
REMOTE++: A Script for Automatic Remote
Distribution of Programs on Windows Computers

Ashley Hopkins
Department of Computer Science and Engineering

4202 East Fowler Avenue, ENB 118
University of South Florida

Tampa, FL 33620
amhopki2@csee.usf.edu

Abstract
Execution of simulation programs requires large amounts of

CPU resources. Parallel Independent Replications (PIR) is one
method of reducing simulation run time by enabling time-based
parallelization of simulations on multiple distributed machines.
Existing PIR systems are targeted for Unix machines. A
Windows-based program for distributing executables and their
associated input and output files to idle Windows PCs is
developed. Wintel PCs dominate desktop computing, therefore,
providing hours of unused CPU cycles that can be exploited to
accelerate simulation. The new REMOTE++ program uses
standard remote shell (rsh) and remote copy (rcp) services to
enable remote program execution and the transfer of input and
output files. The remote computer needs only a standard rsh /rcp
daemon available from independent software vendors. A single
master computer maintains a job list and host list and distributes
jobs (from the job list) to remote hosts (from the host list).
Execution results are on the master computer at the completion of
a remote execution. Status from remote executions is maintained
in a log file on the master computer. The REMOTE++ program
builds on a previous REMOTE version and improves reliability
and performance. The REMOTE++ program was used to
investigate run time trends needed for steady state simulation of
an M/M/1 queue at utilizations approaching 1.0. It was found that
as the utilization approaches 100% the simulation time grows
increasingly longer. The REMOTE++ program is open source
and freely available from the authors.

Categories and Subject Descriptors
I.6.m [Simulation and Modeling]

General Terms
Performance, Experimentation

Keywords
Remote distribution, parallel independent replications, simulation

1. INTRODUCTION
Remote distribution and parallelization of programs can be

used to reduce execution time. One method for speeding
execution is time parallelization. Time parallelization is used to
speed the execution of programs that require numerous runs to
complete a single experiment. For example the simulation of a
queue requires multiple runs with different input parameters and
control variables to determine its behavior. Time parallelization
would enable this program to be executed on several computers at
the same time, each with different input values to reduce the
overall run time of the simulation. Parallel Independent
Replications (PIR) uses time parallelization of programs. PIR is
used to distribute programs to multiple machines to be run in
parallel. Typically PIR is used to distribute multiple instances of
the same program using different input parameters as described
above. PIR can also be used to distribute different executables to
run in parallel. This allows multiple parameters to be held
constant. Through parallel execution of these programs, a greater
number of input and control variables can be evaluated, which
provides more output and ultimately more accurate results.

There exist few PIR tools for Windows PCs. In this paper we
develop and evaluate such a tool called REMOTE++ (building on
[2]). The remainder of this paper is organized as follows. Section
2 describes existing Unix-based tools for PIR. Section 3
overviews the goals of a PIR tool. Section 4 describes the design
and implementation of REMOTE++. Section 5 contains an
evaluation of REMOTE++. Section 6 is a summary and describes
future work.

2. REVIEW OF EXISTING METHODS
The parallel execution of programs on remote computers to

speed execution of a simulation is not a new idea [5] [7]. Batch
systems have long been used to distribute processes to remote
machines. The majority of existing methods for remote execution
are implemented using Unix. Since the majority of computer
users have Windows PCs, unused computer resources are
predominately available on these machines. Unix has standard
rsh (remote shell) and rexec (remote execution) commands,
which enable easy distribution of processes. Windows supports
these rsh and rexec commands, but only to distribute programs to
Unix machines. Windows does not include the daemon that must
be present on each remote computer for the commands to execute.
To enable the use of these standard commands, independent
vendors have daemons available for Windows machines.

Blank for copyright information.

2.1 Review of Remote Execution in Unix
Condor [5] uses the idle CPU cycles of a network of

workstations. Condor was initially developed for Unix. In Unix,
Condor operates on the processors of idle machines then migrates
the job to another workstation when the user of a remote computer
returns. Checkpoints are used to migrate the job and start
execution at close to the same point where it was interrupted on
the prior machine. Condor has been available on UNIX platforms
since 1988 and became available for Windows NT/2000/XP in the
version 6.4.3 release in October of 2002. Condor for Windows
[3] does not have the migration capabilities it has under Unix. It
can suspend execution when the user of a remote machine returns,
but must start execution from the beginning on the next machine.

Akaroa [6] is a project developed by the University of
Canterbury to use multiple parallel processors to speed up
quantitative stochastic simulations. The Akaroa project takes a
different approach; it runs ordinary serial simulations on multiple
parallel processors and continuously collects the observations.
These observations are then averaged and, when sufficient data is
collected, the simulation can be halted. Akaroa is portable to
most variants of Unix, but cannot be used on a Windows platform.

2.2 Review of GRID Computing
Another method of sharing resources is Grid computing [1]

[4]. Grid computing is an approach to distributed systems that
shares resources over a local or wide area network. Grid
computing attempts to combine all types of resources, including
supercomputers and clusters of machines, into a resource more
powerful than any single resource. NetSolve [1] uses Remote
Procedure Call (RPC) to harness resources distributed by
ownership and geography. Condor-G [4] is targeted at utilizing
the resources available from different institutions to speed the
processing of simulations, large-scale optimization, and image
processing among other computationally intensive tasks. Condor-
G combines the multi-domain advantages of the Globus Toolkit
with the management of resources available from the Condor
System. An example of grid computing in use is Berkeley Space
Sciences Laboratory’s SETI@home project (Search for Extra
Terrestrial Intelligence)[8], which uses Grid computing to harness
CPU cycles used to analyze radio waves from space.
SETI@home distributes sections of the sky to individual users to
be analyzed and it runs the analysis as a screen saver on their idle
PCs. When the user next logs onto the Internet the results are
uploaded to the SETI@home site without any burden on the user.

2.3 Review of Existing REMOTE tool
REMOTE [2] is designed to be a lightweight tool that enables

automatic remote execution of programs on Windows machines.
It is designed to speed parallel independent replications of CSIM
simulations and requires no configuration of the remote
computers. REMOTE requires only a single program, small
enough to be distributed via e-mail, to be run on the remote hosts.
The REMOTE program then distributes input, output, and
executable files from a single master to a list of remote machines.
At the end of execution the output files are then transferred back
to the master computer. All communications in REMOTE are
implemented using the Winsock interface. The REMOTE tool is
complex and has some known timing-related bugs.

3. GOAL OF REMOTE DISTRIBUTION
Figure 1 shows a remote distribution system. A single master

machine distributes executables and, if applicable, their input and

output files to remote PCs. The processes are executed on the
remote machines and, at the completion of execution; the output is
on the master machine. The fundamental goal of remote
distribution of processes is to reduce execution time by harnessing
the idle, non-dedicated, CPU cycles of network connected PCs.
Remote distribution will, typically, be run during evenings and
weekends when idle CPU time is maximized and users are
unlikely to return to their machines quickly. Failures on these
unmonitored machines can result in significant time setbacks.
Thus, remote distribution programs must be very stable and not
prone to failures. A remote distribution program must also insure
that the overall execution time of distributed processes is
significantly shorter than if executed on a single machine.
Requirements for successful remote distribution of programs are:

1. The remote distribution program must be simple to allow
for easy maintenance and modification.

2. The executables must be stand-alone processes that require
no modification to enable remote execution.

3. Execution of programs must be automatic and not require
any manual interaction.

4. Output files must be available on the master PC at the
completion of execution.

5. There can be only one distributed process running at each
remote host at any time.

6. Once a job completes, the next job is sent to the available
host until all jobs are executed.

7. The time to assign and distribute a process must be
significantly shorter than its execution time to ensure an
overall decrease in execution time of the processes.

8. The failure of a job must be detected. It must not stop the
distribution of the remaining jobs.

9. The failure of a host must be detected and the job
reassigned to another host. Future jobs should not be
assigned to the failed host.

10. Status and error messages must be displayed at the master
PC to allow diagnosis of run-time errors.

11. A log file should indicate which jobs failed to execute and
which hosts were invalid.

4. REMOTE++ DESIGN/IMPLEMENT
REMOTE++ implements time based parallelization of

programs through Parallel Independent Replications. It is,
therefore, a remote distribution program designed to meet the
requirements presented in section 3. The REMOTE++ executable
is built from the following files.
• remotepp.h – defines constants and prototypes

Network

Master

Remotes

Figure 1. Master distributes jobs to remote hosts.
Remotes execute the jobs. The output is transferred
to the Master at the end of execution.

• remotepp.c – main program which launches the run, transfer
and help functions

• run.c (syntax: remotepp run)– runs the jobs in joblist.txt on
the hosts in hostlist.txt

• transfer.c (syntax: remotepp transfer filename hostname) –
transfers the file filename from the master to host hostname.

• help.c (syntax: remote help) – displays the REMOTE++ help
screen.

REMOTE++’s run function is a script that runs standard
remote shell (rsh) and remote copy (rcp) commands within
Windows threads to enable Parallel Independent Replications of
processes. The flowchart in Figure 4 illustrates the structure of
the run function. For each job in the joblist.txt file, the input file,
output file, and executable file are opened to verify their
existence. Each job with all three files valid will be placed in the
job queue. It will also be assigned a host if there is a host in the
hostlist.txt that has not been assigned to another job. The host
will then be assigned to the host queue. If there are unassigned
hosts in hostlist.txt after all valid jobs have been assigned to the
queue, the hosts will be added to the host queue. For each job in
the job queue that is ready to be run, a run thread will be started to
allow execution of the job. If there is a job that has not been
assigned a host and a host becomes available, that host will be
reassigned to the job and a thread will be started. Once all threads
have completed the run function will end. Figure 4 also diagrams
the run thread of REMOTE++. Each thread will receive one job
from the job queue. First the executable will be remote copied
(with an rcp command) to the assigned host. If the rcp is
successful, then the host is valid and the execution of the job will
continue. , Otherwise, the host will be marked invalid and the job
will be reassigned to the next available host. If the host is valid,
the input/output method of the job will be determined. If the
input/output method is “std”, then a remote shell (rsh) command
is executed and the job is run on the remote host with the input
and output redirected from the master PC. If the input/output
method is “file”, the input and output files are copied (again with
an rcp command) to the remote machine and the job is then
executed with the rsh command. After execution, the output file
must then be copied back to the master machine. Before the
thread ends, the host is marked available so that future jobs can be
run on that host.�

There are two methods of input and output for REMOTE++.
The “file” method is used for processes that read input from and
write output to a file. The “std” method is used for processes that
read input from standard input and write output to standard
output. To enable processes which read from standard input to be
executed independently of interaction with a user, all input must
be written into a file. Redirection can then be used for input into
and output from these processes. Different command sequences
must be used to allow execution of these two file methods. Figure
2, below, shows sample command sequence for each method. If
the “file” method (Figure 2 (a)), is used, the executable file
(exe_file), input file (input_file), and output file (output_file)
must be transferred to the remote machine (host name
remote_host). This is done with a series of three rcp commands.
The job is then executed, using an rsh command. After execution,
the output file must be transferred back to the master (host name
master_name) with an rcp command. If the “std” method
(Figure 2 (b)), is used, then only the executable is copied to the
remote machine. Redirection of input and output from the master
PC is then used in the rsh command. The “file” method has more
overhead in transfers (four rcp commands) than does the “std”

method (one rcp command), which uses files stored on the master
machine.

4.1 User View of REMOTE++
REMOTE++ is run from the Windows console. Very little

configuration is needed to enable the REMOTE++ program to
run. Each remote host must be a network-connected machine
running Windows 9x or higher. There must be an rsh and rcp
daemon running on each remote host. A c:/temp/ directory must
also exist on each remote host. Each executable, input and output
file copied to the remote host will be saved in the c:/temp/
directory to allow easy execution and “clean up” of files on the
remote machines. A c:/remotepp/ directory must exist on the
master machine. The REMOTE++ executable, joblist.txt,
hostlist.txt, and status.txt must be contained in this directory.
Additionally, all executable, input, and output files listed in the
joblist.txt should be located in the c:/remotepp/ directory. To
execute the jobs in the joblist.txt on the hosts in the hostlist.txt,
the command remotepp run must be executed at the command
line on the master machine. A sample execution is shown in
Figure 5. Figure 3 (a) and (b) show a sample joblist.txt and
hostlist.txt, respectively. At the completion of execution, the
status.txt file shows whether each file (executable, input, and
output) for each job was found and the validity of each host. This
information can be used to determine which jobs were completed.
A sample status.txt is shown in Figure 3 (c).

(a) rcp –b /Remotepp/exe_file remote_name:/temp/
rcp –b /Remotepp/input_file remote_name:/temp/
rcp –b /Remotepp/output_file master_name:/temp/
rsh remote_name c:/temp/exe_file
rcp –b /temp/output_file master_name:/Remote/

(b) rcp –b /Remotepp/exe_file remote_name:/temp/
rsh host_name c:/temp/exe_file <input_file

>output_file

Figure 2. Sample rsh and rcp command sequence for
“file” method (a) and “std” method (b).

(a) file mm1.exe input1.txt output1.txt
file mm1.exe input2.txt output2.txt
file mm1.exe input3.txt output3.txt

(b) giga2.csee.usf.edu
giga3.csee.usf.edu

(c) Mode is classic.
Executable file mm1.exe found
Input file input1.txt found
Output file output1.txt found
Mode is classic.
Executable file mm1.exe found
Input file input.txt found
Output file output.txt found
Mode is classic.
Input file input.txt found
Output file output.txt found
giga2.csee.usf.edu is a valid host
giga3.csee.usf.edu is a valid host

Figure 3. (a) Sample joblist.txt file (b) Sample hostlist.txt
file (c) Sample status.txt file

5.0 EVALUATION OF REMOTE++
The performance of queueing systems is often studied using

simulation methods. A queueing system consists of a population
of potential customers (which can be unlimited if not restricted to
a certain group). These customers arrive in the queue and wait for
service. The order in which the customers are served is
determined by the queueing discipline or rules that determine
where customers are inserted into and served from the queue.
Once served, the customers are then returned to the population of
possible customers. To gather statistical information these
simulations must be executed numerous times with varying input.
This makes such queuing simulations ideal for PIR, which will

allow the simulations to be executed with multiple parameters on
a pool of machines.

5.1 M/M/1 Queuing Systems
A M/M/1 queue is a specific queueing system. Figure 6 shows

an M/M/1 queue. The specific requirements for an M/M/1 queue
are:

1) Exponential inter-arrival of customers into the queue
2) A single exponential server
3) First In First Out (FIFO) queueing discipline
4) An unlimited queue capacity
5) Unlimited customer population

Figure 5. Console window for “remotepp run” command for job list of Figure 2a host list of Figure 2b and status of Figure 2c

Files Exist

Add job to job queue

Assign host to job &
add host to host queue

Add host to host queue

run_thread()

Return

run_thread()

rcp executable fileMore jobs in job list

Host can be assigned

Job ready to be run

All jobs complete

More hosts in host list

Host is valid

Mode std or file

rsh executable with
input and output

rcp input file and
rcp output file

Rcp output

Rsh executable redirect
input and output

Assign host invalid and
job status unassigned

Job without host

Available host

Assign host to job
Assign job done and

host available

Return

run()

T

T

T

T

T

T

T

T

T

F

F

F

F

F

F

F

F

F

file std

Figure 4. Flowchart of run function in REMOTE++

Files Exist

Add job to job queue

Assign host to job &
add host to host queue

Add host to host queue

run_thread()

Return

run_thread()

rcp executable fileMore jobs in job list

Host can be assigned

Job ready to be run

All jobs complete

More hosts in host list

Host is valid

Mode std or file

rsh executable with
input and output

rcp input file and
rcp output file

Rcp output

Rsh executable redirect
input and output

Assign host invalid and
job status unassigned

Job without host

Available host

Assign host to job
Assign job done and

host available

Return

run()

T

T

T

T

T

T

T

T

T

F

F

F

F

F

F

F

F

F

file std

Figure 4. Flowchart of run function in REMOTE++

There are several variables that control simulation of an M/M/1
queue. The length of an M/M/1 queue is the number of jobs
waiting to be serviced. At any time this length (L) can be
determined by the arrival rate of items into the queue (λ) and the
wait time in the queue (W). This relationship is WλL = . The
queue length can also be simply calculated from the utilization of
the queue by ()ρρL −= 1 . The utilization of the queue is the
ratio of the arrival rate of items into the queue and the service rate
of items leaving the queue. As the utilization of the queue
increases and approaches 100%, the length of the queue
approaches infinity.

5.2 Evaluation of REMOTE++
A relationship exists between the utilization of an M/M/1

queue, the length of that queue, and the simulation time. To
determine this relationship, the M/M/1 simulation must be
executed numerous times with utilizations approaching 100% and
the related simulation times calculated. No output from one
simulation is needed for any other simulation to complete.
Therefore, each execution is independent. REMOTE++ was used
to determine the relationship between the M/M/1 queue utilization
and the simulation run time for mean queue length within a
percent of the theoretical length. REMOTE++ was used to
distribute simulations with increasing utilization to a pool of 5
remote machines. Three of these were Pentium III 866MHz
machines and two were Pentium III 700 MHz machines. The
M/M/1 simulation reads the target utilization and the desired
margin of error (i.e., from the known theoretical length of the
queue as calculated by ()ρρL −= 1) as input from a file. A
10% margin of error was used for this evaluation. Utilization was
started at 1% and increased to 99.5%. Evaluation of each
utilization was executed several times using different seeds and
the results were then averaged to gather statistical results.

 Using REMOTE++ to run these simulations on this pool of
machines took about 20 minutes. If executed on a single 866 Mhz
machine, this would have taken approximately 50 minutes.
Therefore, it executed about two and a half times faster on five
machines than it would have on one machine. Since the
simulations are independent, the overall increase was expected to
be about five times faster when executed on five machines (about
10 minutes). The plot shown in figure 7, diagrams these
execution times. The difference in actual and projected execution
time is due to overhead in distributing the simulations. There is
about seven seconds of overhead in executing each job in the job
list, which has input/output method “file”. Since many of the
simulations in the job list had low target utilizations, they took
only seconds to execute. Therefore, this seven seconds of
overhead was significant in the time needed to complete these
simulations. If each of the jobs in the job list took longer to
execute, the overhead would be offset by the execution time. The
speed up in this case would have been closer to five times.

Figure 7. Execution times of M/M/1 simulation. Column 1 is
actual execution time when executed one 866 MHz Pentium
III computer. Column 2 is the actual execution time when
executed on five machines (three 866MHz and two 700 MHz
Pentium III computers). Column 3 is the projected execution
time on five machines based on a 5 times speed up.

The plot shown in figure 8, shows the results gathered in the
M/M/1 queue simulation run with the REMOTE++ program. It
illustrates the relationship between the target utilization and the
simulation time for the M/M/1 queue for a target utilization
between 90% and 99.5% and a margin of error of 10%. From
these results one can conclude that as the target utilization
approaches 100% the simulation time of the M/M/1 queue
increasingly grows longer.

Figure 8. Simulations time versus target utilizations for an
M/M/1 queue with margin of error of 10.0%.

6.0 SUMMARY AND FUTURE WORK
The REMOTE tool was designed to harness the non-dedicated

idle CPU cycles of Windows PCs through process distribution and
remote execution. REMOTE++ improves upon this tool. There is
little difference in the remote distribution overhead between
REMOTE and REMTOE++. However, REMOTE++ eliminates
the complex Winsock interface used by REMOTE and replaces it
with the standard rsh (remote shell) and rcp (remote copy)
commands. Both REMOTE and REMOTE++ are relatively small
programs consisting of 1100 and 400 lines of standard C
respectively. Therefore it is not the reduction in code length that
makes the REMOTE++ code an improvement over the original
REMOTE tool. The standard rsh and rcp commands
implemented in REMOTE++ make it much less cumbersome. It
therefore, enables easy maintenance and modification of the tool.
In addition to executing programs, which read from and write to
files as REMOTE was designed to achieve, REMOTE++ can
execute programs, which read from standard input and write to
standard output. REMOTE++ only requires that a single program
(remotepp.exe) be executed on the master machine to distribute
and execute the jobs from the job list to the hosts in the host list.
The remote machines need only run an rsh/rcp daemon to enable

Service
Center DeparturesArrivals

Queue

Figure 6. M/M/1 queue

Service
Center DeparturesArrivals

Queue

Figure 6. M/M/1 queue

0
10
20
30
40
50
60

Single
Machine

Actual on
Five

Machines

Projected
on Five

Machines

Execution
Time in
Minutes

0

500000

1000000

1500000

2000000

90 91 92 93 94 95 96 97 98 99 10
0

Target Utilization

Si
m

ul
at

io
n

Ti
m

e

transfer and execution of programs. No REMOTE++ program
need be run on the remote machines. REMOTE++ will skip a job
if any portion of it is invalid (including executable, input or
output). Jobs assigned to an invalid host will be reassigned to the
next available host and no future jobs will be assigned to the
invalid host. The status.txt log will list the validity of each file
and host at the completion of execution. The REMOTE++
program and the M/M/1 queue simulation model used to evaluate
it are freely available from the author as open source with no
restrictions on use.

There are several known problems with REMOTE++ that are
the subject of future work. There is no free rsh/rcp daemon
available that can reliably support execution of the REMOTE++
program. The rsh/rcp daemons available from independent
vendors cost approximately $40.00, which may limit use of the
REMOTE++ program. A reliable, free daemon, therefore, needs
to be developed to maximize the use of this program.
REMOTE++ also requires that the user list whether each
executable reads and write to files or standard input and output. It
also requires that both input and output be done with the same
method. Future improvements on REMOTE++ should enable
automatic detection of the proper method to be used and allow
any combination of methods to be used. Security features should
be implemented in REMOTE++ that are not dependant on the
rsh/rcp daemon and do not require configurations on the remote
PCs.

7.0 REFERENCES
[1] Arnold, D.C., and Dongarra, J. The Netsolve environment:

progressing towards the seamless grid. International
Workshop on Parallel Processing, (Proceedings 2000), 199-
206.

[2] Christensen, K.J. REMOTE: A Tool for Automatic Remote
Execution of CISM Simulation Models. Proceedings 35th
Annual Simulation Symposium, (2002), 134-142.

[3] Condor for Microsoft Windows4.0.
http://www.cs.wisc.edu/condor/manual/v6.1/5_Condor_Micr
osoft.html

[4] Frey, J., Tannenbaum, T. Livny, M., Foster, I., and Tuecke,
S. Condor-G: a computation management agent for multi-
institutional grids. Proceedings 10th IEEE International
Symposium on High Performance Distributed Computing,
(2001), 55-63.

[5] Litzxkow, M., Livny, M., and Mutka, M. Condor – A Hunter
of Idle Workstations. Proceedings of the 8th International
Conference on Distributed Computing Systems, (June 1988),
104-111.

[6] Mota, E., Wolisz, A., and Pawlikowski, K. Comparing
overlapping batch means and standardized time series under
Multiple Replications in Parallel. Simulation and Modeling.
Enablers for a Better Quality of Life. 14th European
Simulation. Multiconference (2000), 43-48.

[7] Yau, V., and Pawlikowski, K. AKAROA: A package for
automating generation and process control of parallel
stochastic simulation. Australian Computer Science
Communications, Volume 15, Issue 1, Part A, (1993), 71-82.

[8] Young, E., and Cliff, P. Distributed Computing – the
SETI@home Project. Ariadne Issue 27, (March 2001),
http://www.ariadne.ac.uk/issue27/seti/

