System-on-Chip Design
Analysis of Control Data Flow

Hao Zheng
Comp Sci & Eng
U of South Florida

Overview

e DF models describe concurrent
computation at a very high level

— Each actor describes non-trivial computation.

* Each actor is often described in C.
— Can be mapped to either HW or SW

* Will look at issues in mapping C to HW.

Data & Control Edges of C Programs

* Cis used as a modeling as well as an
implementation language.

* Mapping C programs to HW is hard.
— HW is parallel while C is sequential.
— need to understand the structure of C programes.

* Relations between operations in C programs
— Data edges: data moved from one op. to another.
— Control edge: no data xfer.

Control Flow Graph

Control Edges

1 intx(a, b){

int max (int a, b)

int r;

2 if(a>b)

3 r=a; if (> b
else

4 r=b; —

5 returnr;

}

Control edges are often labeled with conditions whose
satisfaction dictates if a control can be taken.

Data Flow Graph

Data Edges

1 int max(int a, b) {

int r;

2 if(a>b)
3 r=a;
else
4 r=b;
5 returnr;

}

Data edges are labeled with variables upon which one operation
depends on another

Implementing Control/Data Edges

* A data edge => flow of information
— Must be implemented.

* A control edge => result of semantics of
program language

—Maybe ignore or changed if the behavior
remains the same.

Implementing Control/Data Edges

Control Edges Data Edges Hardware Implementation

] . a a b ¢
int sum(int a, b, c) { b

int vl;

vi=a+b; //op2 (2 (2 |

v2=vl+c; //op3 vi

return v2; e e

V2

Control edges are meaningless as HW is parallel.

Control/Data Edges — Example

int sum(inta, b, c,d){//op1

int vl;
vl=a+b; // op 2
v2 =c+d; // op 3

return vl + v2; // op 4
}

Basic Elements of CFG

® @ ©

for (i=0; i < 20; i++) {
// body of the loop
}

Construction of CFG
O

if(a < b) {
// true branch

} else {
// false branch

¢¢¢¢¢¢¢
’ ~,

7’

\\ R
~o -
S ———

~~~~~~~~~
’

. ’
~ -
‘‘‘‘‘‘‘‘

10



Construction of CFG

®

while (a < b) {
// loop body

"



Construction of CFG

do {
// loop body
} while (a<b)

12



Construction of CFG: GCD

1
1: int gcd(int a, int b) {
2 while (a !'= b) {
3: if (a > Db) sl 2 6
4 a = a - b;
else

5: b =Db - a; 3

}
6: | return a; 4 5

A control path in CFG corresponds to a sequence of executions of
statements

13



Construction of DFG: GCD

1
2
3:
4
}

CFG

: int gcd(int a, int b) {

while (a != b) {
if (a > Db)

a =a - b;
else
b =Db - a;
}
return a;

W/
\)

Partial DFG

14



Construction of DFG: GCD

1: int gcd(int a, int b) {
2 while (a !'= b) {
3: if (a > b)
4 a =a - b;
else
S5: b =D0b - a;

}

o: return a;

}

15



Construction of CFG/DFG

1l: int L[3] = {10, 20, 30};

e & ® -
2 for (int i=1; 1i<3; i++) A A s
3: L[i] = L[1i] + L[i-17;

How to treat indexed variables in
DFG construction? 2c

CFG

16



Construction of CFG/DFG

1: int L[3]

3: L[i]

Treat L as a single
monolithic variable

{10, 20, 30};

@ @ &

2 for (int 1=1,; 1<3; 1++)

L[1] + L[1-1];

17



1:

Construction of CFG/DFG

int L[3] = {10, 20, 30};
® @6 ( &

for (int 1=1; 1<3; 1i++) L[0], L[1], L[2]

L[i] = L[i] + L[i-1];
@i
L[1] L[2]

Locations of L are treated
individually

b

18



1:

DFG Analysis — Loop Unrolling

int L[3] = {10, 20, 30};

@ @ @

for (int 1i=1; 1<3; 1i++)
L[i] = L[i] + L[i-1];

int L[3] = {10, 20, 30};

L[1] = L[1] + L[O];
L[2] = L[2] + L[1];

19



Translating C to HW

* Assumptions:
—Scalar C programs — no pointers and arrays
—Implement each statement in a clock cycle.

* Basic ldea
— Construct CFG and DFG
— CFG => controller (control edge -> control sig.)
—DFG => datapath (data edges -> comp conn.)

* Not very efficient — exist many optimization
opportunities



HW RTL Architecture

Control Data
Inputs Inputs
Control
Signals
Controller Datapath

Status
Signals
Control Data

Outputs Outputs

21



Translating C to HW: Building Datapath

* Each variable => a register

* MUX is used if a variable is updated in
multiple statements.

* Each expression => a combinational logic

— Conditional expressions => flags to controller

* Datapath circuits and registers are
connected according to data edges in DFG.



Translating C to HW: Building Datapath

VW V VW 4
1: int gcd(int a, int b) { L’ [ ]
2 while (a != b) { a-b| ina in_b b-a
3: if (a > b) l i
4 - a =a - b; A\ upd_a VvV
else \_fup%\_J
5: b =Db - a; y /
} D a > b
o return a; \[ - L
flag_while
—{ >
\
out_a

23



Translating C to HW: Building Controller

1: int gcd(int a, int b) {
2 while (a != b) {
3: if (a > b)
4: a =a - b;
else

5: b =Db - a;

}
6: return a;

}

Label CFG edges with flags
from datapath and actions
that DP should perform,
and implement CFG as
FSM.

_/runi

VvV

| flag_while / _
>\ S6

flag_while / _

/ run4

flag_if / _ | flag_if / _

24



Translating C to HW: Building Controller

in_a in_b

—> flag_while

—> flag_if
Datapath ?
<—— upd_a
<—— upd_b
out_a

flag_while

y flag_if

D state J/

Next-state Logic

command
{_, run1, run4, run5}

Lookup Table
instruction upd_a upd_b
_ a b
runt a_in b_in

run4 a-b b
run5 a b-a

upd_a upd_b

25



Limitations

* Each variable mapped to a register.

* A functional unit is allocated to every
operator.

* Performance bottleneck as a single
statement is executed in a single clock

cycle.
—Processor is already doing this.

— Can multiple statements be executed in a
cycle?



Translating C to HW: Single-Assignment Form

* Each variable is assigned exactly once.

* To improve efficiency of the HW
implementation.

a=a+ 1; a2 =al +1;
a=a*3; ) a3 =a2 * 3;
a=a-—2; a4 = a3 - 2;



Translating C to HW: Single-Assignment Form

int gcd(int a, b) | int gcd(int a1, b1) {
while (a 1= b) { while (merge(al, a2) |= merge(b1, b2)) {
if (@ > b) a3 = merge(al, a2);
a=a-b; b3 = merge(b1, b2);
else if (a3 > b3)
b=b-a;} a2 = a3 - b3;
return a; } else
b2 = b3 —a3; )
return a; }

-/



Translating C to HW: Single-Assignment Form

int gcd(int a1, b1) {
while (merge(al, a2) != merge(b1, b2)) {
a3 = merge(al, a2);
b3 = merge(b1, b2);
if (a3 > b3)
a2 =a3 - b3;
else
b2 =b3 -a3;}
return a; }

-

a3

-

fl

NN

flag_while

b3

29



Reading Guide

* Chapter 4, the CoDesign book.

30



