in its simplest form, is a path to a loop that does not contain the desired
state. Such a loop represents an infinite path that never reaches the specified state.

It is impossible to know whether the specification of a system is correct or
complete—How can you know if what you wrote fully captures what you meant?
As a result, there is no such thing as a ‘correct system;’ it is only possible to check
whether a system satisfies its specification or not. Moreover, even the most advanced
model checkers are unable to verify all the desired properties of a system in a reason-
able amount of time, due to the immense state-spaces of such systems. Model check-
ing is often used for finding logical errors (‘falsification’) rather than for proving that
they do not exist (‘verification’). Users of model checking tools typically consider it
as complementary to the more traditional methods of testing and simulation, and not
as an alternative. These tools are capable of finding errors that are not likely to be
found by simulation. The reason for this is that unlike simulators, which examine a
relatively small set of test cases, model checkers consider all possible behaviors or
executions of the system. Also, the process of writing the temporal properties in a
formal language can be very beneficial by itself, as it clarifies potential ambiguities
in the specification.

The term Model Checking was coined by Clarke and Emerson [11] in the early
eighties. The first model checking algorithms explicitly enumerated the reachable
states of the system in order to check the correctness of a given specification. This
restricted the capacity of model checkers to systems with a few million states. Since
the number of states can grow exponentially in the number of variables, early im-
plementations were only able to handle small designs and did not scale to examples
with industrial complexity.

It was the introduction of symbolic model checking [9,15] that made the first break-
through towards wide usage of these techniques. In symbolic model checking, sets
of states are represented implicitly using Boolean functions. For example, assume
that the behavior of some system is determined by the two variables v1 and v2, and
that (11,01,10) are the three combinations of values that can be assigned to these
variables in any execution of this system. Rather than keeping and manipulating this
explicit list of states (as was done in explicit model checking), it is more efficient
to handle a Boolean function that represents this set, e.g., v1 ∨ v2. Manipulating
Boolean formulas can be done efficiently with Reduced Ordered Binary Decision
Diagrams [8] (ROBDD, or BDD for short), a compact, canonical graph representa-
tion of Boolean functions. The process works roughly as follows:2 The set of initial

2The exact details of this procedure depends on the property that is being verified. Here we describe
the procedure for testing simple ‘invariant’ properties, which state that some proposition p has to hold
invariantly in all reachable states. There is more than one way to perform this check.

120 A. BIERE ET AL.

states is represented as a BDD. The procedure then starts an iterative process, where
at each step i , the set of states that can first be reached in i steps from an initial state
are added to the BDD. At each such step, the set of new states is intersected with the
set of states that satisfy the negation of the property. If the resulting set is non-empty,
it means that an error has been detected. This process terminates when the set of
newly added states is empty or a an error is found. The first case indicates that the
property holds, because no reachable state contradicts it. In the latter case, the model
checker prints a counterexample. Note that termination is guaranteed, since there are
only finitely many states.

The combination of symbolic model checking with BDDs [15,20], pushed the
barrier to systems with 1020 states and more [9]. Combining certain, mostly manual,
abstraction techniques into this process pushed the bound even further. For the first
time a significant number of realistic systems could be verified, which resulted in a
gradual adoption of these procedures to the industry. Companies like Intel and IBM
started developing their own in-house model checkers, first as experimental projects,
and later as one more component in their overall quality verification process of their
chip designs. Intel has invested significantly in this technology especially after the
famous Pentium bug a few years ago.

The bottleneck of these methods is the amount of memory that is required for
storing and manipulating BDDs. The Boolean functions required to represent the set
of states can grow exponentially. Although numerous techniques such as decompo-
sition, abstraction and various reductions have been proposed through the years to
tackle this problem, full verification of many designs is still beyond the capacity of
BDD based symbolic model checkers.

The technique that we describe in this article, called Bounded Model Checking
(BMC), was first proposed by Biere et al. in 1999 [5]. It does not solve the com-
plexity problem of model checking, since it still relies on an exponential procedure
and hence is limited in its capacity. But experiments have shown that it can solve
many cases that cannot be solved by BDD-based techniques. The converse is also
true: there are problems that are better solved by BDD-based techniques. BMC also
has the disadvantage of not being able to prove the absence of errors, in most real-
istic cases, as we will later explain. Therefore BMC joins the arsenal of automatic
verification tools but does not replace any of them.

The basic idea in BMC is to search for a counterexample in executions whose
length is bounded by some integer k. If no bug is found then one increases k until
either a bug is found, the problem becomes intractable, or some pre-known upper
bound is reached (this bound is called the Completeness Threshold of the design.
We will elaborate on this point in Section 5). The BMC problem can be efficiently
reduced to a propositional satisfiability problem, and can therefore be solved by SAT
methods rather than BDDs. SAT procedures do not suffer from the space explosion

BOUNDED MODEL CHECKING 121

problem of BDD-based methods. Modern SAT solvers can handle propositional sat-
isfiability problems with hundreds of thousands of variables or more.

Thus, although BMC aims at solving the same problem as traditional BDD-based
symbolic model checking, it has two unique characteristics: first, the user has to pro-
vide a bound on the number of cycles that should be explored, which implies that
the method is incomplete if the bound is not high enough. Second, it uses SAT tech-
niques rather than BDDs. Experiments with this idea showed that if k is small enough
(typically not more than 60 to 80 cycles, depending on the model itself and the SAT
solver), it outperforms BDD-based techniques. Also, experiments have shown that
there is little correlation between what problems are hard for SAT and what prob-
lems are hard for BDD based techniques. Therefore, the classes of problems that are
known to be hard for BDDs, can many times be solved with SAT. If the SAT check-
ers are tuned to take advantage of the unique structure of the formulas resulting from
BMC, this method improves even further [27]. A research published by Intel [14]
showed that BMC has advantages in both capacity and productivity over BDD-based
symbolic model checkers, when applied to typical designs taken from Pentium-4™.
The improved productivity results from the fact that normally BDD based techniques
need more manual guidance in order to optimize their performance. These and other
published results with similar conclusions led most relevant companies, only three
years after the introduction of BMC, to adopt it as a complementary technique to
BDD-based symbolic model checking.

The rest of the article is structured as follows. In the next section we give a techni-
cal introduction to model checking and to the temporal logic that is used for express-
ing the properties. In Section 3 we describe the bounded model checking problem.
In the following section we describe the reduction of the BMC problem to Boolean
satisfiability, including a detailed example. In Section 5 we describe several meth-
ods for achieving completeness with BMC. In Section 6 we describe some of the
essential techniques underlying modern SAT solvers, and in Section 7 we quote sev-
eral experiments carried out by different groups, both from academia and industry,
that compare these techniques to state of the art BDD-based techniques. We survey
related work and detail our conclusions from the experiments in Section 8.

2. Model Checking

Model checking as a verification technique has three fundamental features. First,
it is automatic; It does not rely on complicated interaction with the user for incre-
mental property proving. If a property does not hold, the model checker generates
a counterexample trace automatically. Second, the systems being checked are as-

122 A. BIERE ET AL.

sumed to be finite.3 Typical examples of finite systems, for which model checking
has successfully been applied, are digital sequential circuits and communication pro-
tocols. Finally, temporal logic is used for specifying the system properties. Thus,
model checking can be summarized as an algorithmic technique for checking tem-
poral properties of finite systems.

As the reader may have deduced from the terminology we used in the introduc-
tion, we do not distinguish between the terms design, system, and model. An engineer
working on real designs has to use a syntactic representation in a programming or
hardware description language. Since we are only considering finite systems, the
semantics of the engineer’s design is usually some sort of a finite automaton. Inde-
pendent of the concrete design language, this finite automaton can be represented
by a Kripke structure, which is the standard representation of models in the model
checking literature. It has its origin in modal logics, the generalization of temporal
logics.

Formally, a Kripke structure M is a quadruple M = (S, I, T ,L) where S is the set
of states, I ⊆ S is the set of initial states, T ⊆ S × S is the transition relation and
L :S → P(A) is the labeling function, where A is the set of atomic propositions, and
P(A) denotes the powerset over A. Labeling is a way to attach observations to the
system: for a state s ∈ S the set L(s) is made of the atomic propositions that hold
in s.

The notion of a Kripke structure is only a vehicle for illustrating the algorithms.
It captures the semantics of the system under investigation. For a concrete design
language, the process of extracting a Kripke structure from a given syntactic repre-
sentation may not be that easy. In particular, the size of the system description and the
size of the state space can be very different. For example, if we model a sequential
circuit with a netlist of gates and flip-flops then the state space can be exponentially
larger than the system description. A circuit implementing an n-bit counter illus-
trates this ratio: it can easily be implemented with O(n) gates and O(n) flip-flops,
though the state space of this counter is 2n. The exponential growth in the number of
states poses the main challenge to model checking. This is also known as the state
explosion problem.

The next step is to define the sequential behavior of a Kripke structure M . For this
purpose we use paths. Each path π in M is a sequence π = (s0, s1, . . .) of states,
given in an order that respects the transition relation of M . That is, T (si , si+1) for
all 0 � i < |π | − 1. If I (s0), i.e., s0 is an initial state, then we say that the path is
initialized. The length |π | of π can either be finite or infinite. Note that in general
some of the states may not be reachable, i.e., no initialized path leads to them. For i <

3There is an ongoing interest in generalizing model checking algorithms to infinite systems, for exam-
ple, by including real-time, or using abstraction techniques. In this article we will restrict the discussion
to finite systems.

BOUNDED MODEL CHECKING 123

process A
forever

A.pc = 0 wait for B.pc = 0
A.pc = 1 access shared resource

end forever
end process

process B
forever

B.pc = 0 wait for A.pc = 0
B.pc = 1 access shared resource

end forever
end process

FIG. 1. Pseudo code for two processes A and B competing for a shared resource.

|π | we denote by π(i) the ith state si in the sequence and by πi = (si, si+1, . . .) the
suffix of π starting with state si . To simplify some technical arguments we assume
that the set of initial states is non-empty. For the same reason we assume that the
transition relation is total, i.e., each state has a successor state: for all s ∈ S there
exists t ∈ S with T (s, t).

As an example, consider the mutual exclusion problem of two processes compet-
ing for a shared resource. Pseudo code for this example can be found in Fig. 1. We
assume that the processes are executed on a single computing unit in an interleaved
manner. The wait statement puts a process into sleep. When all processes are asleep
the scheduler tries to find a waiting condition which holds and reactivates the corre-
sponding process. If all the waiting conditions are false the system stalls.

On an abstract level, each process has two program counter positions 0 and 1 with
1 representing the critical section. A process may only access the shared resource
in the critical section of its program. A state of the system is a pair of program
counters and can be encoded as a binary vector s ∈ S = {0,1}2 of length two. Thus
S = {0,1}2 is the set of states of the system. We assume that both processes start at
program counter position 0, which implies that the set of initial states I consists of
the single state represented by the Boolean vector 00. The transition relation consists
of several possible transitions, according to the following two rules: the next state s′
is the initial state 00 unless the current state is already the initial state; The initial
state can transition forth and back to both 01 and 10. Thus, the transition relation
T ⊆ S2 = {0,1}4 can be represented as the following set of bit strings:

{0100,1000,1100,0001,0010}.
A graphical representation of this example in form of a Kripke structure is shown
in Fig. 2. The initial state has an incoming edge without a source. The other edges
correspond to one of the five transitions. Note that unreachable states, such as state
11 in this example, can only be removed after a reachability analysis has marked
all reachable states. Accordingly the sequence 11,00,10, . . . is a valid path of the
Kripke structure, but it is not initialized, since initialized paths start with the state
00. An example of an initialized path is the sequence 00,01,00,10,00,01, . . .where
each process takes its turn to enter the critical region after the other process has left it.

124 A. BIERE ET AL.

FIG. 2. A Kripke structure for two processes that preserve mutual exclusion.

Our example system is safe in the sense that the two processes obey the mutual
exclusion property: at most one process can be in its critical region. A negative for-
mulation of this property is that the state in which both processes are in their critical
region is not reachable. Thus a simple model checking algorithm to check safety
properties is to build the state transition graph and enumerate all reachable states
through a graph search, starting from the set of initial states. Each visited state is
analyzed in order to check whether it violates the safety property.

Now, assume that we add a faulty transition from 10 to 11. A depth first search,
starting from the initial state 00 visiting 10 and then reaching 11 will show that the
bad state 11 is reachable and thus the safety property fails. This path is a counterex-
ample to the safety property that can help the user to debug the system.

What we have discussed so far is a typical explicit model checking algorithm for
simple safety properties. It can be refined by building the Kripke structure on-the-
fly: only after a state of the system is visited for the first time, the set of transitions is
generated leaving this state. Once a bad state is found, the process terminates. This
technique is particularly useful if the number of reachable states is much smaller than
|S|, the number of all states, which is often the case in practice.

Recall that safety properties describe invariants of a system, that is, that something
bad does not happen. As we have seen, these properties can be checked by reacha-
bility analysis, i.e., by searching through the states graph and checking that each
visited state does not violate the invariant. Also recall that in addition to safety prop-
erties, it is sometimes desirable to use liveness properties in order to check whether
something good will eventually happen. In the mutual exclusion example, a natural
question would be to ask whether each process will eventually enter its critical re-
gion. For the first process this means that the state 01 is eventually reached. More
complicated liveness properties can specify repeatedly inevitable behavior, such as
‘a request always has to be acknowledged.’ To capture this nesting and mutual de-
pendency of properties, temporal logic is used as a specification language.

Temporal logic is an extension of classical logic. In this article we concentrate
on Propositional Linear Temporal Logic (PLTL, or LTL for short) as an extension
of propositional logic. From propositional logic LTL inherits Boolean variables and
Boolean operators such as negation ¬, conjunction ∧, implication →, etc. In addition

BOUNDED MODEL CHECKING 125

(a) (b)

FIG. 3. Validity of next time operator in the formula Xp along a path.

to the Boolean connectives, LTL has temporal operators. First, there is the next time
operator X. The formula Xp specifies that property p holds at the next time step.

In Fig. 3(a) a path is shown for which Xp holds. Each state is labeled with the
atomic properties that hold in it. Fig. 3(b) depicts a path for which Xp does not hold,
because p holds in the first state but not in the next, second state. Now we can use
this operator to build larger temporal formulas. For instance, p ∧ X¬p holds iff p
holds in the first state and p does not hold in the second. As usual ¬ is the Boolean
negation operator. This formula is true for the path on Fig. 3(b) and fails for the path
on Fig. 3(a). By nesting the operator X we can specify the behavior of the system up
to a certain depth. For instance, the formula XXp holds for both paths.

The next class of temporal operators that we discuss, allows specifying repeated
unbounded behavior along an infinite path. The Globally operator G is used for
safety properties. A formula Gp holds along a path if p holds in all states of the
path. Thus, it fails for the path in Fig. 3(b), since p does not hold in the second state.
The safety property for our earlier example, the Kripke structure of Fig. 2, can be
specified as G¬(c1 ∧ c2), where ci labels the states where process i is in its critical
section. It literally can be translated into English as follows: for all states it is not the
case that both c1 and c2 are true.

If all initialized paths of a Kripke structure satisfy a property, we say that the
property holds for the Kripke structure. For instance, by making the state 11 in
Fig. 2 an initial state, each path starting at 11 would be initialized and would vio-
late G¬(c1 ∧ c2) already in its first state. However since in our model 11 is not an
initial state the property holds for the Kripke structure.

Finally we look at liveness properties. The simplest liveness operator is F, the
Finally operator. The formula Fp holds along a path if p holds somewhere on the
path. Equivalently, it fails to hold if p stays unsatisfied along the whole path. For
instance, Fp trivially holds in both paths of Fig. 3 since p is already satisfied in the
first state. Similarly F¬p holds for the path in Fig. 3(b), because p does not hold in
the second state.

The liveness property for Fig. 2, which says that the first process will eventually
reach its critical section, can be formalized as Fc1. Since the system may loop be-
tween the initial state and the state 10 on the right, never reaching 01, this property
does not hold. The initialized infinite path that starts with 00 and then alternates
between 00 and 10 is a counterexample.

126 A. BIERE ET AL.

Now we can start to build more sophisticated specifications. The request/acknowl-
edge property mentioned above is formulated as G(r → Fa), where r and a are
atomic propositions labeling states where a request and an acknowledge occurs, re-
spectively. The same idea can be used to specify that a certain sequence of actions
a1, a2, a3 has to follow a guard g : G(g → F(a1 ∧F(a2 ∧Fa3))). Note that there may
be an arbitrary, finite time interval (possibly empty) between the actions.

In this informal introduction to temporal logic, we will avoid a detailed expla-
nation of the binary temporal operators Until (U) and Release (R). The reader is
referred to [12] for more details. Also note that in the literature one can find an alter-
native notation for temporal operators, such as �p for Xp, ✸p for Fp and ✷p for
Gp.

The formal semantics of temporal formulas is defined with respect to paths of a
Kripke structure. Let π be an infinite path of a Kripke structure M and let f be a
temporal formula. We define recursively when f holds on π , written π |= f :

π |= p iff p ∈ L
(
π(0)

)
,

π |= ¬f iff π �|= f,

π |= f ∧ g iff π |= f and π |= g,

π |= Xf iff π1 |= f,

π |= Gf iff πi |= f for all i � 0,
π |= Ff iff πi |= f for some i � 0,
π |= f Ug iff πi |= g for some i � 0 and πj |= f for all 0 � j < i,

π |= f Rg iff πi |= g if for all j < i, πj �|= f.

The semantics of the other Boolean operators such as disjunction and implication
can be inferred from the above definition. As mentioned above we say that a tem-
poral formula f holds for a Kripke structure M , written M |= f , iff π |= f for all
initialized paths π of M . Finally, we say that two temporal formulas f and g are
equivalent, written f ≡ g iff M |= f ↔ M |= g for all Kripke structures M . With
this notion, the semantics imply that ¬F¬p ≡ Gp. Thus, F and G are dual operators.

The standard technique for model checking LTL [19] is to compute the product of
the Kripke structure with an automaton that represents the negation of the property
(this automaton captures exactly the execution sequences that violate the LTL for-
mula). Emptiness of the product automaton is an evidence of the correctness of the
property. More details about this procedure can be found in [12].

3. Bounded Model Checking

The original motivation of bounded model checking was to leverage the success
of SAT in solving Boolean formulas to model checking. During the last few years

BOUNDED MODEL CHECKING 127

there has been a tremendous increase in reasoning power of SAT solvers. They can
now handle instances with hundreds of thousands of variables and millions of clauses
(we will elaborate more on how these solvers work in Section 6). Symbolic model
checkers with BDDs, on the other hand, can check systems with no more than a few
hundred latches. Though clearly the number of latches and the number of variables
cannot be compared directly, it seemed plausible that solving model checking with
SAT could benefit the former.

A similar approach has been taken in tackling the planning problem in Artificial
Intelligence [18]. Classical planning problems seek for a plan, i.e., a sequence of
steps, to perform some task (e.g., position cubes one above the other in descending
size under certain constraints on the intermediate states). As in BMC, the search for
a plan is restricted to paths with some predetermined bound. The possible plans in
a given bound are described by a SAT instance, which is polynomial in the original
planning problem and the bound. Compared to model checking, deterministic plan-
ning is only concerned with simple safety properties: whether and how the goal state
can be reached. In model checking we want to check liveness properties and nested
temporal properties as well.

Since LTL formulas are defined over all paths, finding counterexamples corre-
sponds to the question whether there exists a trace that contradicts them. If we find
such a trace, we call it a witness for the property. For example, a counterexample
to M |= Gp corresponds to the question whether there exists a witness to F¬p. For
clarity of presentation we will use path quantifiers E and A to denote whether the
LTL formula is expected to be correct over all paths or only over some path. In other
words, M |= Af means that M satisfies f over all initialized paths, and M |= Ef
means that there exists an initialized path in M that satisfies f . We will assume
that the formula is given in negation normal form (NNF), in which negations are
only allowed to occur in front of atomic propositions. Every LTL formula can be
transformed to this form by using the duality of LTL operators and De-Morgan’s
laws.

The basic idea of bounded model checking, as was explained before, is to consider
only a finite prefix of a path that may be a witness to an existential model checking
problem. We restrict the length of the prefix by some bound k. In practice, we pro-
gressively increase the bound, looking for witnesses in longer and longer traces.

A crucial observation is that, though the prefix of a path is finite, it still might
represent an infinite path if there is a back loop from the last state of the prefix to any
of the previous states, as in Fig. 4(b). If there is no such back loop, as in Fig. 4(a),
then the prefix does not say anything about the infinite behavior of the path beyond
state sk . For instance, only a prefix with a back loop can represent a witness for Gp.
Even if p holds along all the states from s0 to sk , but there is no back loop from sk

128 A. BIERE ET AL.

(a) (b)

FIG. 4. The two cases for a bounded path. (a) No loop, (b) (k, l)-loop.

to a previous state, we cannot conclude that we have found a witness for Gp, since
p might not hold at sk+1.

DEFINITION 1. For l � k we call a path π a (k, l)-loop if T (π(k),π(l)) and π =
u · vω with u = (π(0), . . . , π(l − 1)) and v = (π(l), . . . , π(k)).4 We call π a k-loop
if there exists k � l � 0 for which π is a (k, l)-loop.

We will use the notion of k-loops in order to define the bounded semantics
of model checking, i.e., semantics of model checking under bounded traces. The
bounded semantics is an approximation to the unbounded semantics, which will al-
low us to define the bounded model checking problem. In the next section we will
give a translation of a bounded model checking problem into a satisfiability problem.

In the bounded semantics we only consider a finite prefix of a path. In particular,
we only use the first k + 1 states (s0, . . . , sk) of a path to determine the validity of
a formula along that path. If a path is a k-loop then we simply maintain the original
LTL semantics, since all the information about this (infinite) path is contained in the
prefix of length k.

DEFINITION 2 (Bounded semantics for a loop). Let k � 0 and π be a k-loop. Then
an LTL formula f is valid along the path π with bound k (in symbols π |=k f) iff
π |= f .

We now consider the case where π is not a k-loop. The formula f := Fp is valid
along π in the unbounded semantics if we can find an index i � 0 such that p is valid
along the suffix πi of π . In the bounded semantics the (k + 1)th state π(k) does
not have a successor. Therefore, unlike the unbounded case, we cannot define the
bounded semantics recursively over suffixes (e.g., πi) of π . We therefore introduce
the notation π |=i

k f , where i is the current position in the prefix of π , which means
that the suffix πi of π satisfies f , i.e., π |=i

k f implies πi |= f .

DEFINITION 3 (Bounded semantics without a loop). Let k � 0, and let π be a path
that is not a k-loop. Then an LTL formula f is valid along π with bound k (in

4The notation vω represents an infinite repetition of v.

BOUNDED MODEL CHECKING 129

symbols π |=k f) iff π |=0
k f where

π |=i
k p iff p ∈L

(
π(i)

)
,

π |=i
k f ∧ g iff π |=i

k f and π |=i
k g,

π |=i
k Gf is always false,

π |=i
k Xf iff i < k and π |=i+1

k f,

π |=i
k f Ug iff ∃j, i � j � k, π |=j

k g and ∀n, i � n < j, π |=n
k f,

π |=i
k f Rg iff ∃j, i � j � k, π |=j

k f and ∀n, i � n < j, π |=n
k g,

π |=i
k ¬p iff p /∈L

(
π(i)

)
,

π |=i
k f ∨ g iff π |=i

k f or π |=i
k g,

π |=i
k Ff iff ∃j, i � j � k, π |=j

k f.

Note that if π is not a k-loop, then we say that Gf is not valid along π in
the bounded semantics with bound k since f might not hold along πk+1. These
constraints imply that for the bounded semantics the duality between G and F
(¬Ff ≡ G¬f) no longer holds.

Now we describe how the existential model checking problem (M |= Ef) can be
reduced to a bounded existential model checking problem (M |=k Ef). The basis for
this reduction lies in the following two lemmas.

LEMMA 1. Let f be an LTL formula and π a path, then π |=k f ⇒ π |= f .

LEMMA 2. Let f be an LTL formula and M a Kripke structure. If M |= Ef then
there exists k � 0 with M |=k Ef .

Based on Lemmas 1 and 2, we can now state the main theorem of this section. In-
formally, Theorem 1 says that if we take a sufficiently high bound, then the bounded
and unbounded semantics are equivalent.

THEOREM 1. Let f be an LTL formula and M be a Kripke structure. Then M |= Ef
iff there exists k � 0 s.t. M |=k Ef .

4. Reducing Bounded Model Checking to SAT

In the previous section we defined the semantics for bounded model checking.
We now show how to reduce bounded model checking to propositional satisfiability.

130 A. BIERE ET AL.

This reduction enables us to use efficient propositional SAT solvers to perform model
checking.

Given a Kripke structure M , an LTL formula f and a bound k, we will construct
a propositional formula ❏M,f ❑k . Let s0, . . . , sk be a finite sequence of states on a
path π . Each si represents a state at time step i and consists of an assignment of
truth values to the set of state variables. The formula ❏M,f ❑k encodes constraints
on s0, . . . , sk such that ❏M,f ❑k is satisfiable iff π is a witness for f . The definition
of formula ❏M,f ❑k will be presented as three separate components. We first define
a propositional formula ❏M❑k that constrains s0, . . . , sk to be a valid path starting
from an initial state. We then define the loop condition, which is a propositional
formula that is evaluated to true only if the path π contains a loop. Finally, we define
a propositional formula that constrains π to satisfy f .

DEFINITION 4 (Unfolding of the transition relation). For a Kripke structure M , k �
0

❏M❑k := I (s0)∧
k−1∧
i=0

T (si, si+1).

The translation of an LTL formula depends on the shape of the path π . We define
the propositional formula lLk to be true if and only if there is a transition from state
sk to state sl . By definition, lLk is equal to T (sk, sl). We use lLk to define the loop
condition Lk :

DEFINITION 5 (Loop condition). The loop condition Lk is true if and only if there
exists a back loop from state sk to a previous state or to itself: Lk :=∨k

l=0 lLk .

Depending on whether a path is a k-loop (see Fig. 4), we have two different trans-
lations of a temporal formula f . First we consider the case where the path is a k-loop.
We give a recursive translation of an LTL formula f for a k-loop path π . The trans-
lation of f recurses over its subterms and the states in π . The intermediate formula
l❏·❑ik depends on three parameters: l, k and i . We use l for the start position of the
loop, k for the bound, and i for the current position in π .

DEFINITION 6 (Successor in a loop). Let k, l and i be non-negative integers s.t.
l, i � k. Define the successor succ(i) of i in a (k, l)-loop as succ(i) := i + 1 for
i < k and succ(i) := l for i = k.

BOUNDED MODEL CHECKING 131

DEFINITION 7 (Translation of an LTL formula for a loop). Let f be an LTL formula,
k, l, i � 0, with l, i � k.

l❏p❑
i
k := p(si),

l❏¬p❑ik := ¬p(si),

l❏f ∨ g❑ik := l❏f ❑
i
k ∨ l❏g❑

i
k,

l❏f ∧ g❑ik := l❏f ❑
i
k ∧ l❏g❑

i
k,

l❏Gf ❑ik := l❏f ❑
i
k ∧ l❏Gf ❑succ(i)

k ,

l❏Ff ❑ik := l❏f ❑
i
k ∨ l❏Ff ❑

succ(i)
k ,

l❏f Ug❑ik := l❏g❑
i
k ∨ (l❏f ❑ik ∧ l❏f Ug❑

succ(i)
k

)
,

l❏f Rg❑ik := l❏g❑
i
k ∧ (l❏f ❑ik ∨ l❏f Rg❑succ(i)

k

)
,

l❏Xf ❑ik := l❏f ❑
succ(i)
k .

The translation in Definition 7 is linear with respect to the size of f and bound k

if subterms are shared. A common technique for sharing subterms in propositional
logic is to introduce new Boolean variables for subterms. Consider, for example, the
formula (a ∧ b) ∨ (c → (a ∧ b)). We introduce a new variable x for the subterm
a ∧ b, and transform the original formula into (x ∨ (c → x))∧ (x ↔ (a ∧ b)). The
transformation clearly preserves satisfiability.

For the translation presented in Definition 7, a new propositional variable is in-
troduced for each intermediate formula l❏h❑

i
k , where h is a subterm of the LTL for-

mula f and i ranges from 0 to k. The total number of new variables is O(|f | × k),
where |f | denotes the size of f . The size of the propositional formula l❏f ❑

0
k is also

O(|f | × k).
For the case where π is not a k-loop, the translation can be treated as a special

case of the k-loop translation. For Kripke structures with total transition relations,
every finite path π can be extended to an infinite one. Since the property of the path
beyond state sk is unknown, we make a conservative approximation and assume all
properties beyond sk are false.

DEFINITION 8 (Translation of an LTL formula without a loop).
Inductive case: ∀i � k

❏p❑ik := p(si),

❏¬p❑ik := ¬p(si),

❏f ∨ g❑ik := ❏f ❑ik ∨ ❏g❑ik ,

❏f ∧ g❑ik := ❏f ❑ik ∧ ❏g❑ik ,

132 A. BIERE ET AL.

❏Gf ❑ik := ❏f ❑ik ∧ ❏Gf ❑i+1
k ,

❏Ff ❑ik := ❏f ❑ik ∨ ❏Ff ❑i+1
k ,

❏f Ug❑ik := ❏g❑ik ∨ (❏f ❑ik ∧ ❏f Ug❑i+1
k

)
,

❏f Rg❑ik := ❏g❑ik ∧ (❏f ❑ik ∨ ❏f Rg❑i+1
k

)
,

❏Xf ❑ik := ❏f ❑i+1
k .

Base case:

❏f ❑k+1
k := 0.

Combining all components, the encoding of a bounded model checking problem
in propositional logic is defined as follows.

DEFINITION 9 (General translation). Let f be an LTL formula, M a Kripke struc-
ture and k � 0

❏M,f ❑k := ❏M❑k ∧
((¬Lk ∧ ❏f ❑0

k

)∨
k∨

l=0

(
lLk ∧ l❏f ❑

0
k

))
.

The left side of the disjunction is the case where there is no back loop and the
translation without a loop is used. The right side represent all possible starting points
l of a loop, and the translation for a (k, l)-loop is conjoined with the corresponding
lLk loop condition. The size of ❏M,f ❑k is O(|f | × k × |M|), where |M| represents
the size of the syntactic description of the initial state I and the transition relation T .

The translation scheme guarantees the following theorem, which we state without
proof:

THEOREM 2. ❏M,f ❑k is satisfiable iff M |=k Ef .

Thus, the reduction of bounded model checking to SAT is sound and complete
with respect to the bounded semantics.

EXAMPLE 1. Let us consider the mutual exclusion example in Fig. 2. Each state s

of the system M is represented by two bit variables. We use s[1] for the high bit and
s[0] for the low bit.

The initial state is represented as follows,

I (s) := ¬s[1] ∧ ¬s[0].

BOUNDED MODEL CHECKING 133

The transition relation is represented as follows,

T (s, s′) := (¬s[1] ∧ (s[0] ↔ ¬s′[0]))∨ (¬s[0] ∧ (s[1] ↔ ¬s′[1]))
∨ (s[0] ∧ s[1] ∧ ¬s′[1] ∧ ¬s′[0]).

We now add a faulty transition from state 10 to state 11. We denote by Tf the new
faulty transition relation.

Tf (s, s
′) := T (s, s′)∨ (s[1] ∧ ¬s[0] ∧ s′[1] ∧ s′[0]).

Consider the safety property that at most one process can be in the critical region
at any time. The property can be represented as G¬p, where p is s[1] ∧ s[0]. Using
BMC, we attempt to find a counterexample of the property, or, in other words, look
for a witness for Fp. The existence of such a witness indicates that the mutual exclu-
sion property is violated by M . If, on the other hand, no such witness can be found,
it means that this property holds up to the given bound.

Let us consider a case where the bound k = 2. Unrolling the transition relation
results in the following formula:

❏M❑2 := I (s0)∧ Tf (s0, s1)∧ Tf (s1, s2).

The loop condition is:

L2 :=
2∨

l=0

Tf (s2, sl).

The translation for paths without loops is:

❏Fp❑0
2 := p(s0)∨ ❏Fp❑1

2, ❏Fp❑1
2 := p(s1)∨ ❏Fp❑2

2,

❏Fp❑2
2 := p(s2)∨ ❏Fp❑3

2, ❏Fp❑3
2 := 0.

We can introduce a new variable for each intermediate formula ❏Fp❑i2. Alternatively,
we can substitute all intermediate terms and obtain the following formula.

❏Fp❑0
2 := p(s0)∨ p(s1)∨ p(s2).

The translation with loops can be done similarly. Putting everything together we get
the following Boolean formula:

(1)❏M,Fp❑2 := ❏M❑2 ∧
((¬L2 ∧ ❏Fp❑0

2

)∨
2∨

l=0

(
lL2 ∧l ❏Fp❑0

2

))
.

Since a finite path to a bad state is sufficient for falsifying a safety property, the
loop condition in the above formula may be omitted. This will result in the following

134 A. BIERE ET AL.

formula:

❏M,Fp❑2 := ❏M❑2 ∧ ❏Fp❑0
2

= I (s0)∧ Tf (s0, s1)∧ Tf (s1, s2)∧ (p(s0)∨ p(s1)∨ p(s2)
)
.

The assignment 00, 10, 11 satisfies ❏M,Fp❑2. This assignment corresponds to a
path from the initial state to the state 11 that violates the mutual exclusion property.

5. Techniques for Completeness

Given a model checking problem M |= Ef , a typical application of BMC starts at
bound 0 and increments the bound until a witness is found. This represents a partial
decision procedure for model checking problems. If M |= Ef , a witness of finite
length k exists, and the procedure terminates at length k. If M �|= Ef , however, the
outlined procedure does not terminate. Although the strength of BMC is in detection
of errors, it is desirable to build a complete decision procedure based on BMC for
obvious reasons. For example, BMC may be used to clear a module level proof oblig-
ation which may be as assumption for another module. A missed counterexample in
a single module may have the unpleasant consequence of breaking the entire proof.
In such compositional reasoning environments, completeness becomes particularly
important.

In this section, we will highlight three techniques for achieving completeness with
BMC. For unnested properties such as Gp and Fp, we determine in Section 5.1 the
maximum bound k that the BMC formula should be checked with in order to guaran-
tee that the property holds. This upper bound is called the Completeness Threshold.
For liveness properties, we show an alternative path to completeness in Section 5.2.
The alternative method is based on a semi-decision procedure for AFp combined
with a semi decision procedure for EGp. Finally, in Section 5.3, we show how for
safety properties completeness can be achieved with induction based on strengthen-
ing inductive invariants.

5.1 The Completeness Threshold
For every finite state system M , a property p, and a given translation scheme,

there exists a number CT , such that the absence of errors up to cycle CT proves that
M |= p. We call CT the Completeness Threshold of M with respect to p and the
translation scheme.

The completeness threshold for Gp formulas is simply the minimal number of
steps required to reach all states. We call this the reachability diameter and formally
define it as follows:

BOUNDED MODEL CHECKING 135

DEFINITION 10 (Reachability diameter). The reachability diameter rd(M) is the
minimal number of steps required for reaching all reachable states:

rd(M) := min

{
i

∣∣∣ ∀s0, . . . , sn, ∃s′
0, . . . , s

′
t , t � i,

I (s0)∧
n−1∧
j=0

T (sj , sj+1)→

(2)

(
I (s′

0)∧
t−1∧
j=0

T
(
s′
j , s

′
j+1

)∧ s′
t = sn

)}
.

Formula (2) simply states that every state that is reachable in n steps (left side of
the implication) can also be reached in i steps (right side of the implication). In other
words, rd(M) is the longest ‘shortest path’ from an initial state to any reachable state.
This definition leaves open the question of how large should n be. One option is to
simply take the worst case, i.e., n = 2|V |, where V is the set of variables defining the
states of M . A better option is to take n = i + 1 and check whether every state that
can be reached in i + 1 steps, can be reached sooner:

rd(M) := min

{
i

∣∣∣ ∀s0, . . . , si+1, ∃s′
0, . . . , s

′
i ,

I (s0)∧
i∧

j=0

T (sj , sj+1)→

(3)

(
I (s′

0)∧
i−1∧
j=0

T
(
s′
j , s

′
j+1

)∧
i∨

j=0

s′
j = si+1

)}
.

In formula (3), the sub formula to the left of the implication represent an i + 1 long
path, and the sub-formula to the right of the implication represents an i long path.
The disjunction in the end of the right-hand side forces the i + 1 state in the longer
path to be equal to one of the states in the shorter path.

Both Eqs. (2) and (3) include an alternation of quantifiers, and are hence hard
to solve for realistic models. As an alternative, it is possible to compute an over
approximation of rd(M) with a SAT instance. This approximation was first defined
in [5] as the recurrence diameter, and we now adapt it to the reachability diameter:

DEFINITION 11 (Recurrence diameter for reachability). The recurrence diameter
for reachability with respect to a model M , denoted by rdr(M), is the longest loop-

136 A. BIERE ET AL.

free path in M starting from an initial state:

(4)

rdr(M) := max

{
i

∣∣∣ ∃s0 . . . si, I (s0)∧
i−1∧
j=0

T (sj , sj+1)∧
i−1∧
j=0

i∧
k=j+1

sj �= sk

}
.

rdr(M) is clearly an over-approximation of rd(M), because every shortest path is
a loop-free path.

The question of how to compute CT for other temporal properties is still open.
Most safety properties used in practice can be reduced to some Gp formula, by
computing p over a product of M and some automaton, which is derived from the
original property. Therefore computing CT for these properties is reduced to the
problem of computing CT of the new model with respect to a Gp property.

5.2 Liveness

In the discussion of bounded model checking so far, we have focused on exis-
tentially quantified temporal logic formulas. To verify an existential LTL formula
against a Kripke structure, one needs to find a witness. As explained before, this is
possible because if a witness exists, it can be characterized by a finite sequence of
states. In the case of liveness, the dual is also true: if a proof of liveness exists, the
proof can be established by examining all finite sequences of length k starting from
initial states (note that for a proof we need to consider all paths rather than search for
a single witness).

DEFINITION 12 (Translation for liveness properties).

(5)❏M,AFp❑k := I (s0)∧
k−1∧
i=0

T (si, si+1)→
k∨

i=0

p(si).

THEOREM 3. M |= AFp iff ∃k ❏M,AFp❑k is valid.

According to Theorem 3, we need to search for a k that makes the negation of
❏M,AFp❑k unsatisfiable. Based on this theorem, we obtain a semi-decision proce-
dure for M |= AFp. The procedure terminates if the liveness property holds. The
bound k needed for a proof represents the length of the longest sequence from an
initial state without hitting a state where p holds. Based on bounded model check-
ing, we have a semi-decision procedure for M |= EG¬p, or equivalently,M �|= AFp.
Since we know that either AFp or EG¬p must hold for M , one of the semi-decision

BOUNDED MODEL CHECKING 137

procedures must terminate. Combining the two, we obtain a complete decision pro-
cedure for liveness.

5.3 Induction

Techniques based on induction can be used to make BMC complete for safety
properties [25]. Proving M |= AGp by induction typically involves finding (manu-
ally) a strengthening inductive invariant. An inductive invariant is an expression that
on the one hand is inductive (i.e., its correctness in previous steps implies its cor-
rectness in the current step), and on the other hand it implies the property. Proofs
based on inductive invariants have three steps: the base case, the induction step and
the strengthening step. Given a bound n, which we refer to as the induction depth,
we first prove that the inductive invariant φ holds in the first n steps, by checking
that formula (6) is unsatisfiable.

(6)∃s0, . . . , sn, I (s0)∧
n−1∧
i=0

T (si, si+1)∧
n∨

i=0

¬φ(si).

Next, we prove the induction step, by showing that formula (7) is unsatisfiable:

(7)∃s0, . . . , sn+1,

n∧
i=0

(
φ(si)∧ T (si , si+1)

)∧ ¬φ(sn+1).

Finally, we establish that the strengthening inductive invariant implies the property
for an arbitrary i:

(8)∀si , φ(si)→ p(si).

If we use the property p as the inductive invariant, the strengthening step holds triv-
ially and the base step is the same as searching for a counterexample to Gp.

In a further refinement of formula (7) suggested by Sheeran et al. [25], paths in
M are restricted to contain distinct states. The restriction preserves completeness
of bounded model checking for safety properties: if a bad state is reachable, it is
reachable via a path with no duplicate states, or, in other words, via a loop-free path.
The inductive step is now represented by formula (9):

(9)

∃s0, . . . , sn+1,

n∧
j=0

n+1∧
k=j+1

(sj �= sk)∧
n∧

i=0

(
φ(si)∧ T (si, si+1)

)∧ ¬φ(sn+1).

The restriction to loop-free paths constrains the formula further and hence prunes the
search space of the SAT procedure and consequently improves its efficiency. On the

138 A. BIERE ET AL.

other hand, the propositional encoding of distinct state restriction is quadratic with
respect to the bound k. When k is large, the restriction may significantly increase the
size of the propositional formula. The practical effectiveness of this restriction is to
be further studied.

6. Propositional SAT Solvers

In this section we briefly outline the principles followed by modern propositional
SAT-solvers. Our description follows closely the ones in [30] and [27].

Given a propositional formula f , a SAT solver finds an assignment to the variables
of f that satisfy it, if such an assignment exists, or return ‘unsatisfiable’ otherwise.
Normally SAT solvers accept formulas in Conjunctive Normal Form (CNF), i.e., a
conjunction of clauses, each contains a disjunction of literals and negated literals.
Thus, to satisfy a CNF formula, the assignment has to satisfy at least one literal in
each clause. Every propositional formula can be translated to this form. With a naive
translation, the size of the CNF formula can be exponential in the size of the original
formula. This problem can be avoided by adding O(|f |) auxiliary Boolean variables,
where |f | is the number of sub expressions in f .

Most of the modern SAT-checkers are variations of the well-known Davis–Putnam
procedure [17] and its improvement by Davis, Loveland and Logemann (known as
DPLL) [16]. The procedure is based on a backtracking search algorithm that, at each
node in the search tree, decides on an assignment (i.e., both a variable and a Boolean
value, which determines the next sub tree to be traversed) and computes its imme-
diate implications by iteratively applying the ‘unit clause’ rule. For example, if the
decision is x1 = 1, then the clause (¬x1 ∨ x2) immediately implies that x2 = 1. This,
in turn, can imply other assignments. Iterated application of the unit clause rule is
commonly referred to as Boolean Constraint Propagation (BCP). A common result
of BCP is that a clause is found to be unsatisfiable, a case in which the procedure
must backtrack and change one of the previous decisions. For example, if the for-
mula also contains the clause (¬x1 ∨ ¬x2), then clearly the decision x1 = 1 must
be changed, and the implications of the new decision must be re-computed. Note
that backtracking implicitly prunes parts of the search tree. If there are n unassigned
variables in a point of backtracking, then a sub tree of size 2n is pruned. Pruning is
one of the main reasons for the impressive efficiency of these procedures.

Fig. 5 describes a template that most SAT solvers use. It is a simplified version
of the template presented in [30]. At each decision level d in the search, a variable
assignment Vd = {T ,F } is selected with the Decide() function. If all the vari-
ables are already decided (indicated by ALL-DECIDED), it implies that a satisfying

BOUNDED MODEL CHECKING 139

// Input arg: Current decision level d

// Return value:
// SAT(): {SAT, UNSAT}
// Decide(): {DECISION, ALL-DECIDED}
// Deduce(): {OK, CONFLICT}
// Diagnose():{SWAP, BACK-TRACK} also calculates β

SAT(d)
{

l1: if (Decide(d) == ALL-DECIDED) return SAT;
l2: while (TRUE) {
l3: if (Deduce(d) != CONFLICT) {
l4: if (SAT(d + 1) == SAT) return SAT;
l5: else if (β < d || d == 0)
l6: { Erase(d); return UNSAT; }

}
l7: if (Diagnose(d) == BACK-TRACK) return UNSAT;

}
}

FIG. 5. Generic backtrack search SAT algorithm.

assignment has been found, and SAT returns SATISFIABLE. Otherwise, the im-
plied assignments are identified with the Deduce() function, which corresponds
to a straightforward BCP. If this process terminates with no conflict, the procedure
is called recursively with a higher decision level. Otherwise, Diagnose() ana-
lyzes the conflict and decides on the next step. If Vd was assigned only one of the
Boolean values, it swaps this value and the deduction process in line l3 is repeated.
If the swapped assignment also fails, it means that Vd is not responsible for the con-
flict. In this case Diagnose() identifies the assignments that led to the conflict
and computes the decision level β (β is a global variable that can only be changed
by Diagnose()) to which SAT() should backtrack to. The procedure will then
backtrack d − β times, each time Erase()-ing the current decision and its implied
assignments, in line l6.

The original Davis–Putnam procedure backtracked one step at a time (i.e., β =
d−1). Modern SAT checkers include Non-chronological Backtracking search strate-
gies (i.e., β = d − j , j � 1), allowing them to skip a large number of irrelevant
assignments. The introduction of non-chronological backtracking to SAT solvers in
the mid 90’s was one of the main breakthroughs that allowed these procedures for
the first time to handle instances with tens of thousands of variables (this technique
was used previously in general Constraint Solving Problem (CSP) tools. See [30] for
more details).

140 A. BIERE ET AL.

(a) (b)

FIG. 6. A clause data base (a) and an implication graph (b) of the assignment x1 = 1 shows how this
assignment, together with assignments that were made in earlier decision levels, leads to a conflict.

The analysis of conflicts is also used for learning. The procedure adds constraints,
in the form of new clauses (called conflict clauses) that prevent the repetition of
bad assignments. This way the search procedure backtracks immediately if such an
assignment is repeated. We explain the mechanism of deriving new conflict clauses
by following a simplified version of an example given in the above reference.

EXAMPLE 2. Assume the clause data base includes the clauses listed in Fig. 6(a), the
current truth assignment is {x5 = 0}, and the current decision assignment is x1 = 1.
Then the resulting implication graph depicted in Fig. 6(b) describes the unit clause
propagation process implied by this decision assignment.

Each node in this graph corresponds to a variable assignment. The incom-
ing directed edges (x1, xj) . . . (xi, xj) labeled by clause c represent the fact that
x1 . . . xi, xj are c’s literals and that the current value of x1, . . . , xi implies the value
of xj according to the unit clause rule. Thus, vertices that have no incoming edges
correspond to decision assignments while the others correspond to implied assign-
ments. The implication graph in this case ends with a conflict vertex. Indeed the
assignment x1 = 1 leads to a conflict in the value of x4, which implies that either
c3 or c4 cannot be satisfied. When such a conflict is identified, Diagnose() deter-
mines those assignments that are directly responsible for the conflict. In the above
example these are {x1 = 1, x5 = 0}. The conjunction of these assignments therefore
represents a sufficient condition for the conflict to arise. Consequently, the negation
of this conjunction must be satisfied if the instance is satisfiable. We can therefore
add the new conflict clause π : (¬x1 ∨ x5) to the clause database, with the hope that
it will speed up the search.

Another source of constant improvement in these tools is the development of new
decision heuristics in DECIDE(), i.e., the strategy of picking the next variable and

BOUNDED MODEL CHECKING 141

its value. The order can be static, i.e., predetermined by some criterion, or decided
dynamically according to the current state of the search. For example, the DLIS strat-
egy [29] picks an assignment that leads to the largest number of satisfied clauses. Al-
though this strategy normally results in a good ordering, it has a very large overhead,
since each decision requires a count of the currently unsatisfied clauses that contain
each variable or its negation. A recently suggested strategy, called Variable State In-
dependent Decaying Sum (VSIDS) [22], avoids this overhead by ignoring whether
the clause is currently satisfiable or not. It counts (once) the number of times each
variable appears in the formula, and then updates this number once new conflict
clauses are added to the formula. By giving more weight to variables in newly added
conflict clauses, it makes the decision conflict-driven, i.e., it gives higher priority to
solving conflicts that were recently identified. This procedure turned out to be an
order of magnitude faster, on average, compared to DLIS.

7. Experiments

Since the introduction of BMC several independent groups published experimen-
tal results, comparing BMC to various BDD based symbolic model checkers. In this
section we quote some of the experiments conducted by the verification groups at
IBM, Intel and Compaq, as well as our own experiments. All of these experiments
basically reach the same conclusion: SAT based Bounded Model Checking is typi-
cally faster in finding bugs compared to BDDs. The deeper the bug is (i.e., the longer
the shortest path leading to it is), the less advantage BMC has. With state of the art
SAT solvers and typical hardware designs, it usually cannot reach bugs beyond 80
cycles in a reasonable amount of time, although there are exceptions, as the experi-
ments conducted in Compaq show (see Fig. 10 below). In any case, BMC can solve
many of the problems that cannot be solved by BDD based model checkers.

The experiments were conducted with different SAT solvers and compared against
different model checkers. The introduction of the SAT solver CHAFF in mid 2001
changed the picture entirely, as on average it is almost an order of magnitude faster
than previous SAT solvers. This means that experiments conducted before that time
are skewed towards BDDs, compared to what these experiments would reveal today.

The first batch is summarized in Fig. 7. It shows the results of verifying a 16 × 16
shift and add multiplier, as was first presented in [4]. This is a known hard problem
for BDDs. The property is the following: the output of the sequential multiplier is
the same as the output of a combinational multiplier applied to the same input words.
The property was verified for each of the 16 output bits separately, as shown in the
table. For verifying bit i , it is sufficient to set the bound k to i + 1. This is the reason
that the SAT instance becomes harder as the bit index increases. As a BDD model

142 A. BIERE ET AL.

Bit k SMV2 MB PROVER MB
0 1 25 79 < 1 1
1 2 25 79 < 1 1
2 3 26 80 < 1 1
3 4 27 82 1 2
4 5 33 92 1 2
5 6 67 102 1 2
6 7 258 172 2 2
7 8 1741 492 7 3
8 9 > 1GB 29 3
9 10 58 3

10 11 91 3
11 12 125 3
12 13 156 4
13 14 186 4
14 15 226 4
15 16 183 5

FIG. 7. Results in seconds and Mega-Byte of memory when verifying a 16 × 16 bit sequential shift
and add multiplier with overflow flag and 16 output bits.

Model k RULEBASE1 RULEBASE2 GRASP GRASP (tuned) CHAFF

Design 1 18 7 6 282 3 2.2
Design 2 5 70 8 1.1 0.8 < 1
Design 3 14 597 375 76 3 < 1
Design 4 24 690 261 510 12 3.7
Design 5 12 803 184 24 2 < 1
Design 6 22 * 356 * 18 12.2
Design 7 9 * 2671 10 2 < 1
Design 8 35 * * 6317 20 85
Design 9 38 * * 9035 25 131.6
Design 10 31 * * * 312 380.5
Design 11 32 152 60 * * 34.7
Design 12 31 1419 1126 * * 194.3
Design 13 14 * 3626 * * 9.8

FIG. 8. The IBM® benchmark: verifying various hardware designs with an in-house BDD model
checker (RULEBASE) and the SAT solver GRASP with and without special tuning. The last column presents
the results achieved with the newer SAT solver CHAFF on the same benchmark examples. Results are given
in seconds.

checker, we used B. Yang’s version of SMV, which is denoted in the table as SMV2.
The variable ordering for SMV was chosen manually such that the bits of registers
are interleaved. Dynamic reordering did not improve these results.

BOUNDED MODEL CHECKING 143

A second batch of comparisons was published in [27]. It presents a comparison
between RULEBASE, IBM’s BDD based symbolic model checker, and several SAT
solvers, when applied to 13 hardware designs with known bugs. The columns RULE-
BASE1 and RULEBASE2 represent results achieved by RULEBASE under two different
configurations. The first is the default configuration, with dynamic reordering. The
second is the same configuration without reordering, but the initial order is taken
from the order that was calculated with RULEBASE1. These two configurations rep-
resent a typical scenario of Model Checking with RULEBASE. Each time reordering
is activated, the initial order is potentially improved and saved in a special order file
for future runs. The column ‘GRASP’ contains results of solving the corresponding
BMC formulas with the SAT solver GRASP. The following column, ‘GRASP (tuned)’,
contains results of solving the same instances with a version of GRASP that is tuned
for BMC, as explained in the above reference. The last column was not part of the
original presentation in [27]; rather it was added for this article. It contains results
achieved by CHAFF on the same benchmarks, without any special tuning (CHAFF was
released after the above reference was published). The fact that CHAFF can solve all
instances, while GRASP, which was considered as the state of the art solver before
CHAFF, cannot solve it even with special tuning, demonstrates the great progress of
SAT solvers and the influence of this progress on BMC.

Model k FORECAST (BDD) THUNDER (SAT)
Circuit 1 5 114 2.4
Circuit 2 7 2 0.8
Circuit 3 7 106 2
Circuit 4 11 6189 1.9
Circuit 5 11 4196 10
Circuit 6 10 2354 5.5
Circuit 7 20 2795 236
Circuit 8 28 * 45.6
Circuit 9 28 * 39.9
Circuit 10 8 2487 5
Circuit 11 8 2940 5
Circuit 12 10 5524 378
Circuit 13 37 * 195.1
Circuit 14 41 * *
Circuit 15 12 * 1070
Circuit 16 40 * *
Circuit 17 60 * *

FIG. 9. The Intel® benchmark: verifying various circuit designs with an in-house BDD model checker
(FORECAST) and an in-house SAT solver (THUNDER). Results are given in seconds.

144 A. BIERE ET AL.

k SMV PROVER

25 62280 85
26 32940 19
34 11290 586
38 18600 39
53 54360 1995
56 44640 2337
76 27130 619

144 44550 10820

FIG. 10. The Compaq® benchmark: verifying an Alpha microprocessor with BDDs (SMV) and SAT
(PROVER). Results are given in seconds.

The next benchmark examples was published in [14] by the formal methods group
of Intel. They compared the run time of their BDD model checker FORECAST and
their bounded model checker THUNDER (based on a SAT solver called SIMO) when
applied to 17 different circuit designs. The table in Fig. 9 summarizes the results of
their comparison when the two tools are run under their default configuration.5

Finally, Compaq published another batch of results obtained with industrial ex-
amples [6]. They used bounded model checking with the PROVER SAT solver for
finding bugs in the memory system of an advanced Alpha microprocessor. Their
conclusion was similar to the previous published comparative research: SAT based
bounded model checking can solve in a short amount of time examples that cannot
be solved with a BDD based model checker. Their results are summarized in Fig. 10.

8. Related Work and Conclusions

Verification techniques based on satisfiability checking have been used since the
early 90’s by G. Stålmarck and his company Prover Technologies [31]. The method
is based on the patented SAT solver PROVER [26], that is very effective in tackling
structured problems that arise from real-world designs. The work in [31] focuses on
checking correctness of designs by means of inductive reasoning, as was explained
in Section 5.3. Impressive results have been achieved in terms of integration of this
technique within the development process in several domains (see e.g., [7]).

The initial successes of BMC drew attention from the verification community. It
has been introduced in several model checkers (e.g., NuSMV [10]), and a number of
advances have been achieved in several directions, which we briefly describe now.

5Other tables in the above reference show that with manual intervention in choosing the variable order
the results can change in favor of FORECAST.

BOUNDED MODEL CHECKING 145

In [27], Strichman showed that it is possible to tune SAT solvers by exploiting
the structure of the problem being encoded in order to increase efficiency. Notable
contributions in [27] and [28] are the use of problem-dependent variable ordering
and splitting heuristics in the SAT solver, pruning the search space by exploiting the
regular structure of BMC formulas, reusing learned information between the various
SAT instances and more. These improvements were the basis for the tuned SAT
solver presented in Fig. 8. The work in [32] pushes this idea further. It relies on
an incremental SAT solver, rather than on generating a new SAT instance for each
attempted bound. At each step, they add and remove clauses from a single SAT
instance, and this way retain the learned information from the previous instances,
as was independently suggested in [28].

A related development was the extension of Bounded Model Checking to Timed
Systems [2]. For this purpose they use MATHSAT [1], a SAT solver extended to deal
with linear constraints over real variables. The encoding style extends the encoding
for the untimed case, and uses constraints over real variables to represent the aspects
related to time.

The success of SAT in solving large problems led several groups to combine SAT
in various ways with other techniques used in verification, not just as part of BMC.
We will mention here two of these works. McMillan [21] recently introduced a SAT-
based unbounded CTL model checker. It is based on an quantifier elimination pro-
cedure similar to [23,24]. While the top level algorithm is basically the same as used
in BDD-based CTL model checking, sets of states are represented as CNF formulas
rather than with BDDs. This required a modification of the SAT solver in order to be
able to perform the key operation of quantifier elimination. His experimental results
show that this technique can compete with BDD based model checkers and in some
cases outperform it. Compared to BMC, it has the obvious advantage of reaching a
fixpoint after rd(M) steps, rather than after rdr(M) steps (see Section 5.1), which is
only an over approximation of rd(M). Currently there is no available data comparing
this technique to BMC.

SAT-based techniques have also been used in the framework of abstraction/
refinement [13]. While a BDD based model checker is used to prove the abstract
model, SAT solvers are used to check whether the counterexamples constructed in
the abstract space are real or spurious, and also to derive a refinement to the abstrac-
tion being applied. This procedure relies on the speed of SAT to check whether a
given trace (i.e., with a known length, as in BMC) is real. On the other hand it enjoys
the completeness guaranteed by using BDD based model checkers.

A recently published work by Baumgartener et al. [3] holds a large promise for
making BMC complete for a large class of hardware designs. They perform a struc-
tural analysis of the design in order to derive an over approximation of the reacha-
bility diameter, thus achieving completeness. The experiments show that the reach-

146 A. BIERE ET AL.

ability diameter of realistic designs can be reached, and hence the property can be
proved. This work was published only recently, and its effect is not yet clear. The au-
thors of [3] showed that for a large class of netlists, it is possible to find smaller reach-
ability diameters than those that are defined by formula (4). This requires a fairly
simple analysis of the netlist structure, identifying frequently occurring components
like memory registers, queue registers, etc., and identifying its Strongly Connected
Components (SCC). The overall reachability diameter is then defined recursively on
the reachability diameters of its individual SCCs. Their experiments showed that
many netlists have reachability diameters as small as 20, which means that they can
be easily proved with BMC. It is perhaps too early to judge to what degree this im-
provement will make BMC viable for verification, rather than for falsification alone.

Despite its recent introduction, Bounded Model Checking is now widely accepted
as an effective technique that complements BDD-based model checking. A typical
methodology applied in the industry today is to use both BMC and BDD based model
checkers as complementary methods. In some cases both tools are run in parallel, and
the first tool that finds a solution, terminates the other process. In other cases BMC is
used first to find quickly the more shallow bugs, and when this becomes too hard, an
attempt to prove that the property is correct is being made with a BDD based tool. In
any case, it is clear that together with the advancements in the more traditional BDD
based symbolic model checkers, formal verification of finite models has made a big
step forward in the last few years.

REFERENCES

[1] Audemard G., Bertoli P., Cimatti A., Kornilowicz A., Sebastiani R., “A SAT based ap-
proach for solving formulas over boolean and linear mathematical propositions”, in:
18th Internat. Conference of Automated Deduction (CADE’02), Copenhagen, in: Lec-
ture Notes in Artif. Intell., Springer-Verlag, Berlin, 2002.

[2] Audemard G., Cimatti A., Kornilowicz A., Sebastiani R., “Bounded model checking
for timed systems”, in: 22nd Joint International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE 2002), Houston, TX, in: Lecture Notes in
Comput. Sci., Springer-Verlag, Berlin, 2002.

[3] Baumgartner J., Kuehlmann A., Abraham J., “Property checking via structural analy-
sis”, in: Proc. 14th Internat. Conference on Computer Aided Verification (CAV’02), in:
Lecture Notes in Comput. Sci., Vol. 2404, 2002, pp. 151–165.

[4] Biere A., Cimatti A., Clarke E.M., Fujita M., Zhu Y., “Symbolic model checking using
SAT procedures instead of BDDs”, in: Design Automation Conference (DAC’99), 1999.

[5] Biere A., Cimatti A., Clarke E., Zhu Y., “Symbolic model checking without BDDs”, in:
Proc. of the Workshop on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’99), in: Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 1999.

BOUNDED MODEL CHECKING 147

[6] Bjesse P., Leonard T., Mokkedem A., “Finding bugs in an alpha microprocessor using
satisfiability solvers”, in: Berry G., Comon H., Finkel A. (Eds.), Proc. 12th Internat.
Conference on Computer Aided Verification (CAV’01), in: Lecture Notes in Comput. Sci.,
Springer-Verlag, Berlin, 2001.

[7] Boralv A., Stalmarck G., “Prover technology in railways”, in: Industrial-Strength Formal
Methods, Academic Press, New York, 1998.

[8] Bryant R.E., “Graph-based algorithms for Boolean function manipulation”, IEEE Trans-
actions on Computers C-35 (12) (1986) 1035–1044.

[9] Burch J.R., Clarke E.M., McMillan K.L., Dill D.L., Hwang L.J., “Symbolic model
checking: 1020 states and beyond”, Information and Computation 98 (2) (1992) 142–
170.

[10] Cimatti A., Clarke E.M., Giunchiglia E., Giunchiglia F., Pistore M., Roveri M., Sebas-
tiani R., Tacchella A., “NuSMV 2: An OpenSource tool for symbolic model checking”,
in: Proc. 14th Internat. Conference on Computer Aided Verification (CAV’02), in: Lec-
ture Notes in Comput. Sci., Vol. 2404, 2002, pp. 359–364.

[11] Clarke E.M., Emerson A., “Synthesis of synchronization skeletons for branching time
temporal logic”, in: Logic of Programs: Workshop, Yorktown Heights, in: Lecture Notes
in Comput. Sci., Vol. 131, Springer-Verlag, Berlin, 1981, pp. 52–71.

[12] Clarke E.M., Grumberg O., Peled D., Model Checking, MIT Press, Cambridge, MA,
1999.

[13] Clarke E.M., Gupta A., Kukula J., Strichman O., “SAT based abstraction-refinement
using ILP and machine learning techniques”, in: Proc. 14th Internat. Conference on
Computer Aided Verification (CAV’02), in: Lecture Notes in Comput. Sci., Vol. 2404,
Springer-Verlag, Berlin, 2002, pp. 265–279.

[14] Copty F., Fix L., Fraer R., Giunchiglia E., Kamhi G., Tacchella A., Vardi M.Y., “Benefits
of bounded model checking at an industrial setting”, in: Proc. 12th Internat. Conference
on Computer Aided Verification (CAV’01), in: Lecture Notes in Comput. Sci., Springer-
Verlag, Berlin, 2001, pp. 436–453.

[15] Coudert O., Madre J.C., “A unified framework for the formal verification of sequential
circuits”, in: Proc. IEEE International Conference on Computer-Aided Design, 1990.

[16] Davis M., Logemann G., Loveland D., “A machine program for theorem-proving”, Com-
munications of the ACM 5 (1962) 394–397.

[17] Davis M., Putnam H., “A computing procedure for quantification theory”, Journal of the
ACM 7 (1960) 201–215.

[18] Kautz H., Selman B., “Pushing the envelope: planning, propositional logic, and stochas-
tic search”, in: Proc. AAAI’96, Portland, OR, 1996.

[19] Lichtenstein O., Pnueli A., “Checking that finite state concurrent programs satisfy their
linear specification”, in: Proceedings of the 12th Annual ACM Symposium on Principles
of Programming Languages, 1985, pp. 97–107.

[20] McMillan K.L., Symbolic Model Checking, Kluwer Academic Publishers, Boston, 1993.
[21] McMillan K.L., “Applying SAT methods in unbounded symbolic model checking”, in:

Proc. 14th Internat. Conference on Computer Aided Verification (CAV’02), in: Lecture
Notes in Comput. Sci., Vol. 2404, Springer-Verlag, Berlin, 2002, pp. 250–264.

148 A. BIERE ET AL.

[22] Moskewicz M., Madigan C., Zhao Y., Zhang L., Malik S., “Chaff: Engineering an effi-
cient SAT solver”, in: Proc. Design Automation Conference 2001 (DAC’01), 2001.

[23] Plaisted D., Method for design verification of hardware and non-hardware systems,
United States Patent, 6,131,078, October, 2000.

[24] Plaisted D., Biere A., Zhu Y., “A satisfiability procedure for quantified boolean formu-
lae”, Discrete Applied Mathematics (2002), accepted for publication.

[25] Sheeran M., Singh S., Stalmarck G., “Checking safety properties using induction and
a SAT-solver”, in: Hunt W.A., Johnson S.D. (Eds.), Proc. Internat. Conf. on Formal
Methods in Computer-Aided Design (FMCAD 2000), 2000.

[26] Sheeran M., Stalmarck G., “A tutorial on Stalmarck’s method”, Formal Methods in Sys-
tem Design 16 (1) (2000).

[27] Shtrichman O., “Tuning SAT checkers for bounded model checking”, in: Emerson E.A.,
Sistla A.P. (Eds.), Proc. 12th Internat. Conference on Computer Aided Verification
(CAV’00), in: Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 2000.

[28] Shtrichman O., “Prunning techniques for the SAT-based bounded model checking prob-
lem”, in: Proceedings of the 11th Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME’01), Edinburgh, 2001.

[29] Silva J.P.M., “The impact of branching heuristics in propositional satisfiability algo-
rithms”, in: 9th Portuguese Conference on Artificial Intelligence (EPIA), 1999.

[30] Silva J.P.M., Sakallah K.A., GRASP—a new search algorithm for satisfiability, Techni-
cal Report TR-CSE-292996, University of Michigan, 1996.

[31] Stålmarck G., Säflund M., “Modelling and verifying systems and software in proposi-
tional logic”, in: Proc. SAFECOMP’90, 1990.

[32] Whittemore J., Kim J., Sakallah K.A., “Satire: A new incremental satisfiability engine”,
in: Design Automation Conference (DAC’01), 2001, pp. 542–545.

	Bounded Model Checking
	Introduction
	Model Checking
	Bounded Model Checking
	Reducing Bounded Model Checking to SAT
	Techniques for Completeness
	The Completeness Threshold
	Liveness
	Induction

	Propositional SAT Solvers
	Experiments
	Related Work and Conclusions
	References

