

Department of Honors
University of South Florida

Tampa, Florida

CERTIFICATE OF APPROVAL

Honor’s Thesis

This is to certify that the Honor’s Thesis of

Bachelor of Science in Computer Science

ASHLEY HOPKINS

with a major in Computer Science has been approved
for the thesis requirement on April 18, 2003

for the Bachelor of Science in Computer Science degree.

 Examining Committee:

Major Professor: Kenneth Christensen, Ph.D.

Member: Zornitza Genova Prodanoff

REMOTE++: A TOOL FOR AUTOMATIC REMOTE DISTRIBUTION OF

PROGRAMS ON WINDOWS COMPUTERS

by

ASHLEY HOPKINS

A thesis submitted in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science
Department of Computer Science and Engineering

College of Engineering
University of South Florida

May 2003

Major Professor: Kenneth Christensen, Ph.D.
Member: Zornitza Genova Prodanoff

i

ACKNOWLEDGEMENTS

 I wish to thank my faculty advisor, Dr. Kenneth Christensen for his

encouragement, his enthusiasm, and his support in writing this thesis. He explained

things clearly and simply, but also made me think. Without his help and great ideas I

would have been lost.

I also wish to thank my committee member Zornitza Genova Prodanoff for taking

the time to read this thesis and provide valuable feedback. Additionally I would like to

thank Bronwyn Thomas for her assistance in editing this work.

Thank you to the NSF for providing the REU grant which funded the research that

this thesis was based upon. Without this grant I would not have been given the

opportunity to be exposed to the research environment that is the graduate student’s life.

Finally, I wish to thank my parents, Debbie Mahaney and Gary Hopkins, and

Michael for always standing behind me. They have always encouraged me and guided

me, never trying to limit my aspirations.

i

TABLE OF CONTENTS

LIST OF FIGURES iii

ABSTRACT v

CHAPTER 1 INTRODUCTION 1

1.1 Parallelization Methods 1
1.2 Parallel Independent Replications 2
1.3 Parallelization in Windows 3
1.4 Organization of Paper 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Review of Remote Shell (rsh) and Remote Execution (rexec) 5
2.2 Review of Remote Execution in UNIX 7
 2.2.1 Xdistribute 7
 2.2.2 Condor 9
 2.2.3 Akaroa2 11
2.3 Review of Remote Execution in Windows 12
 2.3.1 Condor for Windows NT 12
2.4 Review of GRID Computing 12

 2.4.1 NetSolve 14
 2.4.2 Condor-G 15
 2.4.3 Grid Computing in Use 16

2.5 Distributed Operating Systems 18
 2.5.1 Ameoba 19
 2.5.2 Beowulf 19
2.6 Review of Existing REMOTE Tool 21

CHAPTER 3 GOALS OF REMOTE DISTRIBUTION 24

3.1 Remote Distribution System 24
3.2 Requirements of Distribution Tools 25
3.3 The Jobs 26

CHAPTER 4 REMOTE++DESIGN AND IMPLEMENTATION 28

4.1 REMOTE++ Components 28
4.2 Remote Distribution Structure in REMOTE++ 31
4.3 REMOTE++ Input and Output 34

ii

4.4 User View of REMOTE++ 35

CHAPTER 5 EVALUATION OF REMOTE++ 38
5.1 Overview of Queues 38
5.2 M/M/1 Queuing Systems 39
5.3 Evaluation of REMOTE++ 41

CHAPER 6 SUMMARY AND FUTURE WORK 44

REFERENCES 47

APPENDICES 50

Appendix A: REMOTE++ Code 51

iii

LIST OF FIGURES

Figure 1: Main screen of Xdistribute tool 9

Figure 2: The SETI@home project’s screen saver 17

Figure 3: The Folding@home project’s screen saver 18

Figure 4: A Beowulf system diagram 21

Figure 5: Diagram of Remote distribution system 25

Figure 6: Help screen for REMOTE++ 29

Figure 7: Sample execution of transfer command 30

Figure 8: Sample execution of run command 30

Figure 9: Flowchart of run function 32

Figure 10: Flowchart of run thread 33

Figure 11: Sample rsh and rcp command sequence 35

Figure 12: Sample joblist.txt file, hostlist.txt file, and status.txt file 37

Figure 13: M/M/1 queue 40

Figure 14: Execution times of M/M/1 simulation 42

Figure 15: Simulations time versus target utilizations for an M/M/1 queue 43

Figure 16: Order 6 polynomial growth trend line with results from M/M/1 queue 43

iv

REMOTE++: A TOOL FOR AUTOMATIC REMOTE DISTRIBUTION OF

PROGRAMS ON WINDOWS COMPUTERS

by

ASHLEY HOPKINS

An Abstract

of a thesis submitted in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science
Department of Computer Science and Engineering

College of Engineering
University of South Florida

May 2003

Major Professor: Kenneth Christensen, Ph.D.

v

Execution of simulation programs requires large amounts of CPU resources and

therefore takes many hours to execute. At the same time, many single-user computers

spend much of their time sitting idle. Parallel Independent Replications (PIR) is one

method of reducing simulation run time by enabling time-based parallelization of

simulations on distributed machines. Most existing PIR systems are designed for Unix.

REMOTE is a Windows-based program for distributing executables to idle

Windows PCs. This thesis describes the development of REMOTE++, a new program

that builds on the previous REMOTE version. REMOTE++ replaces the complex

sockets interface used by the original REMOTE tool with standard remote shell (rsh) and

remote copy (rcp) services. These services enable remote program execution and the

transfer of input and output files to and from the remote machines. To enable execution

of REMOTE++, each remote computer need only run an rsh/rcp daemon.

A single master computer maintains a job list and host list and distributes jobs

(from the job list) to remote hosts (from the host list). The execution results are on the

master computer at the completion of a remote execution.

The REMOTE++ program was used to investigate run time trends of the

simulation time needed for steady state simulation of an M/M/1 queue at utilizations

approaching 100%. It was found that as the utilization approaches 100%, the simulation

time grows at a rate slightly faster than order 6 polynomial growth.

Abstract Approved: ___
 Major Professor: Kenneth Christensen, Ph.D.

Associate Professor, Department of Computer Science and Engineering

Date Approved: __

1

CHAPTER 1 INTRODUCTION

Simulations are used for modeling in many fields of the sciences and engineering.

Many of these simulations require extensive CPU processing, and therefore, take many

hours to execute on a single machine. At the same time, many computer resources are

underused. Computers sit idle for many hours in the evenings, on weekends and while

computer owners are completing other tasks. Remote distribution and parallelization of

programs can be used to reduce execution time of large programs, including simulations,

by harnessing idle computer resources.

1.1 Parallelization Methods

Parallelization of programs can be used to reduce the execution time of an

experiment by enabling segments of the experiment to be executed in parallel. There are

two methods of parallelization. Space parallelization involves splitting a single process

into segments to be executed. Time parallelization applies to experiments that requires

multiple executions of a single process. Both methods can be used to reduce execution

time, but they apply to different types of applications. This thesis discusses one program

which implements time parallelization.

2

Space parallelization involves splitting a single very large program into

independent pieces that can be executed at the same time with little to no sharing of data

required between them. Research into the reduction of execution time has focused on

space parallelization. However, it is only applicable to programs that can be easily split

into independent processes. There is no reliable method for automatically splitting

programs, so each application requires manual division of source code before execution

is possible.

Time parallelization is used to execute relatively small programs, which can be

executed on a single machine but require multiple runs to complete a project or

simulation. Many simulations fall into this category because multiple input values must

be investigated to complete a single experiment. Simulations may also need to be

executed multiple times to reduce the occurrence of evaluation errors. For example, the

simulation of a queue requires multiple runs with different input parameters and control

variables to determine its behavior. Time parallelization would enable several instances

of this program to be executed on several computers at the same time, each with different

input values to reduce the overall run time of the simulation. Also, because time

parallelization involves executing each instance of the program in full, there is generally

no need to modify the original program. In effect, time parallelization is applicable to

many processes that are not well suited for space parallelization.

1.2 Parallel Independent Replication

3

Parallel Independent Replications (PIR) uses time parallelization of programs.

PIR is used to distribute programs to multiple machines to be run in parallel. Typically,

PIR is used to distribute multiple instances of the same program to a group of machines,

using different input parameters as described above. PIR can also be used to distribute

different executables to each machine in the group to run in parallel. This allows

multiple parameters to be held constant. PIR enables distribution of any set of

executables that are independent processes. This method does not reduce the execution

time of any single process, but will reduce the time needed to complete the set of

processes. Through parallel execution of these programs, a greater number of input and

control variables can be evaluated, which provides increased output, and ultimately more

accurate results.

1.3 Parallelization in Windows

Program distribution tools have primarily been developed for Unix platforms.

There exist few PIR tools that enable distribution for Windows PC’s. One reason for this

may be that research has traditionally been done on Unix platforms, and therefore many

of the processor intensive programs run in Unix. Unix also has standard components that

readily enable remote execution. However, Windows machines have become the

predominant computer resource. Many of these machines are underused and thus have

many hours of idle CPU cycles. Recent advances in the memory and processing power

of these machines has also resulted in the development of many large programs and

simulations that run on Windows machines. As a result, a PIR tool is needed to capture

4

these idle CPU cycles and use the cycles to reduce the execution time of these

simulations.

1.4 Organization of Thesis

This thesis will discuss the development and evaluation of a Windows based

distribution tool REMOTE++, which uses PIR to achieve time parallelization of

programs. The remainder of this thesis is organized as follows:

• Section 2 describes existing methods for remote execution including execution in

Unix and Windows, GRID computing, operating systems, and the original

REMOTE tool.

• Section 3 provides an overview of the goals of PIR.

• Section 4 discusses design and implementation of REMOTE++.

• Section 5 contains an evaluation of the REMOTE++ program.

• Section 6 is a summary and describes future work needed to improve the program.

5

CHAPTER 2 LITERATURE REVIEW

In this chapter, existing methods and tools for remote distribution and execution

of programs are reviewed. Section 2.1 looks at remote shell (rsh) and remote execute

(rexec) commands. Section 2.2 describes some existing tools developed for Unix

platforms. Section 2.3 describes an example of existing tools developed for Windows

machines. Section 2.4 presents GRID computing and current applications. Section 2.5

describes operating systems designed for remote distribution. Section 2.6 introduces the

original REMOTE tool used as a basis for REMOTE++.

2.1 Review of Remote Shell (rsh) and Remote Execution (rexec)

Unix provides standard commands that facilitate remote execution of a process

[25]. This enables the user to take advantage of better processing power from the remote

machine or to access software that is not locally available. There are two such commands

that are standard to Unix platforms, remote shell (rsh) and remote execute (rexec). Both

of these commands allow the user to execute a single command on another host and

receive the results on their local machine. The user supplies remote execute (rexec) with

the hostname of the remote machine, username, password and the command to execute,

which are then passed to the host machine. The remote host verifies the username and

6

password then allows execution of the command. Remote shell (rsh) has a very similar

process, but in place of checking a user name and password, rsh checks an access list

stored on the remote machine, which lists the hostnames of all machines granted access.

These commands allow execution of a single process on a single remote machine and

then wait for the process to complete. All output and error messages from the remote

machine are displayed at the local machine where the command was issued. Several

remote distribution programs combine these commands into a script that distributes

programs, a few of these programs will be addressed in following sections.

� A daemon must be present on the remote machine to enable execution of the

rsh and rexec commands. These daemons (rshd and rexecd) listen for service requests

at the port indicated. When a service request is received, the daemon checks if the port

number is in the range of 512 to 1023, then the rshd verifies the hostname against the

access list or the rexecd verifies the username and password. Then the command is

executed.

 Remote shell and remote execute daemons are standard on Unix platforms.

Windows, however, does not include such daemons. Windows does support the rsh and

rexec commands, but only to distribute programs to Unix machines. To enable

distribution to Windows machines, daemons are available from independent vendors. A

free rshd is also available from the author. This remote shell daemon includes a

password feature added for increased security. The password feature differs slightly from

that of the rexec daemon. The rexec daemon prompts the user for a password to be

entered from the command line after the rexec command is sent. The new password

7

feature in the rshd is read from a file on the machine sending the rsh request. This

enables the rsh command to be executed from within a script.

2.2 Review of Remote Execution in Unix

Unix platforms have been used to create remote distribution programs for many

years [15] [26]. Unix has been used partially because it enables easy remote execution

through the standard rsh and rexec commands (discussed in section 2.1). Methods for

remote distribution in Unix vary greatly. The associated levels of complexity and ease of

use also differ greatly between tools.

2.2.1 Xdistribute

Xdistribute [19] is a tool designed to capture the idle CPU cycles of a network of

Unix workstations. Xdistribute allows users who require large amounts of processing

time to distribute their jobs to remote hosts. However, it is targeted at users who do not

have the administrative support required to setup and install a full-fledged process

distribution system. Xdistribute achieves this through the use of standard Unix remote

shell (rsh) and remote copy (rcp) commands. It enables programs to be distributed to a

list of hosts. If a job is not completed, it will restart the job, from the beginning, on

another machine in the list. The type of processes that can be executed using Xdistribute

is somewhat limited. The program can only execute monolithic, independent jobs that

require no coordination. However, it enables a group of users to execute jobs that are not

8

able to use other, more complex, systems. Xdistribute enables three types of job

distribution: preamble, user, and postamble. Preamble distribution is used to execute a

program once on each machine in the list, prior to user jobs. This can be used to perform

any customization of the remote machines necessary to allow execution of the user jobs.

User distribution executes the job once on one machine in the list. This enables

execution of the jobs that users have set up to be executed remotely. Postamble

distribution runs each program once on each machine, much like preamble distribution.

It can be used to clean up each machine after the user jobs have been completed.

Probably the most significant advantage of Xdistribute is that almost any user,

running Unix, can utilize the program. The user is not required to have administrator

support nor a central machine to be maintained. Xdistribute is simply executed on the

machine of the user who wants to distribute jobs, and it uses standard remote shell

commands to achieve execution. However, Xdistribute does require some configuration

of the local machine to enable execution to occur. Xdistribute also requires installation

of the following software packages to enable execution [20]:

• Tcl 7.4 or higher – used for the graphical user interface

• Tk 4.0 or higher – used for the graphical user interface

• Perl 5.001 (or higher) package with all sub-libraries – required for the
process server and process monitor

• Expect package – used for communication with the process server

Another advantage of Xdistribute is that it has a graphical user interface (GUI),

which shows the user buffers representing the status of the execution. Figure 1 shows the

main screen of the Xdistribute tool. The GUI is simple, but it provides a visual

representation of the system to the user. It illustrates the number of jobs are waiting to be

9

executed, the number that are currently executing, and the number that are completed.

The completed jobs are broken down into the ones that encountered an error and those

that finished. It also displays the status of the remote machines, including the total

number of machines and the number unavailable, idle, busy, and active.

Figure 1: Main screen of Xdistribute tool[20].

2.2.2 Condor

Condor [15] is a scheduling system that utilizes the idle CPU cycles of a network

of workstations. Condor is designed on the premise that in a group of workstations the

majority of users under utilize the resources of their system. However, a few users have a

higher processing demand than can be fulfilled by their workstation. Condor organizes

the workstations into a pool and enables the users in need of processing time to execute

jobs on the idle machines of other users within the pool. Jobs are started on the idle

10

machines then are migrated to another workstation when the user returns. Checkpoints

are used to migrate the job and start execution at close to the same point as where it was

interrupted on the prior machine. These checkpoints save the status of the execution as it

progresses. When the owner of the remote machine returns, the execution can be halted

and restarted on another machine from the last checkpoint. This ensures that all jobs will

eventually be completed with little work duplicated. It also encourages users to join

pools and allow their resources to be shared by assuring them that it will not negatively

impact their own productivity. Users are also prevented from monopolizing all free CPU

cycles in the pool because Condor monitors the usage of the users and applies an Up-

Down algorithm designed to ensure fair access to the resources by all users.

Condor is a fairly large program that occupies 20 Mbytes to more than 50 Mbytes

of disk space depending on the platform and system where Condor is running. Condor

also requires considerable installation, including configuration of global and shared file

systems, installation of Condor daemons and libraries, and set-up of console devices and

directories. [9]. A central manager must be chosen that will manage the pool of

workstations; this machine will be responsible for matching each job with an available

machine and migrating the jobs when necessary. The central manager will also receive

updates from each machine in the pool about every five minutes. As a result, if this

machine encounters problems, no new matches will be made and most Condor tools will

stop working. This central manager requires the most configuration, but Condor must

also be configured on each machine in the pool.

11

2.2.3 Akaroa2

Akaroa2 [26] is a project developed by the University of Canterbury in New

Zealand. It is a redesigned and improved version of the Akaroa [18] project developed at

the same university. Akaroa2, like Akaroa, implements an approach to reduce execution

time of quantitative scholastic discrete-event simulations known as Multiple Independent

Replication in Parallel (MIRP). MIRP, like other remote distribution schemes, is used to

harness the computing power of a network of workstations. The usage of Akaroa2,

however, is somewhat limited. It can only be executed on Unix platforms that support

Berkeley-style sockets for inter-process communication. The programs Akaroa2 can

execute must be sequential simulation programs written in either ANSI C or C++ and be

capable of calling library routines written in C++ [1].

Akaroa2 is somewhat limited in its application while still being a very useful tool

for reducing the execution time of said simulations. Simulations are generally analyzed

sequentially; that is, they are run for a long period of time until the number of collected

observances, or sample size, is sufficient to reduce the statistical error of the results

below a certain threshold. Multiple Independent Replications in Parallel, or MIRP,

employed by Akaroa2, creates multiple instances of the simulation to be executed

simultaneously. Akaroa2 automatically collects the observations and calculates their

mean value for each parameter being analyzed. Once the required precision is reached

for each parameter, the simulations are stopped on all of the machines. Since multiple

12

instances of the simulation are run in parallel, with each simulation generating results, the

time to gather a sufficient sample is reduced.

An improvement in the Akaroa2 project over the original Akaroa tool is the

addition of a graphical user interface called Akgui, which enables users to view the list of

available hosts, view the list of simulations currently running, and to enter new

simulations to be executed.

2.3 Review of Remote Execution in Windows

Traditionally, distributed computing was only available on Unix platforms. Still

only a few tools have been developed to capture the abundance of idle CPU cycles

available from Windows machines.

2.3.1 Condor for Windows NT

Condor was initially developed for Unix and has been available on Unix

platforms since 1988. Condor became available for Windows NT/2000/XP in the version

6.4.3 released in October of 2002. However, it has only been tested on Windows NT

systems. Condor for Windows [8] has the majority of the features of the Unix version,

discussed in section 2.2.1. However, it does not have the migration capabilities provided

by checkpoints that are used when run in Unix. It can suspend execution when the user

of a remote machine returns, but must restart execution from the beginning on the next

machine, thus possibly executing much of the program twice. Since an interrupted job

13

will always be restarted from the beginning, unlike execution on Unix machines, jobs are

not guaranteed to finish when executed on Windows machines. Also, Condor for

Windows does not allow files located on a server to be accessed as it does in Unix. All

jobs must be on the local disk. The version 6.4.3 release was the first to enable execution

on Windows machines. This release allows the pool of workstations to be a mixture of

Unix and Windows NT machines. The default behavior is to require jobs to be executed

on a machine running the same operating system as the machine that submitted the job.

Only one central manager is necessary, and it can be a Unix or Windows NT machine.

Similar to previous versions designed for Unix platforms a central manager must be

maintained and each machine in the Condor pool must be configured.

2.4 Review of GRID Computing

Grid computing [3] [10] is another method of sharing computing resources. Grid

computing is an approach to distributed systems that shares resources over a local or wide

area network. The specific focus, that underlies Grid computing, is coordinated resource

sharing in a multi-institutional environment [12]. It attempts to combine all types of

resources, including supercomputers and clusters of machines, from multiple institutions,

into a resource more powerful than any single resource. Therefore, grid computing is a

very large non-dedicated cluster. A cluster is a type of distributed processing system,

which consists of a collection of interconnected computers used as a single computing

resource [6]. The use of clusters of computers as a distributed resource is a very cost

effective way to create supercomputing power. There are basically two types of clusters

based on resource ownership. The first is dedicated clusters which consists of machines

14

that are reserved solely for use by the cluster system. An example of such a system is

Beowulf, discussed in Section 2.5.2. The second are non-dedicated clusters. A Grid is a

non-dedicated clusters; these clusters use idle CPU cycles of individually owned

machines.The goal of Grid computing is to achieve flexible, secure, large-scale resource

sharing. The meaning of the term Grid is an analogy to the electrical power grid.

Researchers developing Grid Computing envision it becoming a resource much like

electricity that users just “plug into”. Users would be able to access processor and

software needs without consideration of where they are coming from, much like one is

able to plug into electrical power without considering where and how it is being

produced.

2.4.1 NetSolve

NetSolve [3] is a Grid Middleware system that uses Remote Procedure Call

(RPC) to harness resources distributed by ownership and geography. It provides an

environment that manages hardware and software resources and allocates the services

they provide to programs and users [2]. NetSolve has two types of users. The first type

users act as clients only, accessing existing NetSolve resources, but not adding resources

to the system. The second group of users acts as servers and clients, enabling their

computing resources to be used by other NetSolve users, in addition to accessing existing

NetSolve resources. Client and server users can access the NetSolve system by

downloading the source code and executable from the NetSolve website. The NetSolve

system consists of a set of loosely connected computers connected through a local, wide

15

or global area network. NetSolve incorporates load balancing and scheduling strategies

to allocate tasks evenly among servers. It also maintains statistics on the hardware and

software capacities and current usage of the servers through its agents and allocates

server resources accordingly. NetSolve attempts to assign each request to the resource

that will provide the quickest results; if however the assignment fails, NetSolve will try

reassigning it to every appropriate server until the request is completed. NetSolve uses

standard Internet protocols like TCP/IP sockets. This makes the program available on

most variants of Unix and some features are available on Microsoft Windows 95 and

higher.

2.4.2 Condor-G

Condor-G [10] is based on the principle that the capacity of computational and

storage resources have increased at a rate sometimes even exceeded Moore’s Law, yet

few researchers or engineers have tried to move beyond the confines of their own

institution to utilize the vast computational resources that are available. Condor-G is

targeted at utilizing the resources available from different institutions to speed the

processing of simulations, large-scale optimization, and image processing, among other

computationally intensive tasks. Condor-G combines the advantages of two projects, the

Globus Toolkit and the Condor System, to create a tool that can overcome the barriers

between institutions. Globus Toolkit [11] is designed to provide security, resource

discovery and resource access in a multi-domain environment. Condor, as discussed in

section 2.2.1, provides management of processes and harnessing of resources on a pool of

16

workstations. Combining the benefits of these two methods allows users to harness

resources of a multi-domain environment as if they belong to a personal domain.

2.4.3 Grid Computing in Use

Several projects are underway which use Grid computing to harness resources of

Internet connected computer to analyze large amounts of data. Berkeley Space Sciences

Laboratory’s SETI@home project, Search for Extra Terrestrial Intelligence [27], is one

such project. It is believed by SETI@home researchers that life-forms on other planets

may be sending radio waves into space in an attempt to communicate with life on other

planets. SETI@home uses Grid computing to harness the CPU cycles needed to analyze

radio waves from space. By analyzing radio waves gathered from space, researchers

hope to detect communication from other planets. The SETI@home project divides

gathered signals into independent sections, by radio frequency and section of the sky, that

can be analyzed separately. These sections, which are small enough to be executed on a

home PC, are distributed to individual users to be analyzed [13]. The analysis is run as a

screen saver on idle computers. When the user next logs onto the Internet the results are

uploaded to the SETI@home site. This uploading is transparent to the user. An example

of the SETI@home screen saver is shown in figure 2. The screen saver displays

information about the status of the analysis to the user. The Data Analysis on the upper

left pane of the screen saver is dynamically updated as the analysis proceeds, supplying

the user with a graphical image of the work being done on their machine.

17

Figure 2: The SETI@home project’s screen saver.

Another project, which uses Grid computing to analyze data, is Stanford

University’s Folding@home project [21]. The Folding@home project is used to analyze

protein folding. Proteins are composed of long chains of amino acids. The Human

Genome Project has mapped the order of these amino acids; however, the order alone

offers limited insight into protein activity. Proteins fold into different shapes that are

believed to be related to their function. It is suspected that misfolded proteins contribute

to certain illnesses, including cancer and Alzheimer’s disease. The Folding@home

project is studying the protein’s structural properties to understand protein folding. This

involves extensive computing resources not available at a single institution. Therefore,

much like the SETI@home project, the Folding@home project is distributed to Internet

connected computers as a screen saver that analyzes protein folding while the machine is

idle. Figure 2 shows the Folding@home screen saver. The image of the protein shown

changes as the protein is being analyzed.

18

Figure 3: The Folding@home project’s screen saver [23].

2.5 Distributed Operating Systems

Distributed operating systems [24] are yet another way of enabling computing

resources to be distributed to users based on need. When distributing programs with a

distributed operating system, it is the system, not the user that decides where a process

should be executed. A distributed operating system combines machines in a way that

they are viewed as a whole and not as a set of separate machines. With operating systems

like Windows and Unix, a program is executed on the local computer, unless the user

gives an explicit command to run it remotely. When a program is executed in a

distributed operating system, it is distributed by the system, not the user. The system

decides the best place for the program to execute, and it is transparent to the user where

the program is actually executed.

2.5.1 Ameoba

19

Amoeba [24] is an example of a distributed Operating System developed at the

Vrije Universiteit in Amsterdam. Amoeba has four design objectives: distribution,

parallelism, transparency and performance. Amoeba combines multiple machines in a

way that it appears to the user to be a single system. The user does not know which

machine in the system is executing their program. Amoeba is a parallel system; that is, a

single program can utilize multiple processors. Amoeba, like all operating systems, also

strives for efficient performance. It does this by optimizing the communications system.

Amoeba, however, is not designed to run on just any system. It is designed for a system

on network-connected workstations. These workstations can operate as terminals or

contribute to the processor pool. These workstations are connected to a set of main

processors and to specialized servers. Amoeba schedules processes to execute on idle

processors or processors with the lightest loads. It uses Remote Procedure Calls (RPCs)

for communications between threads.

2.5.2 Beowulf

A Beowulf [4] is a cluster of computers configured to enable parallel processing.

A Beowulf can be seen as a distributed operating system; however, Beowulf is not a

software package but rather a means of achieving parallel processing using a free

operating system like Linux on a cluster of machines. In addition to a free operating

system there are several pieces of basically standard parallel computation software that

are useful, but not essential, for building Beowulfs [22]. They include MPI and PVM,

which are software systems that enable development (in Fortran and C) of message-

20

passing parallel programs that run on a cluster. Many other software programs can also

be used with Beowulfs.

A Beowulf system is generally seen as an inexpensive means of developing a

supercomputer using a cluster to achieve parallel computing. However, it does not speed

the execution of all processes. To reduce the execution time of an existing program it

must be split into parallel tasks that communicate using MPI or PVM or other software

packages. Even multi-threaded software won't automatically experience a speedup

because multi-threaded software assumes shared-memory which is not available in a

Beowulf system. A Beowulf can also reduce the overall execution time of programs that

need to be run numerous times with different input files, using a shell script or remote

distribution tool for distribution.

Unlike other methods of remote distribution discussed, the machines used in a

Beowulf cluster are not borrowed they are dedicated to cluster computing. A typical

Beowulf consists of a number of identical commercial off the shelf (COTS) computers

used as nodes [5]. The nodes are not required to be identical but often the best results are

achieved with identical nodes; this is because splitting up applications optimally

generally gets a little harder on inconsistent nodes. These nodes are connected by a

COTS fast private network, often a fast Ethernet switch. A diagram of a Beowulf cluster

is shown in Figure 4(a). The nodes are served and accessed from one or more common

head nodes. Typically, a single head node is used. The monitor and keyboard of this

head node may be connected to all nodes through monitor/keyboard switch boxes (shown

in Figure 4(b)). Monitor/keyboard switches are not essential but can make the system

easier to maintain.

21

�

Figure 4. ((a) on left) A Beowulf system setup; showing a rack of identical COTS
computers and a single monitor and keyboard. ((b) on right) A COTS

monitor/keyboard switch setup, connecting the single monitor and keyboard to the
cluster of Beowulf machines through 4-way switches[14].

2.6 Review of Existing REMOTE tool

REMOTE [7] is a tool for automatic remote execution of simulation models and

other console mode programs on Windows PCs. The REMOTE++ tool addressed in this

thesis is based on this tool. Much like many of the distribution programs created for

Unix, REMOTE was designed to harness the CPU cycles of idle machines to speed the

execution of large programs. REMOTE uses PIR of programs to achieve this reduction

in execution time. Therefore, REMOTE is designed to execute programs that are

independent of interaction, and small enough to be executed on a single machine, but

require multiple executions. Thus REMOTE is well suited for the simulation programs

that it is designed to distribute.

22

REMOTE assigns jobs from a job list to hosts in a host list. A job in the job list

consists of an executable file, an input file, and an output file. All three files are

transferred to the assigned remote machine before execution, and the output file is

transferred back to the master host at the completion of execution. All communications

in REMOTE are implemented using the Winsock interface. As a result of this sockets

interface, the REMOTE tool is complex. It also has some known timing-related bugs.

For example, if two processes executing on remote machines finish at the same time and

both transfer an output file to the master machine simultaneously, only one output file is

received by the master host.

REMOTE consists of two programs; one is a remote.exe program to be executed

on each of the machines in the host list, the other is a master.exe program to be

executed on the master host. Remote.exe is a single program small enough to be

distributed via e-mail to each of the remote hosts. No configuration of the remote

computers is required. When a user wants to enable a master computer to utilize its

processor power, the user simply executes a single command from the console mode (dos

prompt). This command specifies which host will be allowed access by supplying the

hostname of the master machine. The master machine can then assign a job to that

remote host.

REMOTE includes a status feature that can be executed on the master machine to

monitor the progress of the jobs. It will display the jobs currently being executed and the

percent of the job that has been completed. This status feature can run in a separate

window on the master machine; thus allowing the user of the master machine to easily

detect any problems with the execution of the jobs.

23

CHAPTER 3 GOAL OF REMOTE DISTRIBUTION

The basis for remote distribution is the combination of two main factors. First,

the need to reduce execution time required to complete large processor intensive

experiments and simulations. Second, to maximize the usage of processing resources that

are often under used. Remote distribution combines these two goals by harnessing the

idle CPU cycles of network connected PCs to speed the execution of large programs.

Time based parallelization, as a means of remote distribution, specifically targets

experiments and simulations, which require multiple executions to gather results.

3.1 Remote Distribution System:

Figure 5 shows the basic structure of a remote distribution system. The system

consists of a single master computer and two or more idle remote machines. The master

machine distributes executables and, if applicable, their input and output files to remote

PCs. The jobs are executed on the remote machines and, at the completion of execution,

the output is on the master machine. Once a job is completed, the master computer can

send another job to that machine. The master machine is idle while the jobs are being

executed remotely, so it is free to complete other work. The master and remote machines

must be network connected throughout the process to enable the transfer of jobs and

24

output. The remote machines must be idle to allow their resources to be harnessed

without burdening the owner of the remote PC.

Figure 5: Diagram of Remote distribution system. Master distributes jobs to remote

hosts. Remotes execute the jobs. The output is on the Master at the end of
execution.

3.2 Requirements of Distribution Tools

Remote distribution tools rely on the idle CPU cycles of machines for execution.

This idle CPU time is primarily available during evenings and weekends when users will

not be returning to their machines quickly. This allows resource utilization to be

maximized; however, failures on these unmonitored machines can result in significant

time setbacks. The remote machines are often in locations distant from the master

machine. So, resetting machines in the case of a failure or collecting results manually is

often not an option. Thus, remote distribution tools must be very stable, independent of

user interaction and not prone to failures. In order to ensure successful remote execution,

the distribution tool must meet the following requirements:

Remote

Network

Master

Remote

Remote

Remote

Remote

Jobs

Output

Remote

Network

Master

Remote

Remote

Remote

Remote

Jobs

Output

25

1. Distribution and execution of programs must be automatic and not require any

manual interaction.

2. The remote distribution program must be simple to allow for easy maintenance

and modification.

3. Output files must be available on the master PC at the completion of execution of

each job.

4. A single process must be distributed to each remote machine at a time.

5. Once a job completes, the next job must be sent to that remote host until all jobs

are executed.

6. Each job must be executed only once.

7. The failure of a job to complete must be detected. It must not stop the distribution

of the remaining jobs.

8. The failure of a remote host must be detected. The job must be reassigned to

another host. Future jobs should not be assigned to the failed host.

9. Status and error messages must be displayed at the master PC to allow diagnosis

of run-time errors.

10. A log file should indicate which jobs failed to execute and which hosts were

invalid.

3.3 The Jobs:

Remote distribution cannot be used with all processes. The executables must be

stand-alone processes. They can read input and write output, but cannot require any

26

interaction with other processes. Since reduction in time is the main goal of distribution,

no modification of the executable should be necessary to enable remote execution.

Programs will be executed in parallel; so, the results of one process cannot be required as

input into another process. There is overhead involved in distributing executables and

receiving results; therefore, the time required to complete execution of each job should be

long enough to make this overhead insignificant. Processes that require only a few

seconds to execute may take longer to distribute than to execute, and may not experience

significant reduction in overall execution time. Simulation programs like the one used in

the evaluation in section 5 are ideal for use with remote distribution tools.

27

CHAPTER 4 REMOTE++ DESIGN AND IMPLEMENTATION

REMOTE++ implements time based parallelization of programs through Parallel

Independent Replications; it is, therefore, a remote distribution program designed to meet

the requirements presented in chapter 3. The details of this design will be discussed in

this chapter. Section 4.1 describes the files that comprise REMOTE++. Section 4.2

describes the structure of REMOTE++. Section 4.3 describes the input and output of

REMOTE++. Section 4.4 provides the users’ view of REMOTE++.

4.1 REMOTE++ Components

The REMOTE++ program is distributed as a package including a readme.txt file,

an executable, a make file, and the code files from which the executable was built.

Appendix A contains the readme.txt file and the code for these components. The

REMOTE++ executable is built from the following files:

• remotepp.h – defines constants and prototypes

• remotepp.c – main program which launches the run, transfer and help functions

• run.c – runs the jobs in joblist.txt on the hosts in hostlist.txt

• transfer.c – transfers a file from the master to a remote host

• help.c – displays the REMOTE++ help screen

28

REMOTE++ was designed with simplicity as a main goal to allow for easy use,

maintenance, and modification of the program; it consists of less than 400 lines of

straight C code. REMOTE++ is a command line program. It is launched by executing

“remtoepp cmd”, where cmd is run, transfer filename hostname, or help. From the

main function contained in the remotepp.c file, the arguments are checked and the

appropriate function is called.

An invalid argument, no argument, or “help” supplied to the remotepp command

will call the help function, contained in the help.c file. The help function then displays

the help screen shown in figure 6 below. This screen informs the user of the proper

commands and options required to run REMOTE++.

Figure 6: Help screen for REMOTE++, displayed by remotepp help.

To transfer a file to the remote machine, the argument “transfer” will be used,

this will call the transfer function, contained in the transfer.c file. The proper syntax is

29

“remotepp transfer filename hostname”, where filename is the name of a file on the

master machine to be transferred to the remote machine named hostname. The transfer

function uses a simple remote copy (rcp) command to transfer the file. This command is

used if supplemental files are needed on the remote machine to enable execution of the

jobs in the job list. For example, the transfer command could be used to transfer a .dll

file required to execute a simulation. Using transfer in place of a standard rcp command

will ensure that the file is transferred to the proper directory, where the REMOTE++

program can then access it. Figure 7 shows a sample execution of the transfer command.

=> => put a screen print of a transfer here
Figure 7: Sample execution of transfer command. Transfer of file cw3230.dll to

remote host giga5.csee.usf.edu.

The run function, contained in run.c, is called when the “run” argument is

supplied to the remotepp command. This function is the focus of the REMOTE++

program, which enables remote distribution of the jobs in the joblist.txt. The run

function uses threads to execute a series of rcp and rsh commands that enable remote

execution of these jobs. The run function is described further in the next section. A

sample execution of the run command is shown in figure 8.

 => => put a screen print of a run here

Figure 8: Sample execution of run command. Run of mm1.exe on remote hosts
giga2.csee.usf.edu and giga3.csee.usf.edu.

30

4.2 Remote Distribution Structure in REMOTE++

REMOTE++’s run function is a script that runs standard remote shell (rsh) and

remote copy (rcp) commands within Windows threads to enable Parallel Independent

Replications of processes. It is within these threads that remote distribution is achieved.

The flowchart in Figure 9 illustrates the structure of the run function, and the flowchart in

Figure 10 shows the structure of the run thread, which is started from the run function for

each job in the job list.

The first step taken by REMOTE++ in running the jobs is to verify each job in the

joblist.txt file. The input file, output file, and executable file are opened to verify their

existence. If all three files are valid the job will be placed in the job queue. The job will

also be assigned a host if there is a host in the hostlist.txt that has not been assigned to

another job. The host will then be assigned to the host queue. If all hosts have been

assigned to a job, the host field for the remaining jobs will be left empty and assigned

later. In the case where one or more of the files are not valid the job will be marked

invalid and will not be executed. If there are unassigned hosts remaining in hostlist.txt

after all valid jobs have been assigned to the queue, the hosts will be added to the host

queue; these hosts will only be used if one of the assigned hosts is invalid.

The jobs in the queue that have been assigned a host are ready to be run. For each

of these jobs, a run thread will be started to allow execution of the job. If there are jobs

that have not been assigned a host, they will wait for a job to complete and that host to

become available. As jobs complete, the host will be reassigned to another job. That job

31

will be ready to run, and a thread will be started. Once all jobs in the job list have

completed, the run function will end.

�

�

�

�

�

�

�

�

�

Figure 9: Flowchart of run function.

Figure 10 diagrams the run thread of REMOTE++. One thread will be started

from the run function for each valid job in joblist.txt. The threads will be used to execute

the jobs remotely in parallel. First, the executable will be remote copied (with an rcp

command) to the assigned host. If the rcp is successful, then the host is valid, and the

execution of the job will continue. Otherwise, the host will be marked invalid, the thread

Files Exist

Assign host to job &
add host to host queue

Return

More job in job list

run()

T

T

T

T

T

T

T

T

F

F

F

F

F

F

F

Host can be assigned

Add job to job queue

F

More hosts in host list

All jobs complete

Job ready to be run

Job without host

Available host

Add host to host queue

Assign host to job

run_thread()

Files Exist

Assign host to job &
add host to host queue

Return

More job in job list

run()

T

T

T

T

T

T

T

T

F

F

F

F

F

F

F

Host can be assigned

Add job to job queue

F

More hosts in host list

All jobs complete

Job ready to be run

Job without host

Available host

Add host to host queue

Assign host to job

run_thread()

32

will end, and the job will be placed back in the queue to be reassigned to the next

available host. If the host is valid, the input/output method of the job will be determined.

If the input/output method is “std”, then a remote shell (rsh) command is executed, and

the job is run on the remote host with the input and output redirected from the master PC.

If the input/output method is “file”, the input and output files are copied (with rcp

commands) to the remote machine, and the job is then executed with an rsh command.

After execution, the output file must then be remote copied (rcp) back to the master

machine. Before the thread ends, the host is marked available for future jobs.

Figure 10: Flowchart of run thread.

rsh executable with
input and output

rcp input file and
rcp output file

T

F

file stdMode std or file

run_thread()

Return

Assign job done and
host available

Assign host invalid and
job status unassigned

Rcp output

Rsh executable redirect
input and output

rcp executable file

Host is valid

rsh executable with
input and output

rcp input file and
rcp output file

T

F

file stdMode std or file

run_thread()

Return

Assign job done and
host available

Assign host invalid and
job status unassigned

Rcp output

Rsh executable redirect
input and output

rcp executable file

Host is valid

33

4.3 REMOTE++ Input and Output

There are two methods of input and output recognized by REMOTE++, these are

“classic” and “new”. The “classic” or “file” mode uses input and output from files as

was done with the original REMOTE tool. The “new” or “std” mode is an addition in

REMOTE++, which allows execution of programs which read input from standard input

and write output to standard output. To enable processes that read from standard input to

be executed independently of interaction with a user, all input must be written into a file

in the sequence that it will be read. Redirection can then be used for input into and

output from these processes. Different command sequences are used within REMOTE++

to support execution of these two file methods.

Figure 11, below, shows a sample command sequence for each method. These

command sequences are executed by the REMOTE++ program for each valid job in the

joblist.txt file. These commands sequences are not executed by the user. If the “file”

method (Figure 11(a)) is used, the executable file (mm1.exe), input file (input1.txt), and

output file (output1.txt) are transferred to the temp directory of the remote machine

(host name giga1.csee.usf.edu). This is done with a series of three binary file copies

using rcp commands with the -b option, each of which transfers one file. It is necessary

to copy all three files to the remote machine because they must be located on that

machine to allow execution of programs that read directly from files. The job is then

executed, using an rsh command. After execution, the output file is transferred back to

master (to the remotepp directory) with an rcp command. This is done to ensure that the

output file is on the master machine after each job completes.

34

When the “std” method is used the command sequence in Figure 11(b) is

executed by REMOTE++. In the “std” method only the executable (mm1.exe) is copied

to the remote machine (giga1.csee.usf.edu), with a single rcp command. The input

(input1.txt) and output (output1.txt) files remain on the master machine. Redirection of

input and output from the master PC is then used in the rsh command to read from and

write to these files. Since the output file remains on the master machine, no transfer of

files is necessary at end of execution. The “file” method has more overhead in transfers

(four rcp commands) than does the “std” method (one rcp command), which uses files

stored on the master machine. This can result in a greater reduction in overall execution

time of the experiment if the file method is “std” than if the file method is “file”.

Figure 11: Sample rsh and rcp command sequence for “file” method (a) and

“std” method (b)

4.4 User View of REMOTE++

REMOTE++ was designed with minimizing the load on the user as a key

consideration. Therefore very little configuration is needed to enable the REMOTE++

program to run. Each remote host must be a network-connected machine running

Windows 9x or higher. There must be an rsh and rcp daemon running on each remote

(a) rcp –b /Remotepp/mm1.exe giga1.csee.usf.edu:/temp/
rcp –b /Remotepp/input1.txt giga1.csee.usf.edu:/temp/
rcp –b /Remotepp/output1.txt giga1.csee.usf.edu:/temp/
rsh giga1.csee.usf.edu c:/temp/mm1.exe
rcp –b giga1.csee.usf.edu:/temp/output1.txt /Remote/

(b) rcp –b /Remotepp/mm1.exe giga1.csee.usf.edu:/temp/
rsh giga1.csee.usf.edu c:/temp/mm1.exe <input1.txt >output1.txt

35

host. A free rsh/rcp daemon is available from the author and Silviu C. Marghescu [16]

or one can be purchased from a vendor. These rsh/rcp daemons require no configuration

to enable execution. However, a .rhosts file with the host name of the master machine

should be setup to provide security. A c:/temp/ directory must also exist on each remote

host. Each executable, input and output file copied to the remote host will be saved in the

c:/temp/ directory to allow easy execution and “clean up” of files on the remote

machines. Files transferred with the transfer command will also be stored in the c:/temp/

directory to ensure availability to the jobs executed by the run command.

The configuration of the master machine is also minimal. The user must create

three files: joblist.txt, hostlist.txt, and status.txt. The joblist.txt file contains the list of

jobs. As seen in the sample joblist.txt file shown in figure 12(a), each job must consist of

an input/output method keyword (“file” or “std”), followed by the name of the executable

file, the name of the input file, and the name of the output file (mm1.exe, input.txt, and

output1.txt respectively in the example). The hostlist.txt file must contain a list of the

hostnames of the remote hosts. A sample hostlist.txt file is shown in Figure 12(b). The

status.txt file can initially be empty. It will contain information about the success or

failure of each job and each host at the completion of the execution. A c:/remotepp/

directory must also exist on the master machine to contain all files used by REMOTE++.

The REMOTE++ executable, joblist.txt, hostlist.txt, and status.txt must be contained in

this directory. Additionally, all executable, input, and output files listed in the joblist.txt

should be located in the c:/remotepp/ directory.

REMOTE++ is executed from the Window’s console. To execute the jobs in the

joblist.txt on the hosts in the hostlist.txt, the command remotepp run must be executed

36

at the command line on the master machine. The progress of the job list, and any error

messages will be seen on the master machine. At the completion of execution, the

status.txt file contains the status of each job and the validity of each remote host. Figure

12(c) is a sample status.txt file that would be created after running the jobs in Figure

12(a) on the hosts in Figure 12(b). For each job, the file method is listed, followed by

existence of each file (executable, input, and output). This information can be used to

determine which jobs were completed. Following the jobs in status.txt is a list of the

validity of each host. A host is considered valid if jobs could be executed on it and

invalid if it was not available to execute jobs.

Figure 12: (a) A sample joblist.txt file (b) A sample hostlist.txt file (c) A sample
status.txt file with results from REMOTE++ execution with joblist.txt from (a)

and hostlist.txt from (b) if all jobs and hosts were valid.

(a) file mm1.exe input1.txt output1.txt (c) Mode is classic.
file mm1.exe input2.txt output2.txt Executable file mm1.exe found
file mm1.exe input3.txt output3.txt Input file input1.txt found

Output file output1.txt found
(b) giga2.csee.usf.edu

giga3.csee.usf.edu Mode is classic.
Executable file mm1.exe found
Input file input.txt found
Output file output.txt found

Mode is classic.
Input file input.txt found
Output file output.txt found

giga2.csee.usf.edu is a valid host
giga3.csee.usf.edu is a valid host

37

CHAPTER 5 EVALUATION OF REMOTE++

The performance of queueing systems is often studied using simulation methods.

Queue simulations are regularly used to gather statistical information. To calculate such

statistical information queue simulations must be executed numerous times with varying

input. This makes queuing simulations ideal for Parallel Independent Replications,

which will allow the simulations to be executed with multiple parameters on a pool of

machines. Therefore, a queue simulation was utilized to evaluate the REMOTE++ tool.

5.1 Overview of Queues

A queue is a line or sequence of customers waiting to receive service. A customer

is a broad term, which could vary from customers at a bank waiting in line for a teller, to

computer programs in a job queue where they are spooled and wait for the computer to

process them. The following features determine the behavior of a queue [17]:

a. The distribution of time between arriving customers.

b. The distribution of time to service a customer.

c. The number of servers available to service the customers.

d. The capacity of the queue; this is the number of customers that can be in the queue.

e. The number of customers that are available to enter the queue (population size).

38

Queues are named according to the above features. The naming convention is

a/b/c/d/e where a, b, c, d, and e correspond to the features above. The distribution time

(features a and b) can be Markovia (M), deterministic (D), r-stage Erlangian (Er), k-stage

hyperexponential (Hk) or general (G). The number of servers, the queue capacity, and the

customer population (features c through e) are each represented by a number value.

Commonly both the queue capacity and population size are infinite; when this is the case

features d and e are often dropped.

The order in which the customers are served is determined by the queuing

discipline or rules that determine where customers are inserted into and served from the

queue. There are numerous queuing disciplines but several are very standard. One

common queuing discipline is first come first serve (FCFS), also called first in first out

(FIFO). This rule requires that the first customer to enter the queue is the first customer

serviced. The last come first served (LCFS) queuing discipline, also called last in first

out (LIFO) is another popular discipline. The last customer to join the queue with a

LCFS discipline is the first customer serviced. Queuing disciplines can also be random

and priority. In a priority queue the customers are identified by some feature, which

determines the priority of that customer. Many other queuing disciplines are also

possible.

5.2 M/M/1 Queuing System

An M/M/1 queue is one of the most commonly and heavily used models of a

processing system. The queueing discipline of an M/M/1 queue is First In First Out

39

(FIFO). A diagram of an M/M/1 queue is shown in Figure 13. From the naming

convention discussed in the previous section, it is clear that an M/M/1 queue (also

denoted M/M/1/∞/∞) has the following features:

1. Markovian (exponentially distributed) inter-arrival of customers into the queue.

2. Markovian (exponentially distributed) service times.

3. A single server.

4. An unlimited queue capacity.

5. An infinite customer population

Figure 13: M/M/1 queue.

There are several variables that control simulation of an M/M/1 queue. The

length of an M/M/1 queue is the number of jobs waiting to be serviced. At any time this

length (L) can be determined by the arrival rate of items into the queue (λ) and the wait

time in the queue (W). This relationship is WλL = . The performance of an M/M/1 queue

system is measured by its utilization. The utilization (ρ) is the fraction of the time that

the system is busy. The utilization of the queue is the ratio of the arrival rate of items

into the queue and the service rate of items leaving the queue. The queue length can be

simply calculated from the utilization of the queue by ()ρρL −= 1). As the utilization of

the queue increases and approaches 100%, the length of the queue approaches infinity.

Service
Center DeparturesArrivals

Queue Service
Center DeparturesArrivals

Queue

40

5.3 Evaluation of REMOTE++

A relationship exists between the utilization of an M/M/1 queue, the length of that

queue, and the simulation time. To determine this relationship, the M/M/1 simulation

must be executed numerous times with utilizations approaching 100% and the related

simulation times calculated. No output from one simulation is needed for any other

simulation to complete. Therefore, each execution is independent. REMOTE++ was

used to determine the relationship between the M/M/1 queue utilization and the

simulation run time for mean queue length within a percent of the theoretical length.

REMOTE++ was used to distribute simulations with increasing utilization to a pool of

five remote machines. Three of these were Pentium III 866MHz machines and two were

Pentium III 700 MHz machines. The M/M/1 simulation reads the target utilization and

the desired margin of error (i.e., from the known theoretical length of the queue as

calculated by ()ρρL −= 1) as input from a file. A 10% margin of error was used for this

evaluation. Utilization was started at 1% and increased to 99.5%. Evaluation of each

utilization was executed ten times using different seeds, and the results were then

averaged to gather statistical results.

Using REMOTE++ to run these simulations on this pool of machines took about

20 minutes. When executed on a single 866 Mhz machine, the simulation took

approximately 50 minutes. Therefore, it executed about two and a half times faster on

five machines than it did on one machine. Since the simulations are independent, the

overall increase was expected to be about five times faster when executed on five

machines (about 10 minutes). The plot shown in figure 14, diagrams the execution times

41

of this experiment. The difference in actual and projected execution time is due to

overhead in distributing the simulations. No overhead was considered in the predicted

time; however, there is about seven seconds of overhead in executing each job in the job

list, which has input/output method “file”. Since many of the simulations in the job list

had low target utilizations, they took only seconds to execute. Therefore, this seven

seconds of overhead was significant in the time needed to complete these simulations. If

each of the jobs in the job list took longer to execute, it is projected that the overhead

would be offset by the execution time. The speed up in this case would have been closer

to five times.

Figure 14: Execution times of M/M/1 simulation. Column 1 is actual execution time
when executed one 866 MHz Pentium III computer. Column 2 is the actual

execution time when executed on five machines (three 866MHz and two 700 MHz
Pentium III computers). Column 3 is the projected execution time on five machines

based on a 5 times speed up.

The plot shown in figure 15 conveys the results gathered in the M/M/1 queue

simulation run with the REMOTE++ program. It illustrates the relationship between the

target utilization and the simulation time for the M/M/1 queue for a target utilization

between 90% and 99.5% and a margin of error of 10%.

0
10
20
30
40
50
60

Single
Machine

Actual on
Five

Machines

Projected
on Five

Machines

Execution
Time in
Minutes

42

Figure 15: Simulations time versus target utilizations for an M/M/1 queue with
margin of error of 10.0%.

Figure 16 shows the results illustrated in Figure 14 plotted with an order six

polynomial trend line. The growth of the simulation time nearly mirrors that of the trend

line at utilizations approaching 100%. The statistical confidence or R² relationship for

this trend line is 0.9922 on a scale from zero to one. This is a reasonably close

approximation of the trend in the results. However at utilizations very close to 100%, the

simulation time grows slightly faster than the trend line. From these results one can

conclude that as the target utilization approaches 100% the simulation time of the M/M/1

queue grows at a rate slightly faster than order six polynomial growth.

Figure 16: Order 6 polynomial trend line (blue) with the results of M/M/1 queue
simulation (black) from in Figure 14. The simulation time of the M/M/1 queue

grows at a rate slightly faster than order 6 polynomial growth.

0

500000

1000000

1500000

2000000

90 91 92 93 94 95 96 97 98 99 100

Target Utilization

S
im

ul
at

io
n

Ti
m

e
0

500000

1000000

1500000

2000000

90 91 92 93 94 95 96 97 98 99 100

Target Utilization

Si
m

ul
at

io
n

Ti
m

e

43

CHAPTER 6: SUMMARY AND FUTURE WORK

Simulation programs require significant time to execute on a single machine. At

the same time, many computer resources sit idle, wasting CPU cycles. The REMOTE

tool was designed to harness these non-dedicated idle CPU cycles of Windows PCs to

enable a reduction in the execution time of simulations. This is achieved through a

process distribution and remote execution system. This system consists of a single

master machine, which controls job distribution, and a group of idle remote machines,

which execute the jobs. At the completion of execution, the results are on the master

machine. REMOTE++ improves upon this tool. REMOTE++ eliminates the complex

Winsock interface used by REMOTE and replaces it with standard remote shell (rsh) and

remote copy (rcp) commands. These standard commands provide a straightforward,

efficient way to communicate between the master and the remote machines. The use of

these commands also reduces the program from approximately 1100 to 400 lines of

standard C code; this reduction makes REMOTE++ easier to maintain and modify.

REMOTE++ also expands the types of programs that can be executed without

modification. The original REMOTE tool supported execution of programs that read

from and write to files. REMOTE++ supports the execution of these programs, but also

enables execution of programs that read from standard input and write to standard output.

Only a single program (remotepp.exe) is required to be executed on the master

44

machine. This program distributes and executes the jobs from the job list to the hosts in

the host list. The remote machines need only run an rsh/rcp daemon to enable transfer

and execution of programs. No REMOTE++ program need be run on the remote

machines. REMOTE++ will skip a job if any portion of it is invalid (including

executable, input or output). Jobs assigned to an invalid host will be reassigned to the

next available host and no future jobs will be assigned to the invalid host. The status.txt

log will list the validity of each file and host at the completion of execution. The

REMOTE++ program, an rsh/rcp daemon, and the M/M/1 queue simulation model used

to evaluate the program are freely available from the author as open source with no

restrictions on use.

There are several known problems with REMOTE++ that are the subject of future

work. There is a free rsh/rcp daemon available from Silviu C. Marghescu [16]. This

free rsh/rcp daemon has been debugged to enable it to be used with REMOTE++.

However, it does not enable redirection of input and output; therefore, only the “classic”

or “file” mode can be used to execute programs. This limits distribution to programs that

read from and write to files. The rsh/rcp daemons available from independent vendors

allow redirection and hence support the “new” or “std” mode of input and output;

however, they cost approximately $40.00, which may limit use of the REMOTE++

program. A reliable, free daemon which supports redirection, therefore, needs to be

developed to maximize the use of this program. REMOTE++ also requires that the user

list whether each executable reads from and write to files or standard input and output (by

declaring the input/output method as “file” or “std”). It also requires that both input and

output be done with the same method. Future improvements on REMOTE++ should

45

enable automatic detection of the proper method to be used and allow any combination of

methods to be used. This will further expand the set of programs that can be executed

using REMOTE++. Currently, the REMOTE++ program relies on the rsh/rcp daemon to

provide security through access lists or a password. Security features should be

implemented as part of the REMOTE++ program that are not dependant on the rsh/rcp

daemon and do not require configurations on the remote PCs. Finally, the progress

indication available in the original REMOTE tool should be implemented in

REMOTE++. The current methods notify the user of which jobs are currently executing

and which jobs have completed, but do not provide a percent complete as was available

from REMOTE. This functionality would make it easier for the user of the master

machine to detect a problem with execution of a job.

46

REFERENCES

[1] Akaroa 2 - Architecture and Implementation
http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/arc
hitecture.html

[2] Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M., Vadhiyar, S. User’s

Guide to NetSolve Version 1.4, (1995-2001)
http://icl.cs.utk.edu/netsolve/documents/ug/nug.pdf

[3] Arnold, D.C., and Dongarra, J. The Netsolve environment: progressing towards the

seamless grid. International Workshop on Parallel Processing, (Proceedings 2000),
pages 199-206.

[4] Becker D. Beowulf.Org The Beowulf Cluster Site http://www.beowulf.org/

[5] Brown, R. Maximizing Beowulf Preformance

http://www.phy.duke.edu/brahma/als_talk.pdf

[6] Buyya R. High Performance Cluster Computing (Architecture, Systems, and

Applications) http://www.cs.mu.oz.au/~raj/cluster/
[7] Christensen, K.J. REMOTE: A Tool for Automatic Remote Execution of CISM

Simulation Models. Proceedings 35th Annual Simulation Symposium, (2002), pages
134-142.

[8] Condor for Microsoft Windows 4.0.

http://www.cs.wisc.edu/condor/manual/v6.1/5_Condor_Microsoft.html

[9] Drakos, N., Moore, R. Condor Version 6.4.7 Manual. (2003)
http://www.cs.wisc.edu/condor/manual/v6.4/

[10] Frey, J., Tannenbaum, T. Livny, M., Foster, I., and Tuecke, S. Condor-G: a

computation management agent for multi-institutional grids. Proceedings 10th IEEE

47

International Symposium on High Performance Distributed Computing, (2001),
pages 55-63.

[11] Foster I., Kesselman C. Globus: A Metacomputing Infrastructure Toolkit.

International Journal of Supercomputer Applications,(1997) pages115-128.

[12] Foster, I.; Kesselman, C.; Tuecke, S. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International Journal of High Performance Computing
Applications, Volume 15, Issue 3 (2001) pages 200-222.

[13] Korpela, E.; Werthimer, D.; Anderson, D.; Cobb, J.; Leboisky, M. SETI@home-

Massively Distributed Computing for SETI. Computing in Science & Engineering
Volume: 3, Issue: 1, (January/February 2001) pages 78-83.

[14] Lindheim, J. Building a Beowulf System

http://www.cacr.caltech.edu/research/beowulf/tutorial/beosoft/

[15] Litzxkow, M., Livny, M., and Mutka, M. Condor – A Hunter of Idle Workstations.

Proceedings of the 8th International Conference on Distributed Computing Systems,
(June 1988), pages104-111.

[16] Marghescu, Silviu C. RSH daemon Version (1.6) for Windows NT/95

http://home.us.net/~silviu/

[17] Molloy, M. Fundamentals of Performance Modeling Macmillan 1989.

[18] Mota, E., Wolisz, A., and Pawlikowski, K. Comparing overlapping batch means and

standardized time series under Multiple Replications in Parallel. Simulation and
Modeling. Enablers for a Better Quality of Life. 14th European Simulation
Multiconference (2000), 43-48.

[19] Petty K. F., McKeown N. Xdistribute: A Process Distribution System. University

of California, Berkeley, Electronics Research Lab Research Report #UCB/ERL
M96/67, (November, 1996). http://www.path.berkeley.edu/~pettyk/pubs.html

[20] Petty, K. Introduction to Xdistribute. (1996)

http://www.path.berkeley.edu/~pettyk/Xdist/

[21] Schreiner, K. Distributed Projects Tackle Protein Mystery. Computing in Science &

Engineering Volume: 3, Issue: 1, (January/February 2001) pages 13-16

[22] Sitaker K. Beowulf Mailing List FAQ, Version 2

http://www.canonical.org/~kragen/beowulf-faq.txt

48

[23] Sezen, T. Folding@Home: An Opportunity for Teachers and Students to Participate

in Scientific Research. http://folding.stanford.edu/education/

[24] Tanenmaum, Andrew, and Sharp, Gregory. The Amoeba Distributed Operating

System. www.cs.vu.nl/pub/amoeba/Intro.pdf

[25] Unix man pages: rsh and rexec commands http://www.csee.usf.edu/cgi-bin/man-cgi

[26] Yau, V., and Pawlikowski, K. AKAROA: A package for automating generation and

process control of parallel stochastic simulation. Australian Computer Science
Communications, Volume 15, Issue 1, Part A, (1993), pages 71-82.

[27] Young, E., and Cliff, P. Distributed Computing – the SETI@home Project. Ariadne

Issue 27, (March 2001), http://www.ariadne.ac.uk/issue27/seti/

49

APPENDICES

50

Appendix A: REMOTE++ Code

readme.txt

Readme file for REMOTE++ tool AMH (readme.txt - 3/18/03)

This is the readme.txt file for the REMOTE++ tool. The REMOTE++ tool runs on
a "master" PC and distributes programs, exe files, to "remote" PCs. It does this
in two modes the "classic" mode and "new" mode. The "classic" mode is used with
programs that are written to read input from a file and write output to a file.
This mode is called "classic" because it was used in the original REMOTE tool
developed by Dr. Kenneth Christensen at the University of South Florida. The
"new" mode is used with programs that are written to read input from standard
input and write output to standard output.
In the "new" mode only the executable file is copied to the "remote" PC and the
input and output files can remain on the "master" PC. For the "classic" mode
of REMOTE++ the executable file, input file and output file must all be copied
to the "remote" PC and the output files are then copied back to the "master" PC
after completion.

The following files are used:

remotepp.c - - - - - main program
remotepp.h - - - - - header file
remotepp.mak - - - - make file (for bcc32 -- make -fremotepp) for remotepp.exe
help.c - - - - - - - help function
run.c - - - - - - - send programs to remote functions
transfer.c - - - - - transfer file to remote functions

Other files:

csim.ide - - - - - - CSIM18 M/M/1 IDE file for Borland CSIM18 build of mm1.c
mm1.c - - - - - - - CSIM18 M/M/1 simulation source code
mm1.exe - - - - - - CSIM18 M/M/1 simulation (see header of mm1.c)
cs3230.dll - - - - - Needed for Borland C++ build CSIM18 simulations
mm1in.txt - - - - - An input file for mm1.exe (see header of mm1.c)
hello.c - - - - - - Hello world source code
hello.exe - - - - - Hello world executable (see header of hello.c)
helloin.txt - - - - An input file for hello.exe (see header of hello.c)
readme.txt - - - - - this file

SETUP INSTRUCTIONS:

The REMOTE programs allows for a set of console-mode programs to be distributed
to multiple PCs for remote execution. One PC is the "master" (and runs
remotepp.exe) and all other PCs are the "remotes" contained in hostlist.txt.
All PC's are assumed to run Windows 9X or higher and be running a rsh deamon.
(I suggest the Denicomp version available at www.denicomp.com as this was the
deamon used in testing the program.)

The master PC contains a joblist.txt that lists the jobs to be run on the hosts
listed in hostlist.txt. The joblist.txt contains two types of jobs "classic" and "new".

In the "classic" mode the program is assumed to be designed to read input from a file
and write output to a file. "Classic" programs are programs that open files to read
from and write to.
A "classic" job in joblist.txt would look like this:

file mm1.exe input.txt output1.txt

In the "new" mode progams are assumed to be designed to read their input from
standard input and write their output to standard output. Redirection is used by
REMOTE++ to supply the input from and output to the files in the joblist.
A "new" job in joblist.txt would look like this:

std hello.exe input2.txt output2.txt

51

Appendix A (Continued):

In both the "classic" and "new" modes the arguments are the same. The first
argument specifies the mode. The keyword "file" specifies the mode is "classic" and
the keyword "std" specifies the mode is "new". The second argument is the executable
file. The third argument is the input file containing the input to be used by the
executable. The fourth argument is the output file. It is on the master PC upon
completion of remote execution of the executable file and contains the output from
the execution.

The joblist.txt file contains a list of "classic" and "new" jobs to be executed
remotely.
An example joblist.txt is:

file mm1.exe input1.txt output1.txt
file mm1.exe input2.txt output2.txt
std hello.exe input3.txt output3.txt
file mm1.exe input4.txt output4.txt
std hello.exe input5.txt output5.txt

The hostlist.txt file contains the hostnames of each remote machine that will be used
to execute the jobs from the joblist.txt.
An example hostlist.txt is:

giga1.csee.usf.edu
giga2.csee.usf.edu
giga3.csee.usf.edu

At the completion of execution the status of the jobs and hosts will be in the
status.txt file on the master machine.
An example status.txt is:

Mode is classic.
Executable file mm1.exe found.
Input file input1.txt found.
Output file output1.txt found.
Job was run.

Mode is classic.
Executable file mm1.exe could not be found.
Input file input2.txt found.
Output file output2.txt found.
Job was not run.

Mode is new.
Executable file hello.exe found.
Input file input3.txt found.
Output file output3.txt found.
Job was run.

giga1 is a valid host.
giga2 is a valid host.
giga3 is a valid host.

There are 2 valid jobs.

The status.txt file will contain an entry for each job in the joblist.txt and each
host in the hostlist.txt. Each job entry specifies what the mode is, and if the
executable, input, and output files were found. If all three files were valid then
the job is run if not the job is skipped and marked "Job was not run". Following the
job entries is an entry for each host specifying if it was valid. At the end of the
status.txt is a count of the total number of valid jobs.

All files on the master machine used by REMOTE++ must reside in one common directory
c:/Remotepp. This includes the joblist.txt, hostlist.txt, status.txt, executable,
input and output files. A directory c:/temp must also exists on each of the remote
PCs. This directory will contain all files copied to the remote machine to be used
by REMOTE++.

52

Appendix A (Continued):
EXECUTION INSTRUCTIONS:

To run the jobs in the joblist.txt on the machines in the hostlist.txt, open a
command window (a console or "DOS" window) and enter:

remotepp run

The progress of distribution will be shown on the screen. When each job is started
and when each job completes a message including the time will be displayed to
standard output on the master machine. All error messages will also be displayed at
the standard ouput on the master machine.

To transfer a file file_name from the master to a remote PC host_name enter:

remotepp transfer file_name host_name

A message will be displayed if the transfer was successful.

To view the help screen for REMOTE++ enter:

remotepp help

Use the example programs hello.c and mm1.c to run a sample execution using mm1in.txt
and helloin.txt for input.

53

Appendix A (Continued):

remotepp.h

//=== file = remotepp.h ==
//= Include file for REMOTE++ =
//==
//= Notes: 1) This file contains includes, constants, and function =
//= prototypes for remotepp.c =
//==
//= Contains:
//=--=
//= History: AMH (11/01/02) - Genesis (from master.h and common.h by KJC) =
//==

//----- Includes ---

#include <stdio.h> // Needed for I/O functions
#include <string.h> // Needed for string functions
#include <ctype.h> // Needed for toupper()
#include <conio.h> // Needed for kbhit()
#include <time.h> // Needed for time stuff
#include <windows.h> // Needed for windows stuff
#include <fcntl.h> // Needed for file I/O constants
#include <sys\stat.h> // Needed for file I/O constants
#include <io.h> // Needed for open(), close(), and eof()
#include <process.h> // Needed for thread stuff
#include <stddef.h> // Needed for _threadid

//-----Conditional definitions--

#if defined (MAIN)
#define EXTERN

#endif
#if defined (EXTERNAL)
#define EXTERN extern

#endif

//----- Constants --

#define FALSE 0 // FALSE = 0
#define TRUE 1 // TRUE = 1
#define JOB_LIST "joblist.txt" // Required job list
#define HOST_LIST "hostlist.txt" // Required host list
#define STATUS "status.txt" // Logs the status of the jobs and hosts
#define MAX_HOSTS 250 // Maximum number of hosts in host list
#define MAX_JOBS 250 // Maximum number of jobs in job list
#define CLASSIC 0 // Mode is classic - from file
#define NEW 1 // Mode is new - from std input/output
#define UNASSIGNED 0 // Job is not yet assigned
#define ASSIGNED 1 // Job has been assigned
#define RUNNING 2 // Job is running
#define DONE 3 // Job is done
#define AVAILABLE 0 // Host is available
#define BUSY 1 // Host is busy
#define INVALID 2 // Host is not valid

//----- External variables ---

EXTERN struct {
char exe_file[100]; // *** executable file name
char in_file[100]; // *** input file name
char out_file[100]; // *** output file name
char host_name[100]; // *** host name
int status; // *** job status
int mode; // *** mode of the input/output

} Run_list[MAX_HOSTS]; // Run list structure

EXTERN int Num_jobs; // Number of jobs in the job list
EXTERN int Num_hosts; // Number of hosts in the host list

54

Appendix A (Continued):

EXTERN char Time[100]; // Time value string

EXTERN struct {
char host_name[80]; // *** host name
int status; // *** host status

} Hosts[MAX_HOSTS]; // Hosts structure

//------Prototypes--

void help(void); // Help function
int transfer(char *option1, char *option2); // Transfer function
int run(void); // Run function to run the jobs
int get_time(char *time_val); // Used in Run to display time
void run_thread(void *thread_arg); // Used in Run to thread the jobs

55

Appendix A (Continued):

remotepp.c

//=== file = remotepp.c =
//= Main function and get_time function for REMOTE++ =
//===
//= Contains: main() - Launches appropriate functions based on user commands =
//= get_time()- returns the current date and time =
//=---=
//= History: AMH (11/01/02) - Genesis (from master.c by KJC) =
//===
#define MAIN
//----Includes---
#include "remotepp.h"
//===
//= Main
//===

void main(int argc, char *argv[])
{
char command[80]; // Command
char option1[80]; // Option #1 for a command
char option2[80]; // Option #2 for a command
int i; // Loop counter

//Parse the command and call the appropriate function
if(argc==1)
help();

else
{
// Convert command in argv[1] to all upper case
for (i=0; i<((int) strlen(argv[1]) + 1); i++)
command[i] = toupper(argv[1][i]);

// Parse the command and any options
if ((strcmp(command, "HELP") == 0) || (strcmp(command, "?") == 0))
help();

else if (strcmp(command, "TRANSFER") == 0)
{
strcpy(option1, argv[2]);
strcpy(option2, argv[3]);
transfer(option1, option2);

}
else if (strcmp(command, "RUN") == 0)
run();

else
help();

}
}
//===
//= Get current date and time function =
//= - Assumes that time_val is allocated in caller =
//===

int get_time(char *time_val)
{
time_t timer; // Timer variable
struct tm *tblock; // Time stucture

// Get the time, format it, and remove ending '\n' character
timer = time(NULL);
tblock = localtime(&timer);
strcpy(time_val, asctime(tblock));
time_val[strlen(time_val) - 1] = '\0';

return(1);
}

56

Appendix A (Continued):

help.c

//=== file = help.c ====
//= Help function for REMOTE++ =
//==
//= Contains: help() - Help for Remote++ program =
//=--=
//= History: AMH (11/18/02) - Genesis (from rhelp.c by KJC) =
//==
#define EXTERNAL //This is an external file(used in remotepp.h)

//----Includes--
#include "remotepp.h"

//==
//= Help function =
//==
void help(void)
{
printf("===\n");
printf("= Remote++ =\n");
printf("===\n");
printf("= Usage is 'remotepp command options' =\n");
printf("= =\n");
printf("= Commands and options are: =\n");
printf("= HELP -- this screen =\n");
printf("= TRANSFER file_name host_name -- transfers file file_name to =\n");
printf("= host host_name =\n");
printf("= RUN -- to run the programs in joblist.txt on machines in =\n");
printf("= hostlist.txt =\n");
printf("= =\n");
printf("= Example: remotepp RUN will run the jobs in the joblist.txt =\n");
printf("= on the machines in hostlist.txt and provide the =\n");
printf("= status information in status.txt =\n");
printf("= =\n");
printf("= See readme.txt for further usage instructions and help. The =\n");
printf("= readme.txt describes the format of the required joblist.txt =\n");
printf("= and hostlist.txt files. =\n");
printf("===\n");
printf("= Author: Ashley Hopkins (amhopki2@csee.usf.edu) =\n");
printf("===\n");

}

57

Appendix A (Continued):

transfer.c

//== file = transfer.c ======
//= Transfer function for REMOTE++ =
//===
//= Notes: 1) Assumes file to be transferred is in c:/remotepp =
//= 2) Assumes c:/temp exists on remote host =
//= 3) Transfers file in binary, to transfer as ASCII change -b to -a =
//= in: strcpy(rcp_string, "rcp -a /Remotepp/"); =
//=---=
//= Contains: transfer() - transfers files to remote hosts =
//=---=
//= History: AMH (12/02/02) - Genesis (from mxfer.c by KJC) =
//===
#define EXTERNAL // This is an external file (used in remotepp.h)

//----- Include files ---
#include "remotepp.h"

//===
//= Function to transfer files to remote hosts =
//===
int transfer (char *file_name, char *host_name)
{
int retcode; // Return code
char rcp_string[100]; // Rcp string to use in System()

// Output banner
printf("Transferring file %s to host %s... \n", file_name, host_name);

//form rcp string to copy the file to the remote host
strcpy(rcp_string, "rcp -b /Remotepp/");
strcat(rcp_string, file_name);
strcat(rcp_string, " ");
strcat(rcp_string, host_name);
strcat(rcp_string, ":/temp/");

// Send the file
retcode = system(rcp_string);
if (retcode < 0)
{
printf("*** ERROR in transfer() - rcp failed \n");
return(-1);

}

// Output completion message
printf("File transfer complete \n");

return(1);
}

58

Appendix A (Continued):

run.c

//=== file = run.c ======
//= Run function for REMOTE++ =
//===
//= Notes: 1) Input files must be different for all jobs in joblist =
//= 2) Assumes c:/temp exists on remote machines =
//= 3) Assumes c:/Remotepp exists and it contains remotepp.exe and =
//= files to be copied to the remote machines =
//= 4) Hostlist.txt, Joblist.txt, and Status.txt must exist =
//= 5) If only 1 host and it is invalid will get stuck =
//= 6) An unused host is always "valid" in the status file =
//=---=
//= Contains: run() - Runs programs in joblist on remote hosts in hostlist =
//=---=
//= History: AMH (11/01/02) - Genesis (from mrun.c by KJC) =
//===
#define EXTERNAL

//----Include files--
#include "remotepp.h"

//===
//= Function to run programs on remote hosts =
//===
int run(void)
{
FILE *st1; // File stream #1 for JOB_LIST
FILE *st2; // File stream #2 for HOST_LIST
FILE *st3; // File stream #3 for STATUS
FILE *st4; // File stream #4 for exe_file
FILE *st5; // File stream #5 for in_file
FILE *st6; // File stream #6 for out_file
char run_mode[10]; // Mode of the input & output
char host_name[100]; // Remote host name
char exe_file[100]; // Executable file name
char in_file[100]; // Input file name
char out_file[100]; // Output file name
int i, j; // Loop counters
int done_flag; // Done flag for job list
int assign_flag; // Assignment flag
int job_number; // number of job being processed
HANDLE handle_array[MAX_JOBS]; // array of handles
int file_error; // Error in opening file

// Output banner
get_time(Time);
printf("Starting master for remote runs at %s... \n", Time);
printf(" >>> Ctrl-C to break-out <<< \n");

// Open job_list
st1 = fopen(JOB_LIST, "r");
if (st1 == NULL)
{
printf("*** ERROR in run() - unable to open job list %s \n", JOB_LIST);
return(-1);

}

// Open host_list
st2 = fopen(HOST_LIST, "r");
if (st2 == NULL)
{
printf("*** ERROR in run() - unable to open host list %s \n", HOST_LIST);
return(-1);

}

59

Appendix A (Continued):
//Open the STATUS file
st3 = fopen(STATUS, "w");
if (st3 ==NULL)
{
printf("*** ERROR in run() - unable to open status file %s \n", STATUS);
return(-1);

}

// Build the run list
Num_jobs = 0;
Num_hosts = 0;

while(TRUE)
{
//initially set error to 0
file_error=0;

//scan in job to be executed
fscanf(st1, "%s %s %s %s", run_mode, exe_file, in_file, out_file);
if (feof(st1))
break;

//Set the Mode
if((strcmp(run_mode, "file")==0)||(strcmp(run_mode,"File")==0)

||(strcmp(run_mode, "FILE")==0))
{
Run_list[Num_jobs].mode = CLASSIC;
fprintf(st3, "Mode is classic. \n");

}
else if ((strcmp(run_mode, "std")==0)||(strcmp(run_mode,"Std")==0)

||(strcmp(run_mode, "STD")==0))
{
Run_list[Num_jobs].mode = NEW;
fprintf(st3, "Mode is new. \n");

}
else
{
fprintf(st3, "Mode %s is not valid. \n", run_mode);
file_error=1;

}

// Determine if the executable exists
st4 = fopen(exe_file, "r");
if (st4 == NULL)
{
file_error=1;
fprintf(st3,"Executable file %s could not be found. \n", exe_file);

}
else fprintf(st3, "Executable file %s found. \n", exe_file);
fclose(st4);

// Determine if input file exists
st5 = fopen(in_file, "r");
if (st5 == NULL)
{
file_error=1;
fprintf(st3, "Input file %s could not be found. \n", in_file);

}
else fprintf(st3, "Input file %s found. \n", in_file);
fclose(st5);

// Determine if output file exists
st6 = fopen(out_file, "r");
if (st6 == NULL)
{
file_error=1;
fprintf(st3, "Output file %s could not be found. \n", out_file);

}

60

Appendix A (Continued):
else fprintf(st3, "Output file %s found. \n", out_file);

//print if job was run
if (file_error==0)
fprintf(st3, "Job was run\n");

else
fprintf(st3, "Job was not run\n");

fprintf(st3, "\n");

// Print dummy message to output file
fprintf(st6, "Dummy");
fclose(st6);

//Set up runlist if all three files exist
if(file_error==0)
{
strcpy(Run_list[Num_jobs].exe_file, exe_file);
strcpy(Run_list[Num_jobs].in_file, in_file);
strcpy(Run_list[Num_jobs].out_file, out_file);

fscanf(st2, "%s", host_name);
if (!feof(st2))
{
strcpy(Hosts[Num_hosts].host_name, host_name);
Num_hosts++;

}

if (feof(st2))
strcpy(host_name, "");

strcpy(Run_list[Num_jobs].host_name, host_name);

if (strcmp(host_name, "") != 0)
{
Run_list[Num_jobs].status = ASSIGNED;
Hosts[Num_hosts-1].status = BUSY;

}
else
Run_list[Num_jobs].status = UNASSIGNED;

Num_jobs++;
}

}

//Copy the remainder of the hosts into the Hosts array
fscanf(st2, "%s", host_name);
while(!feof(st2))
{
strcpy(Hosts[Num_hosts].host_name, host_name);
Hosts[Num_hosts].status = AVAILABLE;
Num_hosts++;
fscanf(st2, "%s", host_name);

}

// Close JOB_LIST and HOST_LIST
fclose(st1);
fclose(st2);

// Run the jobs
done_flag = FALSE;
while(done_flag == FALSE)
{
// Test if an assignment can be made
assign_flag = FALSE;

61

Appendix A (Continued):

for (i=0; i<Num_jobs; i++)
{
if (((strcmp(Run_list[i].host_name, "") != 0) &&
(Run_list[i].status == ASSIGNED)))
{
job_number=i;
Run_list[i].status = RUNNING;
assign_flag = TRUE;

}

// Make an assignment if it can be done
if (assign_flag == TRUE)
{
// Output a job assigned banner
get_time(Time);
printf("Running (%s %s %s) on %s at %s \n", Run_list[job_number].exe_file,
Run_list[job_number].in_file, Run_list[job_number].out_file,
Run_list[job_number].host_name, Time);

// Lanch the thread for the job
handle_array[job_number] = (HANDLE)_beginthread(run_thread, 4096,

(void*)job_number);
}
assign_flag=FALSE;

}
// Test if all jobs done
done_flag = TRUE;
for (i=0; i<Num_jobs; i++)
{
if (Run_list[i].status != DONE)
{
done_flag = FALSE;

//Assign a host if needed and available
if(strcmp(Run_list[i].host_name, "")==0)
{
for(j=0; j<Num_hosts; j++)
if(Hosts[j].status==AVAILABLE)
{
strcpy(Run_list[i].host_name, Hosts[j].host_name);
Hosts[j].status = BUSY;
Run_list[i].status = ASSIGNED;
break;

}
}

}
}

}

//Print host status to status.txt
for(i=0; i<Num_hosts; i++)
{
if(Hosts[i].status == INVALID)
fprintf(st3,"%s is not a valid host.\n", Hosts[i].host_name);

else
fprintf(st3,"%s is a valid host.\n", Hosts[i].host_name);

}
fprintf(st3, "\nThere are %d valid jobs.\n", Num_jobs);
fclose(st3);

return(1);
}

62

Appendix A (Continued):
//===
//= Thread code for run() =
//===
void run_thread(void *thread_arg)
{
int current_job; // number of the current job
char rcp_exe[100]; // rcp command to copy exefile
char rcp_in[100]; // rcp command to copy infile
char rcp_out[100]; // rcp command to copy outfile
char rshstring[100]; // rsh command to execute exefile
int i, j; // Loop counters
int retcode; // Return code

//set thread_arg to struct1
current_job= (int) thread_arg;

//form rcp string to copy files to remote host
strcpy(rcp_exe, "rcp -b /Remotepp/");
strcat(rcp_exe, Run_list[current_job].exe_file);
strcat(rcp_exe, " ");
strcat(rcp_exe, Run_list[current_job].host_name);
strcat(rcp_exe, ":/temp");

// Copy the executable file to the remote host
retcode = system(rcp_exe);

// Check if host in hostlist is valid
if (retcode > 0)
{
for(i=0; i<Num_hosts; i++)
{
if(strcmp(Run_list[current_job].host_name, Hosts[i].host_name)==0)
{
Hosts[i].status = INVALID;
break;

}
}
strcpy(Run_list[current_job].host_name, "");
Run_list[current_job].status = UNASSIGNED;
_endthread();

}

// Set up and send job if mode is New
if(Run_list[current_job].mode == NEW)
{
//form rsh string to execute on remote host
strcpy(rshstring, "rsh ");
strcat(rshstring, Run_list[current_job].host_name);
strcat(rshstring, " c:/temp/");
strcat(rshstring, Run_list[current_job].exe_file);
strcat(rshstring, " <");
strcat(rshstring, Run_list[current_job].in_file);
strcat(rshstring, " >");
strcat(rshstring, Run_list[current_job].out_file);

// run rsh with redirection of input and output
system(rshstring);

}

// Set up and send job if mode is Classic
else
{
//form rcp string to copy input file to remote host
strcpy(rcp_in, "rcp -b /Remotepp/");
strcat(rcp_in, Run_list[current_job].in_file);
strcat(rcp_in, " ");
strcat(rcp_in, Run_list[current_job].host_name);
strcat(rcp_in, ":/temp/infile");

63

Appendix A (Continued):
//rcp the input file
system(rcp_in);

//form rcp string to copy output file to remote host
strcpy(rcp_out, "rcp -b /Remotepp/");
strcat(rcp_out, Run_list[current_job].out_file);
strcat(rcp_out, " ");
strcat(rcp_out, Run_list[current_job].host_name);
strcat(rcp_out, ":/temp/outfile");

//rcp the output file to remote
system(rcp_out);

//form the rsh string
strcpy(rshstring, "rsh ");
strcat(rshstring, Run_list[current_job].host_name);
strcat(rshstring, " c:/temp/");
strcat(rshstring, Run_list[current_job].exe_file);

// run rsh with input and output from file
system(rshstring);

//form rcp string to copy output file back from remote host
strcpy(rcp_out, "rcp -b ");
strcat(rcp_out, Run_list[current_job].host_name);
strcat(rcp_out, ":/temp/outfile");
strcat(rcp_out, " ");
strcat(rcp_out, "/Remotepp/");
strcat(rcp_out, Run_list[current_job].out_file);

//rcp the output file back from remote
system(rcp_out);

}

//Output a done message
get_time(Time);
printf("Job with outfile %s completed at %s \n",
Run_list[current_job].out_file, Time);

// Set status to DONE
Run_list[current_job].status = DONE;

//Set host available
for(j=0; j<Num_hosts; j++)
{
if(strcmp(Run_list[current_job].host_name, Hosts[j].host_name)==0)
{
Hosts[j].status=AVAILABLE;
break;
}

}
_endthread();

}

