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Overview	

•  DF	models	describe	concurrent	
computa=on	at	a	very	high	level	
– Each	actor	describes	non-trivial	computa=on.	

•  	Each	actor	is	oBen	described	in	C.	
– Can	be	mapped	to	either	HW	or	SW	

• Will	look	at	issues	in	mapping	C	to	HW.	
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Data	&	Control	Edges	of	C	Programs	

•  C	is	used	as	a	modeling	as	well	as	an	
implementa=on	language.	

•  Mapping	C	programs	to	HW	is	hard.	
– HW	is	parallel	while	C	is	sequen=al.	
– need	to	understand	the	structure	of	C	programs.	

•  Rela=ons	between	opera=ons	in	C	programs	
– Data	edges:	data	moved	from	one	op.	to	another.	
– Control	edge:	no	data	xfer.		
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Control	Flow	Graph	
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4.1 Data and Control Edges of a C Program 91

Control Edges Data Edges

1

2

3 4

5

1

2

3 4

5

a, b

b
a

r r

int max(int a, b)

if (a > b)

r = a r = b

return r;

(a>b)

Fig. 4.1 Control edges and data edges of a simple C program

// produce r
return r; // operation 5 - consume r

}

The data edges are defined between operations of corresponding production/
consumption. For example, operation 1 defines the value of a and b. Several
operations will make use of those values. The value of a is used by operations 2
and 3. Therefore there is a data edge from operations 1 to 2, as well as a data edge
from operations 1 to 3. The same goes for the value of b, which is produced in
operation 1 and consumed in operations 2 and 4. There is a data edge for b from
operations 1 to 2, as well as from operations 1 to 4.

Control statements in C may produce data edges as well. In this case, the if-
then-else statement evaluates a flag, and the value of that flag is needed before
subsequent operations can execute. For example, operation 3 will only execute when
the conditional expression (a>b) is true. We can think of a boolean flag carrying
the value of (a>b) from operations 2 to 3. Similarly, operation 4 will only execute
when the conditional expression (a>b) is false. There is a boolean flag carrying
the value of (a>b) from operations 2 to 4.

The data edges and control edges of the operations from the max function can
be arranged in a graph, where each operation represents a node. The result is shown
in Fig. 4.1, and it represents the control flow graph (CFG) and the data flow graph
(DFG) for the program. Control edges express a general relation between two nodes
(operations), while data edges express a relation between two nodes for a specific
variable. Therefore, data edges are labeled with that variable.

We will now explore the properties of control edges and data edges more
carefully, and evaluate how the CFG and DFG can be created systematically for
a more complex C program.

1			int	x(a,	b)	{	
								int	r;	
2						if	(a	>	b)	
3									r	=	a;	
								else	
4  					r	=	b;	
5						return	r;	
					}	

Control	edges	are	oBen	labeled	with	condi=ons	whose	
sa=sfac=on	dictates	if	a	control	can	be	taken.	



Data	Flow	Graph	
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// produce r
return r; // operation 5 - consume r

}

The data edges are defined between operations of corresponding production/
consumption. For example, operation 1 defines the value of a and b. Several
operations will make use of those values. The value of a is used by operations 2
and 3. Therefore there is a data edge from operations 1 to 2, as well as a data edge
from operations 1 to 3. The same goes for the value of b, which is produced in
operation 1 and consumed in operations 2 and 4. There is a data edge for b from
operations 1 to 2, as well as from operations 1 to 4.

Control statements in C may produce data edges as well. In this case, the if-
then-else statement evaluates a flag, and the value of that flag is needed before
subsequent operations can execute. For example, operation 3 will only execute when
the conditional expression (a>b) is true. We can think of a boolean flag carrying
the value of (a>b) from operations 2 to 3. Similarly, operation 4 will only execute
when the conditional expression (a>b) is false. There is a boolean flag carrying
the value of (a>b) from operations 2 to 4.

The data edges and control edges of the operations from the max function can
be arranged in a graph, where each operation represents a node. The result is shown
in Fig. 4.1, and it represents the control flow graph (CFG) and the data flow graph
(DFG) for the program. Control edges express a general relation between two nodes
(operations), while data edges express a relation between two nodes for a specific
variable. Therefore, data edges are labeled with that variable.

We will now explore the properties of control edges and data edges more
carefully, and evaluate how the CFG and DFG can be created systematically for
a more complex C program.

1			int	max(int	a,	b)	{	
								int	r;	
2						if	(a	>	b)	
3									r	=	a;	
								else	
4  					r	=	b;	
5						return	r;	
					}	

Data	edges	are	labeled	with	variables	upon		which	one	opera=on	
depends	on	another		



Implemen@ng	Control/Data	Edges	

•  A	data	edge	=>	flow	of	informa=on	
– Must	be	implemented.	

•  A	control	edge	=>	result	of	seman=cs	of	
program	language	
– Maybe	ignore	or	changed	if	the	behavior	
remains	the	same.	
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int	sum(int	a,	b,	c)	{	
					int	v1;	
					v1	=	a	+	b;				//	op	2	
					v2	=	v1	+	c;		//	op	3	
					return	v2;	
}	

4.3 Construction of the Control Flow Graph 93
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Fig. 4.2 Hardware implementation of a chained addition

It is straightforward to draw a fully parallel hardware implementation of this
function. This implementation is shown, together with the data flow graph and
control flow graph of the function, in Fig. 4.2. The similarity between the set of
data edges and the interconnection pattern of the hardware is obvious. The control
edges, however, carry no meaning for the hardware implementation, since hardware
is parallel. The structure shown on the right of Fig. 4.2 will complete the addition in
a single clock cycle.

The next section will introduce a systematic method to derive the control flow
graph and the data flow graph of C programs.

4.3 Construction of the Control Flow Graph

A C program can be systematically converted into an intermediate representation
called a Control Flow Graph (CFG). A CFG is a graph that contains all the control
edges of a program. Each node in the graph represents a single operation (or C
statement). Each edge of the graph indicates a control edge, i.e. an execution order
for the two operations connected by that edge.

Since C executes sequentially, this conversion is straightforward. However, some
cases require further attention. Control statements (such as loops) may require
multiple operations. In addition, when decision-making is involved, multiple control
edges may originate from a single operation.

Consider the for loop in C, as illustrated next.

for (i=0; i < 20; i++) {
// body of the loop

}

Implemen@ng	Control/Data	Edges	

Control	edges	are	meaningless	as	HW	is	parallel.	
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int	sum(int	a,	b,	c,	d)	{//	op	1	
					int	v1;	
					v1	=	a	+	b;				 	//	op	2	
					v2	=	c	+	d;		 	 	//	op	3	
					return	v1	+	v2; 	//	op	4	
}	

Control/Data	Edges	–	Example	



Basic	Elements	of	CFG	
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94 4 Analysis of Control Flow and Data Flow

for (i=0; i < 20; i++) {
// body of the loop

}
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Fig. 4.3 CFG of a for loop

if(a < b) {
// true branch

} else {
// false branch

}

while (a < b) {
// loop body

}

do {
// loop body

} while (a<b)

entry

1

1 1

1
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exit
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1
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entry
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exit
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Fig. 4.4 CFG of if-then-else, while-do, do-while

This statement includes four distinct parts: the loop initialization, the loop
condition, the loop-counter increment operation, and the body of the loop. The for
loop thus contributes three operations to the CFG, as shown in Fig. 4.3. The dashed
nodes in this figure (entry, exit, body) represent other parts of the C program,
each of which is a complete single-entry, single-exit CFG.

The do-while loop and the while-do loop are similar iterative struc-
tures. Figure 4.4 illustrates a template for each of them, as well as for the
if-then-else statement.

As an example, let’s create the CFG of the following C function. This function
calculates the Greatest Common Divisor (GCD) using Euclid’s algorithm.

int gcd(int a, int b) {
while (a != b) {
if (a > b)

a = a - b;



Construc@on	of	CFG	
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This statement includes four distinct parts: the loop initialization, the loop
condition, the loop-counter increment operation, and the body of the loop. The for
loop thus contributes three operations to the CFG, as shown in Fig. 4.3. The dashed
nodes in this figure (entry, exit, body) represent other parts of the C program,
each of which is a complete single-entry, single-exit CFG.

The do-while loop and the while-do loop are similar iterative struc-
tures. Figure 4.4 illustrates a template for each of them, as well as for the
if-then-else statement.

As an example, let’s create the CFG of the following C function. This function
calculates the Greatest Common Divisor (GCD) using Euclid’s algorithm.

int gcd(int a, int b) {
while (a != b) {
if (a > b)

a = a - b;
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This statement includes four distinct parts: the loop initialization, the loop
condition, the loop-counter increment operation, and the body of the loop. The for
loop thus contributes three operations to the CFG, as shown in Fig. 4.3. The dashed
nodes in this figure (entry, exit, body) represent other parts of the C program,
each of which is a complete single-entry, single-exit CFG.

The do-while loop and the while-do loop are similar iterative struc-
tures. Figure 4.4 illustrates a template for each of them, as well as for the
if-then-else statement.

As an example, let’s create the CFG of the following C function. This function
calculates the Greatest Common Divisor (GCD) using Euclid’s algorithm.

int gcd(int a, int b) {
while (a != b) {
if (a > b)
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This statement includes four distinct parts: the loop initialization, the loop
condition, the loop-counter increment operation, and the body of the loop. The for
loop thus contributes three operations to the CFG, as shown in Fig. 4.3. The dashed
nodes in this figure (entry, exit, body) represent other parts of the C program,
each of which is a complete single-entry, single-exit CFG.

The do-while loop and the while-do loop are similar iterative struc-
tures. Figure 4.4 illustrates a template for each of them, as well as for the
if-then-else statement.

As an example, let’s create the CFG of the following C function. This function
calculates the Greatest Common Divisor (GCD) using Euclid’s algorithm.

int gcd(int a, int b) {
while (a != b) {
if (a > b)

a = a - b;
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1: int gcd(int a, int b) {
2:   while (a != b) {
3:     if (a > b)
4:       a = a - b;

else
5:       b = b - a;

}
6:   return a;

}
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Fig. 4.5 CFG of the CGD
program

else
b = b - a;

}
return a;

}

To construct the CFG of this program, we convert each statement to one or more
operations in the CFG, and then connect the operations using control edges. The
result of this conversion is shown in Fig. 4.5.

In a CFG it is useful to define a control path, a path between two nodes in the
CFG. For example, each non-terminating iteration of the while loop of the C
program will follow either the path 2-3-4-2 or else 2-3-5-2. Control paths will be
important in the construction of the data flow graph (DFG), which is discussed next.

4.4 Construction of the Data Flow Graph

A C program can be systematically converted into a data structure called a Data
Flow Graph (DFG). A DFG is a graph that reflects all the data edges of a program.
Each node in the graph represents a single operation (or C statement). Each edge of
the graph indicates a data edge, i.e. a production/consumption relationship between
two operations in the program.

Obviously, the CFG and the DFG will contain the same set of nodes. Only the
edges will be different. Since a variable in C can be written-to/read-from an arbitrary
number of times, it can be difficult to find matching read-write pairs in the program.
The easiest way to construct a DFG is to first construct the CFG, and then use
the CFG in combination with the C program to derive the DFG. The trick is to trace
control paths, and at the same time identify corresponding read- and write operations
of variables.

Let’s assume that we’re analyzing programs without array expressions and
pointers; we will extend our conclusions later to those other cases as well. The
procedure to recover the data edges related to assignment statements is as follows.

1. In the CFG, select a node where a variable is used as an operand in an expression.
Mark that node as a read-node.

2. Find the CFG nodes that assign that variable. Mark those nodes as write-nodes.

A	control	path	in	CFG	corresponds	to	a	sequence	of	execu=ons	of	
statements	
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We may be able to relax the analysis requirements, and simplify the data-flow
analysis. In many applications, the upper bound and lower bound of an index
expression is known. In that case, we may consider any write operation into the
range of indices as a single write, and any read operation into the range of indices
as a single read. For cases when an entire range of indices would map into a single
memory (a single register file, or a single-port RAM memory), this type of data-flow
analysis may be adequate.

We illustrate this approach using the following example. The CFG of the
following loop is shown in Fig. 4.8.

int L[3] = {10, 20, 30};
for (int i=1; i<3; i++)

L[i] = L[i] + L[i-1];

To create a DFG for this program, proceed as before. For each node that reads
from a variable, find the nodes that write into that variable over a direct path in the

4.4 Construction of the Data Flow Graph 95

1: int gcd(int a, int b) {
2:   while (a != b) {
3:     if (a > b)
4:       a = a - b;

else
5:       b = b - a;

}
6:   return a;

}
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else
b = b - a;

}
return a;

}

To construct the CFG of this program, we convert each statement to one or more
operations in the CFG, and then connect the operations using control edges. The
result of this conversion is shown in Fig. 4.5.

In a CFG it is useful to define a control path, a path between two nodes in the
CFG. For example, each non-terminating iteration of the while loop of the C
program will follow either the path 2-3-4-2 or else 2-3-5-2. Control paths will be
important in the construction of the data flow graph (DFG), which is discussed next.

4.4 Construction of the Data Flow Graph

A C program can be systematically converted into a data structure called a Data
Flow Graph (DFG). A DFG is a graph that reflects all the data edges of a program.
Each node in the graph represents a single operation (or C statement). Each edge of
the graph indicates a data edge, i.e. a production/consumption relationship between
two operations in the program.

Obviously, the CFG and the DFG will contain the same set of nodes. Only the
edges will be different. Since a variable in C can be written-to/read-from an arbitrary
number of times, it can be difficult to find matching read-write pairs in the program.
The easiest way to construct a DFG is to first construct the CFG, and then use
the CFG in combination with the C program to derive the DFG. The trick is to trace
control paths, and at the same time identify corresponding read- and write operations
of variables.

Let’s assume that we’re analyzing programs without array expressions and
pointers; we will extend our conclusions later to those other cases as well. The
procedure to recover the data edges related to assignment statements is as follows.

1. In the CFG, select a node where a variable is used as an operand in an expression.
Mark that node as a read-node.

2. Find the CFG nodes that assign that variable. Mark those nodes as write-nodes.
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else
b = b - a;

}
return a;

}

To construct the CFG of this program, we convert each statement to one or more
operations in the CFG, and then connect the operations using control edges. The
result of this conversion is shown in Fig. 4.5.

In a CFG it is useful to define a control path, a path between two nodes in the
CFG. For example, each non-terminating iteration of the while loop of the C
program will follow either the path 2-3-4-2 or else 2-3-5-2. Control paths will be
important in the construction of the data flow graph (DFG), which is discussed next.

4.4 Construction of the Data Flow Graph

A C program can be systematically converted into a data structure called a Data
Flow Graph (DFG). A DFG is a graph that reflects all the data edges of a program.
Each node in the graph represents a single operation (or C statement). Each edge of
the graph indicates a data edge, i.e. a production/consumption relationship between
two operations in the program.

Obviously, the CFG and the DFG will contain the same set of nodes. Only the
edges will be different. Since a variable in C can be written-to/read-from an arbitrary
number of times, it can be difficult to find matching read-write pairs in the program.
The easiest way to construct a DFG is to first construct the CFG, and then use
the CFG in combination with the C program to derive the DFG. The trick is to trace
control paths, and at the same time identify corresponding read- and write operations
of variables.

Let’s assume that we’re analyzing programs without array expressions and
pointers; we will extend our conclusions later to those other cases as well. The
procedure to recover the data edges related to assignment statements is as follows.

1. In the CFG, select a node where a variable is used as an operand in an expression.
Mark that node as a read-node.

2. Find the CFG nodes that assign that variable. Mark those nodes as write-nodes.

CFG	

Par=al	DFG	
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}

To construct the CFG of this program, we convert each statement to one or more
operations in the CFG, and then connect the operations using control edges. The
result of this conversion is shown in Fig. 4.5.

In a CFG it is useful to define a control path, a path between two nodes in the
CFG. For example, each non-terminating iteration of the while loop of the C
program will follow either the path 2-3-4-2 or else 2-3-5-2. Control paths will be
important in the construction of the data flow graph (DFG), which is discussed next.

4.4 Construction of the Data Flow Graph

A C program can be systematically converted into a data structure called a Data
Flow Graph (DFG). A DFG is a graph that reflects all the data edges of a program.
Each node in the graph represents a single operation (or C statement). Each edge of
the graph indicates a data edge, i.e. a production/consumption relationship between
two operations in the program.

Obviously, the CFG and the DFG will contain the same set of nodes. Only the
edges will be different. Since a variable in C can be written-to/read-from an arbitrary
number of times, it can be difficult to find matching read-write pairs in the program.
The easiest way to construct a DFG is to first construct the CFG, and then use
the CFG in combination with the C program to derive the DFG. The trick is to trace
control paths, and at the same time identify corresponding read- and write operations
of variables.

Let’s assume that we’re analyzing programs without array expressions and
pointers; we will extend our conclusions later to those other cases as well. The
procedure to recover the data edges related to assignment statements is as follows.

1. In the CFG, select a node where a variable is used as an operand in an expression.
Mark that node as a read-node.

2. Find the CFG nodes that assign that variable. Mark those nodes as write-nodes.
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We may be able to relax the analysis requirements, and simplify the data-flow
analysis. In many applications, the upper bound and lower bound of an index
expression is known. In that case, we may consider any write operation into the
range of indices as a single write, and any read operation into the range of indices
as a single read. For cases when an entire range of indices would map into a single
memory (a single register file, or a single-port RAM memory), this type of data-flow
analysis may be adequate.

We illustrate this approach using the following example. The CFG of the
following loop is shown in Fig. 4.8.

int L[3] = {10, 20, 30};
for (int i=1; i<3; i++)

L[i] = L[i] + L[i-1];

To create a DFG for this program, proceed as before. For each node that reads
from a variable, find the nodes that write into that variable over a direct path in the
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1

1: int L[3] = {10, 20, 30};

2:   for (int i=1; i<3; i++)
3:     L[i] = L[i] + L[i-1];
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Fig. 4.8 CFG for a simple loop with an indexed variable
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Fig. 4.9 DFG for a simple loop with an indexed variable

CFG. As discussed above, we can handle the analysis of the indexed variable L in
two different ways. In the first approach, we look upon L as a single monolithic
variable, such that a read from any location from L is treated as part of the same
data edge. In the second approach, we distinguish individual locations of L, such
that each location of L may contribute to a different data edge. The first approach is
illustrated in Fig. 4.9a, while the second approach is illustrated in Fig. 4.9b.

When the individual locations of L cannot be distinguished with a data edge,
additional information is needed to extract the entry of interest. For this reason,
node 3 in Fig. 4.9a has an additional data edge to provide the loop counter i. Thus,
in Fig. 4.9a, reading entry L[i] means: read all the entries of L and then select one
using i. In Fig. 4.9b, reading entry L[i] means three different read operations, one
for each value of i.

Index analysis on arbitrary C programs quickly becomes very hard to solve. Yet,
hardware-software codesigners often only have a C program to start their design

CFG	

How	to	treat	indexed	variables	in	
DFG	construc=on?	
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3:     L[i] = L[i] + L[i-1];

2a

2b

3

2c

exit
2a 2b 2c

Fig. 4.8 CFG for a simple loop with an indexed variable
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Fig. 4.9 DFG for a simple loop with an indexed variable

CFG. As discussed above, we can handle the analysis of the indexed variable L in
two different ways. In the first approach, we look upon L as a single monolithic
variable, such that a read from any location from L is treated as part of the same
data edge. In the second approach, we distinguish individual locations of L, such
that each location of L may contribute to a different data edge. The first approach is
illustrated in Fig. 4.9a, while the second approach is illustrated in Fig. 4.9b.

When the individual locations of L cannot be distinguished with a data edge,
additional information is needed to extract the entry of interest. For this reason,
node 3 in Fig. 4.9a has an additional data edge to provide the loop counter i. Thus,
in Fig. 4.9a, reading entry L[i] means: read all the entries of L and then select one
using i. In Fig. 4.9b, reading entry L[i] means three different read operations, one
for each value of i.

Index analysis on arbitrary C programs quickly becomes very hard to solve. Yet,
hardware-software codesigners often only have a C program to start their design

Treat	L	as	a	single	
monolithic	variable		

Loca=ons	of	L	are	treated	
individually	
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CFG. As discussed above, we can handle the analysis of the indexed variable L in
two different ways. In the first approach, we look upon L as a single monolithic
variable, such that a read from any location from L is treated as part of the same
data edge. In the second approach, we distinguish individual locations of L, such
that each location of L may contribute to a different data edge. The first approach is
illustrated in Fig. 4.9a, while the second approach is illustrated in Fig. 4.9b.

When the individual locations of L cannot be distinguished with a data edge,
additional information is needed to extract the entry of interest. For this reason,
node 3 in Fig. 4.9a has an additional data edge to provide the loop counter i. Thus,
in Fig. 4.9a, reading entry L[i] means: read all the entries of L and then select one
using i. In Fig. 4.9b, reading entry L[i] means three different read operations, one
for each value of i.

Index analysis on arbitrary C programs quickly becomes very hard to solve. Yet,
hardware-software codesigners often only have a C program to start their design

Treat	L	as	a	single	
monolithic	variable		

Loca=ons	of	L	are	treated	
individually	

L[2]	
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int L[3] = {10, 20, 30};

L[1] = L[1] + L[0];
L[2] = L[2] + L[1];



Transla@ng	C	to	HW	

•  Assump=ons:	
– Scalar	C	programs	–	no	pointers	and	arrays	
– Implement	each	statement	in	a	clock	cycle.	

•  Basic	Idea	
– Construct	CFG	and	DFG	
– CFG	=>	controller	(control	edge	->	control	sig.)	
– DFG	=>	datapath	(data	edges	->	comp	conn.)	

•  	Not	very	efficient	–	exist	many	op=miza=on	
opportuni=es	

20 
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RTL Architecture 201

6.1 RTL ARCHITECTURE
RTL architecture consists of two basic components: a controller and a datap-

ath as shown in Figure 6.2. The controller indicates the state of the architecture
and provides control signals to the datapath for every clock cycle. It also re-
ceives some control inputs and outputs for coordination with other components
in the platform. The datapath, on the other hand, receives the data, executes
the assigned functions, and outputs the results. Each datapath also outputs sta-
tus signals to the controller, which are then used to determine the next step in
computation.

Control
Signals

Controller

Control
Outputs

Control
Inputs

Datapath

Data
Inputs

Data
Outputs

Status
Signals

FIGURE 6.2 High-level block diagram

The more detailed RTL architecture of a controller and a datapath is shown
in Figure 6.3. We can define a simple controller for the simple HW components
such as memory controllers, interrupt controllers, bridges, transducers, arbiters,
and other interface components with a Finite State Machine (FSM). A FSM
consists of a State Register (SR) that contains the state of the FSM and two
logic components: input logic and output logic. Input logic computes the next
state of the FSM from the present state and the control inputs, while the output
logic defines the control signals for the Datapath and control outputs from the
present state and the control inputs.
A datapath contains different RTL components such as registers, register

files, and memories for storage of data, as well as different functional units for
computation, such as ALUs, and the MULs. Each storage and functional unit
can take one or more clock cycles and can be pipelined in one or more stages.
These units can be connected with busses or with point-to-point connections
through selectors. Of course, some of the units can be chained so that data from
one unit to the other unit goes directly or through a register. Each unit may
have input and output registers for storing temporary data or for data forwarding.
Some or all register-to-register paths can be pipelined so that several different
operations can be executed concurrently in different pipeline stages, although
each operation takes approximately the same amount of time to execute.



Transla@ng	C	to	HW:	Building	Datapath	

•  Each	variable	=>	a	register	
•  MUX	is	used	if	a	variable	is	updated	in	
mul=ple	statements.	
•  Each	expression	=>	a	combina=onal	logic	
– Condi=onal	expressions	=>	flags	to	controller	

•  Datapath	circuits	and	registers	are	
connected	according	to	data	edges	in	DFG.	

22 
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100 4 Analysis of Control Flow and Data Flow

1: int gcd(int a, int b) {
2:   while (a != b) {
3:     if (a > b)
4:       a = a - b;

else
5:       b = b - a;

}
6:   return a;

}

a b

in_a

!=

>

flag_while

flag_if

- -

in_b

upd_a
upd_b

out_a

Fig. 4.10 Hardware implementation of GCD datapath

circuit with a register. Each data edge connects a register with the input of a
combinational circuit. Finally, we also connect the system-inputs and system-
outputs to inputs of datapath circuits and register outputs respectively.

The GCD program can now be converted into a hardware implementation as
follows. We need two registers, for each of the variables a and b. The conditional
expressions for the if and while statement need an equality-comparator and a
bigger-then comparator. The subtractions b-a and a-b are implemented using a
subtractor. The connectivity of the components is defined by the data edges of the
DFG.

The resulting datapath has two data inputs (in a and in b), and one data output
(out a). The circuit requires two control variables (upd a and upd b) to operate,
and it produces two flags (flag while and flag if). The control variables and
the flags are the ouputs and inputs, respectively, of the controller of this datapath,
see Fig. 4.10.

4.5.2 Designing the Controller

How do we create the controller for this datapath such that it implements the GCD
algorithm? This control information is present in the C program, and is captured
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circuit with a register. Each data edge connects a register with the input of a
combinational circuit. Finally, we also connect the system-inputs and system-
outputs to inputs of datapath circuits and register outputs respectively.

The GCD program can now be converted into a hardware implementation as
follows. We need two registers, for each of the variables a and b. The conditional
expressions for the if and while statement need an equality-comparator and a
bigger-then comparator. The subtractions b-a and a-b are implemented using a
subtractor. The connectivity of the components is defined by the data edges of the
DFG.

The resulting datapath has two data inputs (in a and in b), and one data output
(out a). The circuit requires two control variables (upd a and upd b) to operate,
and it produces two flags (flag while and flag if). The control variables and
the flags are the ouputs and inputs, respectively, of the controller of this datapath,
see Fig. 4.10.

4.5.2 Designing the Controller

How do we create the controller for this datapath such that it implements the GCD
algorithm? This control information is present in the C program, and is captured

b-a	a-b	
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4.5 Application: Translating C to Hardware 101

s1

s2

s3

s4 s5

s6

_  / run1

flag_while / _

! flag_if / _flag_if / _

! flag_while / _

_ / run5

_ / run4

Fig. 4.11 Control
specification for the GCD
datapath

in the CFG. In fact, we can translate the CFG almost directly into hardware, by
considering it to be a finite state machine (FSM) specification.

A finite-state machine (FSM) specification for the GCD algorithm is shown in
Fig. 4.11. The correspondence with the CFG is obvious. Each of the transitions
in this FSM takes one clock cycle to complete. The activities of the FSM are
expressed as condition/command tuples. For example, /run1 means that during
this clock cycle, the condition flags are don’t-care, while the command for the
datapath is the symbol run1. Similarly, flag while/ means that this transition
is conditional on flag while being true, and that the command for the dapath is
a hold operation. A hold operation is one which does not change the state of the
datapath, including registers. The command set for this FSM includes ( , run1,
run4, run5). Each of these symbols represents the execution of a particular
node of the CFG. The datapath control signals can be created by additional decoding
of these command signals. In this case of the GCD, the datapath control signals
consist of the selection signals of the datapath multiplexers.

A possible implementation of the GCD controller is shown in Fig. 4.12. Each
clock cycle, the controller generates a new command based on the current state
and the value of flag while and flag if. The commands run1, run4 and
run5 are decoded into upd a and upd b. The table in Fig. 4.12 indicates how each
command maps into these control signals. The resulting combination of datapath
and finite state machine, as illustrated in Fig. 4.12 is called a Finite State Machine
with Datapath (FSMD). This concept is central to custom hardware design, and we
will discuss design and modeling of FSMD in detail in Chap. 5.

The operation of this hardware circuit is illustrated with an example in Table 4.1.
Each row of the table corresponds to one clock cycle. It takes eight clock cycles to
evaluate the greatest common divisor of 6 and 4.

Label	CFG	edges	with	flags	
from	datapath	and	ac=ons	
that	DP	should	perform,	
and	implement	CFG	as	
FSM.	
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upd_bupd_ainstruction
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a - b 
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command
{_, run1, run4, run5}Datapath

in_a in_b

out_a

flag_while
flag_if

upd_a
upd_b Lookup Table

Fig. 4.12 Controller implementation for the GCD datapath

Table 4.1 Operation of the hardware to evaluate GCD(4,6)

Cycle a b State flag if flag while Next state upd a upd b

1 s1 s2 in a in b
2 6 4 s2 1 1 s3 a b
3 6 4 s3 1 1 s4 a b
4 6 4 s4 1 1 s2 a-b b
5 2 4 s2 0 1 s3 a b
6 2 4 s3 0 1 s5 a b
7 2 4 s5 0 1 s2 a b-a
8 2 2 s2 0 0 s6 a b
9 2 2 s6 s6 a b

In conclusion, the DFG and CFG of a C program can be used to create and
implement a hardware circuit. Of course, there are many sub-optimal elements
left. First, we did not address the use of arrays and pointers. Second, the resulting
implementation in hardware is not very impressive: the resulting parallelism is
limited to a single C statement per clock cycle, and operations cannot be shared
over operator implementations. For instance, two substractors are implemented in
hardware in Fig. 4.10, but only one is used at any particular clock cycle.



Limita@ons	

•  Each	variable	mapped	to	a	register.	
•  A	func=onal	unit	is	allocated	to	every	
operator.	
•  Performance	bojleneck	as	a	single	
statement	is	executed	in	a	single	clock	
cycle.	
– Processor	is	already	doing	this.	
– Can	mul=ple	statements	be	executed	in	a	
cycle?	

26 



Transla@ng	C	to	HW:	Single-Assignment	Form	

•  Each	variable	is	assigned	exactly	once.	
•  To	improve	efficiency	of	the	HW	
implementa=on.	

27 

a = a + 1; 
a = a * 3; 
a = a – 2; 

a2 = a1 + 1; 
a3 = a2 * 3; 
a4 = a3 – 2; 
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int gcd(int a, b) { 
   while (a != b) { 
        if (a > b) 
           a = a – b; 
        else 
           b = b – a; }  
    return a; } 

int gcd(int a1, b1) { 
   while (merge(a1, a2) != merge(b1, b2)) { 
        a3 = merge(a1, a2); 
        b3 = merge(b1, b2); 
        if (a3 > b3) 
           a2 = a3 – b3; 
        else 
           b2 = b3 – a3; }  
    return a; } 



Transla@ng	C	to	HW:	Single-Assignment	Form	

29 

4.6 Single-Assignment Programs 105

b1a1

b2a2

>

- -

!=

flag_while

flag_while

a3 b3

Fig. 4.13 GCD datapath
from single-assignment code

The equivalent single-assignment form of the GCD is shown below. The condi-
tional expression in the while statement uses variables from either the function
input or else the body of the loop. For this reason, the conditional expression uses
the merge function as an operand.

int gcd(int a1, int b1) {
while (merge(a1, a2) != merge(b1, b2)) {
a3 = merge(a1, a2);
b3 = merge(b1, b2);
if (a3 > b3)

a2 = a3 - b3;
else

b2 = b3 - a3;
}
return a2;

}

A single assignment program such as this one is valuable because it visualizes the
data edges in the source code of the program, making the connection with hardware
more obvious. Furthermore, the merge functions can be mapped into multiplexers
in hardware. A possible datapath corresponding to this single-assignment version of
GCD is shown in Fig. 4.13. This datapath looks very much like the previous design
(Fig. 4.10), but this design was derived from a C program with four assignments.

int gcd(int a1, b1) { 
   while (merge(a1, a2) != merge(b1, b2)) { 
        a3 = merge(a1, a2); 
        b3 = merge(b1, b2); 
        if (a3 > b3) 
           a2 = a3 – b3; 
        else 
           b2 = b3 – a3; }  
    return a; } 



Reading	Guide	

•  Chapter	4,	the	CoDesign	book.	
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