

Design and Evaluation of the Combined Input and Crossbar Queued (CICQ) Switch

by

Kenji Yoshigoe

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Kenneth J. Christensen, Ph.D.
Tapas K. Das, Ph.D.

Miguel A. Labrador, Ph.D.
Rafael A. Perez, Ph.D.

Stephen W. Suen, Ph.D.

Date of Approval:
August 9, 2004

Keywords: Performance Evaluation, Packet switches, Variable-length packets, Stability,
Scalability

 © Copyright 2004, Kenji Yoshigoe

Acknowledgements

I would like to express my gratitude to my advisor Dr. Kenneth J. Christensen for

providing me tremendous opportunities and support. He has opened the door for me to

pursue an academic career, and has mentored me to a great extent. I would not have been

able to come this far, had I not had his valuable advice throughout my Ph.D. studies. I

would like to thank my committee: Dr. Tapas K. Das, Dr. Miguel A. Labrador, Dr. Rafael

A. Perez, and Dr. Stephen W. Suen. I would like to acknowledge the National Science

Foundation and the Department of Computer Science and Engineering at the University

of South Florida for financial support. And last, but not least, I would like to

acknowledge my parents. I dedicate this to you since it would not have been possible

without your unconditional support.

 i

Table of Contents

List of Tables...v

List of Figures ... vi

Glossary of Acronyms.. xii

Abstract ...xv

Chapter 1: Introduction ...1

1.1 Background ...1

1.2 Motivation ...3

1.3 Contributions of this dissertation ..5

1.4 Organization of this dissertation ...6

Chapter 2: Background on Packet Switching..8

2.1 Packet switch buffering architectures ...8

2.2 Output queued switches ..9

2.3 Shared-buffer switches..10

2.4 Input queued switches ...11

2.5 Virtual output queued IQ switches..14

2.6 VOQ scheduling algorithms..15

2.6.1 Maximum matching ...17

2.6.2 Sequential matching algorithms ...18

2.6.2.1 Wave front arbiter and wrapped wave front arbiter19

2.6.2.2 Two-dimensional round-robin...21

2.6.3 Parallel matching algorithms..22

2.6.3.1 Parallel iterative matching...22

2.6.3.2 Statistical matching ...23

2.6.3.3 Weighted PIM ...23

 ii

2.6.3.4 Round-robin matching...24

2.6.3.5 SLIP...25

2.6.3.6 Iterative SLIP ..27

2.6.3.7 FIRM ...27

2.6.3.8 Shakeup techniques ...28

2.6.3.9 Dual round-robin matching ...28

2.6.3.10 Load-balancing Birkhoff-von Neumann switch......................................29

2.7 Combined input and output queued switches..30

2.8 Crossbar queued switches ...31

2.9 VOQ CICQ switches...34

Chapter 3: Performance Evaluation of the CICQ Switch ...37

3.1 The simulation model..37

3.1.1 Switch model..37

 3.1.2 Stopping criteria ...40

3.2 Traffic models for evaluating the CICQ switch ..41

3.2.1 Bernoulli and Interrupted Bernoulli Process arrival processes41

3.2.2 USF synthetic traffic ..43

3.3 Simulation experiments...44

3.4 Experiment results...45

Chapter 4: Eliminating Instability in IQ and CICQ Switches...51

4.1 Unstable regions in VOQ switches ...51

4.2 An Erlang space model for unstable region ..54

4.3 The new burst stabilization protocol ...55

4.4 Simulation evaluation of burst stabilization protocol ...56

4.5 An analytical model of burst stabilization ..60

4.5.1 Vacating server approximation ..62

4.5.2 Port 2 analysis ..64

4.5.3 Port 1 analysis ..65

4.5.4 Bounds on BURST..67

4.5.5 Numerical results..68

 iii

Chapter 5: Switching Variable-Length Packets ..70

5.1 Packet-to-cell segmentation schemes in IQ switches..70

5.1.1 Models of quantized service time queues ..72

5.1.1.1 Ceiling of well known distributions..72

5.1.1.2 M/G/1 analysis ..74

5.1.1.3 Application of models to packet-to-cell segmenting.................................75

5.1.2 Simulation of iSLIP with packet segmentation..77

5.1.2.1 Traffic model...77

5.1.2.2 Simulation experiments...78

5.1.2.3 Experiment results...79

5.1.3 Packet-to-cell segmentation with the new cell merging method......................80

5.1.3.1 Simulation evaluation of cell merging ..81

5.2 Switching variable-length packets for CICQ switches ...82

5.2.1 Unfairness among VOQs in CICQ switch ...83

5.2.2 Block transfer mechanism..84

5.2.3 Evaluation of block transfer mechanism..86

5.2.3.1 Traffic models ...86

5.2.3.2 Simulation experiments...87

5.2.3.3 Experiment results...89

Chapter 6: Design and Implementation of CICQ Switches ..96

6.1 Design of an FPGA-based CICQ Switch ..96

6.1.1 Chassis-level design ...97

6.1.2 Line card design ...98

6.1.3 Buffered crossbar design..99

6.1.4 Cost estimate of the FPGA design ...100

6.2 Fast RR arbiter ..101

6.2.1 Existing fast RR arbiter designs ...101

6.2.2 Masked priority encoder...104

6.2.3 Evaluation of MPE...105

6.3 Scalable RR arbiter ...107

 iv

6.3.1 Existing scalable RR arbiters ...108

6.3.2 Overlapped RR arbiter ...111

6.3.3 The ORR arbiter in the CICQ switch ...115

6.3.4 Evaluation of the ORR arbiter..115

6.3.5 Simulation experiments..115

6.3.6 Experiment results..116

Chapter 7: Scalable CICQ Switches..119

7.1 Scalability of existing packet switch...119

7.2 Distributed rate controlled CICQ switches ...122

7.3 Properties of distributed rate controlled CICQ switches.......................................125

7.4 Evaluation of the distributed rate controlled CICQ switches................................127

7.4.1 Traffic models ..127

7.4.2 Simulation experiments..128

7.4.3 Experiment results..129

Chapter 8: Summary and Directions for Future Research ..134

8.1 Specific contributions of this research ..136

8.2 Directions for future research..137

References ...139

List of Publications..153

About the Author... End Page

 v

List of Tables

Table 4.1 – Calculated and simulated minimum BURST values for l1 = 0.98 69

Table 4.2 – Calculated and simulated minimum BURST values for l1 = 0.99 69

Table 6.1 – Evaluation of delay (nanoseconds) 107

Table 6.2 – Evaluation of space (FPGA BELs) 107

 vi

List of Figures

Figure 1.1 – Packet switches in the Internet 2

Figure 1.2 – Internet traffic vs. switch speed 4

Figure 2.1 – Single-stage crossbar switch 9

Figure 2.2 – Output queued switch 10

Figure 2.3 – Shared-buffer switch 11

Figure 2.4 – Input queued switch 12

Figure 2.5 – Virtual output queued IQ switch 15

Figure 2.6 – A bipartite graph for an NxN VOQ IQ switch 17

Figure 2.7 – Wave front arbiter 19

Figure 2.8 – Wrapped wave front arbiter 21

Figure 2.9 – PIM algorithm 22

Figure 2.10 – Grant stage of WPIM 24

Figure 2.11 – RRM algorithm 25

Figure 2.12 – SLIP algorithm 26

 vii

Figure 2.13 – SLIP with request and grant arbiters 26

Figure 2.14 – iSLIP algorithm 27

Figure 2.15 – DRRM algorithm 29

Figure 2.16 – Load balancing Birkhoff-von Neumann switch 30

Figure 2.17 – Combined input and output queued switch 31

Figure 2.18 – Buffered crossbar switch 32

Figure 2.19 – VOQ CICQ switch 35

Figure 3.1 – List of modules and functions for CICQ switch model 38

Figure 3.2 – CICQ switch model 38

Figure 3.3 – Source code for bernoulli () 39

Figure 3.4 – Cell arrivals in time slot 42

Figure 3.5 – Two-state Markov chain 42

Figure 3.6 – Histogram of “USF distribution” of Ethernet packet lengths 43

Figure 3.7 – Results for Bernoulli experiment (mean response time) 46

Figure 3.8 – Results for Bernoulli experiment (std dev of response time) 46

Figure 3.9 – Results for IBP experiment (mean response time) 47

Figure 3.10 – Results for IBP experiment (std dev of response time) 48

Figure 3.11 – Results for packet experiment (mean response time) 48

 viii

Figure 3.12 – Results for packet experiment (std dev of response time) 49

Figure 3.13 – Results for fairness experiment (mean response time) 50

Figure 3.14 – Results for fairness experiment (std dev of response time) 50

Figure 4.1 – Instability in CICQ and iSLIP 53

Figure 4.2 – Stability results for CICQ and iSLIP 57

Figure 4.3 – Results for individual VOQs 58

Figure 4.4 – Results for BURST experiment #1 59

Figure 4.5 – Results for BURST experiment #2 59

Figure 4.6 – Results for THRESHOLD and BURST experiment 60

Figure 4.7 – Prediction of minimum BURST value 67

Figure 5.1 – VOQ switch showing packet-to-cell segmenter 71

Figure 5.2 – Numerical results for /1M/M∆ for various values of L 76

Figure 5.3 – Histogram of USF traced traffic #2 of Ethernet packet lengths 78

Figure 5.4 – Results for stability experiment 79

Figure 5.5 – FSM for cell merging 80

Figure 5.6 – Results for stability experiment with cell merging 82

Figure 5.7– 1x 2 CICQ switch showing packet-level unfairness 84

Figure 5.8 – Block transfer mechanism 85

 ix

Figure 5.9 – Pseudocode for block transfer mechanism 85

Figure 5.10 – Results for high-degree balanced experiment 89

Figure 5.11 – Results for low-degree balanced experiment 90

Figure 5.12 – Results for low-degree unbalanced experiment 91

Figure 5.13 – Results for diagonal experiment (large packets) 92

Figure 5.14 – Results for diagonal experiment (small packets) 92

Figure 5.15 – Results for diagonal experiment (small and large packets) 94

Figure 5.16 – Results for traced packet experiment 94

Figure 5.17 – Relative utilization of port for traced packet experiment 95

Figure 6.1 – Chassis-level design of FPGA CICQ switch 97

Figure 6.2 – Line card design of FPGA CICQ switch 98

Figure 6.3 – Buffered crossbar design of FPGA CICQ switch 100

Figure 6.4 – Double barrel-shift RR poller [38] 102

Figure 6.5 – McKeown’s PROPOSED RR poller [38] 103

Figure 6.6 – McKeown’s PROPOSED algorithm 103

Figure 6.7 – MPE RR arbiter design (block diagram) 104

Figure 6.8 – MPE RR arbiter algorithm 105

Figure 6.9 – MPE RR poller design (logic diagram) 105

 x

Figure 6.10 – Queue with control and data lines 111

Figure 6.11 – Cell queues and scheduling queue 112

Figure 6.12 – Polling algorithm 112

Figure 6.13 – Scheduling algorithm 113

Figure 6.14 – Results for work conservation experiment 117

Figure 6.15 – Results for fairness experiment #1 118

Figure 6.16 – Results for output characterization experiment 118

Figure 7.1 – Trend in switch design 120

Figure 7.2 – Distributed rate controller (overview) 122

Figure 7.3 – Overlapped rate allocation and VOQ scheduling phases 123

Figure 7.4 – Rate allocation 124

Figure 7.5 – VOQ scheduling 124

Figure 7.6 – Underallocation of rate 125

Figure 7.7 – Results for high-degree balanced (Bernoulli) experiment 129

Figure 7.8– Results for high-degree balanced (IBP) experiment 130

Figure 7.9 – Results for low-degree balanced (Bernoulli) experiment 131

Figure 7.10 – Results for low-degree balanced (IBP) experiment 132

Figure 7.11– Results for low-degree unbalanced (Bernoulli) experiment 133

 xi

Figure 7.12– Results for low-degree unbalanced (IBP) experiment 133

 xii

Glossary of Acronyms

2DRR Two-Dimensional Round Robin
ARPANET Advanced Research Projects Agency Network
ATLAS ATm multi-LAne backpressure Switch
ATM Asynchronous Transfer Mode
BEL Basic ELement
BMX Bus Matrix Switch
CBR Constant Bit Rate
CICQ Combined Input and Crossbar Queue/Queued/Queueing
CIOQ Combined Input and Output Queue/Queued/Queueing
CIXB Combined Input-one-cell-CP Buffer crossbar
CLA Carry Look-Ahead
CLB Configurable Logic Block
CMOS Complementary Metal Oxide Semiconductor
CP CrossPoint
DRRM Dual Round Robin Matching
DSP Digital Signal Processor
EM Extended Memory
EXH Exhaustive
FCFS First-Come First-Served
FCVC Flow-Controlled Virtual Channels
FIFO First-In First-Out
FIRM FCFS In Round Robin
FC Flow Control
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPS Group-Pipeline Scheduler
HOL Head Of Line

 xiii

IBM International Business Machines
IBP Interrupted Bernoulli Process
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
IQ Input Queue/Queued/Queueing
ISDN Integrated Services Digital Network
LAN Local Area Network
LQF Longest Queue First
MAC Media Access Control
MPE Masked Priority Encoder
MSSR Multi-Stage Self-Routing
NEBS Network Equipment Building Standard
OCF Oldest Cell First
OQ Output Queue/Queued/Queueing
ORR Overlapped Round Robin
PCRRD Pipeline-Based Concurrent Round-Robin Dispatching
PGPS Packetized Generalized Processor Sharing
PIM Parallel Iterative Matching
PPA Ping-Pong Arbitration
PPE Programmable Priority Encoder
PRRA Parallel RR Arbiter
RAM Read Access Memory
RFC Request For Comment
RND Random
RR Round Robin
RRGS Round-Robin Greedy Scheduling
RRM Round-Robin Matching
RTT Round-Trip Time
SRAM Static Random Access Memory
SRM Self-Routing switch Modules
URL Universal Resource Locator
VHDL Very high speed integrated circuit Hardware Description Language
VLSI Very Large Scale Integration
VOQ Virtual Output Queue/Queued/Queueing
WFA Wave Front Arbiter

 xiv

WFQ Weighted Fair Queueing
WPIM Weighted Parallel Iterative Matching
WWFA Wrapped Wave Front Arbiter

 xv

Design and Evaluation of the Combined Input and Crossbar Queued (CICQ) Switch

Kenji Yoshigoe

ABSTRACT

Packet switches are used in the Internet to forward information between a sender and

receiver and are the critical bottleneck in the Internet. Without faster packet switch

designs, the Internet cannot continue to scale-up to higher data rates. Packet switches

must be able to achieve high throughput and low delay. In addition, they must be stable

for all traffic loads, must efficiently support variable length packets, and must be scalable

to higher link data rates and greater numbers of ports. This dissertation investigates a

new combined input and crossbar queued (CICQ) switch architecture.

 Some unbalanced traffic loads result in instability for input queued (IQ) and CICQ

switches. This instability region was modeled, and the cause of the instability was found

to be a lack of work conservation at one port. A new burst stabilization protocol was

investigated that was shown to stabilize both IQ and CICQ switches. As an added benefit,

this new protocol did not require a costly internal switch speed-up. Switching variable

length packets in IQ switches requires the segmentation of packets into cells. The process

also requires an internal switch speed-up which can be costly. A new method of cell-

merging in IQ switches reduced this speed-up. To improve fairness for CICQ switches,

a block and transfer method was proposed and evaluated.

 xvi

 Implementation feasibility of the CICQ switch was also investigated via a field

programmable gate array (FPGA) implementation of key components. Two new designs

for round robin arbiters were developed and evaluated. The first of these, a proposed

priority-encoder-based round robin arbiter that uses feedback masking, has a lower delay

than any known design for an FPGA implementation. The second, an overlapped round

robin arbiter design that fully overlaps round robin polling and scheduling, was proposed

and shown to be scalable, work conserving, and fair.

 To allow for multi-cabinet implementation and minimization of the size of the cross

point buffers, a distributed input port queue scheduler was investigated. This new

scheduler minimizes the amount of buffering needed within the crossbar.

The two primary contributions of this dissertation are 1) a complete understanding of

the performance characteristics of the CICQ switch, and 2) new methods for improving

the performance, stability, and scalability of the CICQ switch. This work has shown that

the CICQ switch can be the switch architecture of the future.

 1

Chapter 1: Introduction

1.1 Background

Switches have been a focus of research from the outset of electronic communications.

The very first switches were human operators for early telephone systems in the 1890s.

Performance of these “switches” was a topic of interest and resulted in the very

beginnings of queueing theory. In 1909, A. K. Erlang applied probability theory to solve

the problem of telephone traffic and derived formulae for loss and waiting time, which

are now well known in the theory of telephone traffic [9]. This represented the start of

performance modeling of electronic communication systems. In the early 1960s digital

communications between computers became a point of interest for defense purposes; this

interest led to the ARPANET in 1969 [24], which has evolved into the Internet of today.

 Packet switching is used to exchange digital data between computers, or hosts. A

packet is a block of data typically ranging from 64 to 1500 bytes in length. When the

number of hosts is more than “just a few”, providing 2/)1(−NN links and 1−N

interfaces per host (for N hosts), it becomes infeasible to enable any communications. A

switch interconnecting the hosts reduces the total number of links to N and interfaces to 1

per host making it more feasible to enable communications. Switching, then, is the

foundation of a packet switched network. Packet switches are also called bridges,

gateways, or routers, depending on the protocol layer at which they operate.

 2

 In the Internet, routing is done at the Internet Protocol (IP) layer. A packet switch

requires buffering to store packets from temporary overload situations that occur when,

for example, two hosts simultaneously send packets to a given host. Figure 1.1 shows

packet switches in local area networks (LANs) that connect to the Internet at the edge

between LANs and the Internet, and at the Internet’s core. A typical LAN is based on the

Ethernet standard [44] and may have link data rates of 10, 100, or 1000-Mbps. Link data

rates on the Internet can be as high as 160-Gbps (Optical Carrier level 3072 (OC-3072)).

These link data rates are increasing, along with the number of hosts in networks.

Figure 1.1 – Packet switches in the Internet

Packet switches forward packets to specific locations according to a set of rules.

These rules form the basis of packet routing. The organization of components (e.g.,

buffering and switching elements) in a switch is commonly called its “architecture”.

Switch architectures are based on the location of buffering (at input or output of a

LAN switch

WAN

Edge routers

Core routerWireless base station

LAN switch

WAN

Edge routers

Core routerWireless base station

 3

switch), the type of switching elements, and so on. This dissertation focuses on the

performance of packet switch architectures and not on packet forwarding rules.

1.2 Motivation

Link data rates on the Internet are increasing faster than memory cycle rates (see

Gilder’s Law [30]), a fact that is driving the need to investigate switch architectures that

use input buffering rather than shared memory or output buffering. In input buffered

switches, the memory speed need not exceed link data rate. In shared and output

buffered switches, memory speed must be N times link data rate (where N is the number

of ports in the switch). Thus, for emerging 10-Gbps link data rates, shared memory and

output buffered switch architectures are infeasible. The reason for this “N times link data

rate” is described in Chapter 2 of this dissertation.

The Internet has grown exponentially over the past 30 years, with traffic reaching the

maximum switch speed in 1997 [96] as shown in Figure 1.2. In the years hence, switch

speed has been forced to increase at a rate equivalent to that of the growth of Internet

traffic [96]. Without switch architectures that have the capability to accommodate

greater link data rates and larger numbers of ports, the Internet can not continue to grow

in terms of number of users or types of applications (e.g., video delivery, which requires

greater data rates. The fastest commercially available switch architecture is a virtual

output queued (VOQ) switch in which the input buffer in each port is partitioned into N

queues with one queue for each of the N output ports. Though it does not require an N

time internal speedup and can scale up to a relatively large switch speed and size, VOQ

IQ switches present the following open problems:

 4

Figure 1.2 –Internet traffic vs. switch speed

1) Almost two-times the normal internal speed-up is required to support variable-

length packets [106]. Internal speed-up refers to the situation in which the switch

fabric and buffers must be run faster than the link rate. Speed-up adds cost and

reduces the implementation feasibility of a switch.

2) An additional two-times the normal internal speed-up is needed to achieve

stability for unbalanced (schedulable) traffic [20].

3) Iterative scheduling, used for VOQ IQ switches (and described in detail in

Chapter 2 of this dissertation), has become a bottleneck of greater significance

than issues of memory speed [90].

4) A VOQ IQ switch requires complex internal control interconnections between

ports. These control interconnections can limit the number of ports that can be

implemented [80].

2010

100 M

1970

100 P

Maximum switch
throughput

Internet traffic

100 T

100 G

100 K

100

1980 1990 2000

1997 breakpoint

Date (year)

D
at

a
ra

te
 (b

its
 p

er
 s

ec
on

d)

2010

100 M

1970

100 P

Maximum switch
throughput

Internet traffic

100 T

100 G

100 K

100

1980 1990 2000

1997 breakpoint

Date (year)

D
at

a
ra

te
 (b

its
 p

er
 s

ec
on

d)

 5

5) A VOQ IQ switch does not exploit the high density of modern VLSI [21].

6) IQ switches cannot use existing Weighted Fair Queueing (WFQ) schedulers for

providing per-flow quality of service [106].

This dissertation addresses the first five of these open problems, through an evaluation of

whether they are present when a combined input and crossbar queued (CICQ) switch is

used. (CICQ is a switch architecture that is described in Chapter 2.)

1.3 Contributions of this dissertation

This dissertation presents a design and performance evaluation of the CICQ switch.

Methods for improving performance, eliminating instability, and improving scalability of

the CICQ switch will be investigated. The major contributions of this dissertation are as

follows:

1) It represents the first published performance evaluation of the round-robin polled

CICQ switch [119].

2) It proposes and evaluates a new method for eliminating instability in IQ and

CICQ switches; most notably, is the fact that this method does not require

complex hardware or internal speed-up of switch fabric and buffers.

3) It investigates new methods for native switching of variable length packets.

These methods are lower in cost and higher in performance than existing cell-

based methods.

4) It demonstrates the feasibility of the CICQ switch architecture by implementing

and simulating a 16-port 10-Gbps switch using FPGA technology.

 6

5) It proposes and evaluates two new designs for faster and scalable round robin

arbiters. These designs improve the scalability of the CICQ architecture to

greater port counts and faster link data rates.

6) It proposes and evaluates a new method of distributed scheduling (based on rate

control) within a CICQ switch. This method improves the scalability of the

switch to allow for distributed, multi-rack implementations of switch components.

1.4 Organization of this dissertation

The remainder of this dissertation is organized as follows:

1) Chapter 2 provides a background of single-stage packet switch architecture

leading up to the CICQ switch. The CICQ switch is shown to address open

problems that exist in other non-CICQ architectures.

2) Chapter 3 is a performance evaluation of the CICQ switch architecture using

simulation modeling.

3) Chapter 4 addresses open problems of instability in IQ and CICQ switches. A

method to eliminate instability is proposed and evaluated.

4) Chapter 5 investigates efficient ways of handling variable-length packets. New

methods for packet-to-cell segmentation for IQ switches and block transfers for

CICQ switches are presented and evaluated.

5) Chapter 6 studies round robin polling as a bottleneck to scaling CICQ switches to

greater port counts and link data rates. Two new round robin arbiter designs are

proposed and evaluated.

 7

6) Chapter 7 investigates a distributed VOQ scheduler for CICQ switches that does

not require feedback from the switch fabric. This simplifies the implementation

of CICQ switches and allows them to scale to multi-rack, distributed

implementations.

7) Chapter 8 summarizes the dissertation and describes possible directions for future

research.

8) End material includes a list of publications resulting from this research

 8

Chapter 2: Background on Packet Switching

Packet switches can be classified into various categories. Classifications based on

blocking vs. non-blocking, single-stage vs. multi-stage, loss vs. lossless are all possible.

Comprehensive classifications of packet switch architectures have been addressed in

several works including [50][94], and [112]. This chapter will focus on a review of the

buffering architectures and scheduling algorithms for single-stage crossbar switches,

given that these switches are non-blocking and are able to scale-up to ever-increasing link

data rates and larger port counts (multi-stage switches are inherent to internal blocking).

Another reason for the focus on single-stage crossbar switches, is the fact that their

queueing and scheduling strategies are the dominant performance factors of packet

switches.

2.1 Packet switch buffering architectures

Figure 2.1 shows an abstract view of a single-stage crossbar switch. The basic

components of the crossbar switch are input ports, output ports, crossbar fabric,

memories, and control units. In Figure 2.1, buffer memories and control units are not

shown, as they can be implemented in various locations within the switch. The crossbar

fabric contains a set of switch elements, each of which can establish a unique path

between an input and an output port. Memories are needed to buffer temporary packet

overloads caused by the statistical nature of packet-switched traffic. Single-stage

 9

switches can have a number of different buffer architectures, including output queued

(OQ), shared buffer, and input queued (IQ) types. Virtual output queued (VOQ) and

combined input and crossbar queued (CICQ) architectures are also possible.

Figure 2.1 – Single stage crossbar switch

2.2 Output queued switches

OQ switches (Figure 2.2) have buffering in place at the output ports to which arriving

packets are immediately forwarded. For an OQ N port switch, each of the N buffer

memory speeds must operate at N times the link data rate if packet loss is to be prevented

(N times link data rate is needed to support N writes from N ports forwarding a

cell/packet at one time). The N times case occurs when N input ports all simultaneously

forward a packet to a single output port. This “hot spot” or fan-in case occurs very

frequently in client/server applications where a popular server is connected to a single

Crossbar

Output 1 Output 2

Input 1

Input 2

Crossbar

Output 1 Output 2

Input 1

Input 2

 10

Figure 2.2 – Output queued switch

switch port and client requests arrive at the other N ports. Since link data rates are

increasing appreciably faster than memory speeds, the OQ architecture is generally

considered infeasible for future packet switch architectures. With a 128 bit bus and a

currently feasible 2 nanosecond SRAM cycle time, memory can operate at a maximum of

64-Gbps; thus, an N-time link data rate is limited to a 10-gigabit switch with small port

counts. Furthermore, the aggregate memory bandwidth of the OQ switch is LN 2 for an

N port switch with a link data rate of L. Thus, the OQ switch does not scale to large N.

2.3 Shared-buffer switches

Shared-buffer switches require significantly less aggregate memory bandwidth than

OQ switches because the shared-buffer switches use a single memory that is shared by all

Crossbar

Output 1 Output 2

Input 1

Input 2

Output buffer

Crossbar

Output 1 Output 2

Input 1

Input 2

Output buffer

 11

ports as shown in Figure 2.3. Packets arriving to any of the N input ports are multiplexed

into a single stream and queued to the shared memory. Queued packets are then

retrieved, de-multiplexed, and forwarded to the output ports. This switch architecture

requires an aggregate memory bandwidth of NL2 ; at most, N packets can be read and N

packets written during one packet transmission cycle. The implementation of shared-

buffer switches is impossible as the NL2 memory speed requirement is not realistic for

current link data rates, and switch ports are typically located on different boards or on

different chips.

Figure 2.3 – Shared-buffer switch

2.4 Input queued switches

Input queued (IQ) switches provide buffering functions at the input ports. IQ

switches with a single queue per input port as shown in Figure 2.4 have been studied

Shared buffer

Output 1 Output 2

Input 1

Input 2

Shared buffer

Output 1 Output 2

Input 1

Input 2

 12

since 1987 [51]. IQ switches resolve the impractical memory speed requirements of

shared buffer and OQ switches by requiring each memory to read and write one packet

(L2 bandwidth per queue and proportional to link data rate) during a packet transmission

cycle. To avoid input-output conflicts, IQ switches require an arbiter for scheduling

packet forwarding. These switches have overlapped cell-transferring and switch-matrix-

scheduling cycles that require fixed-length (internal to the switch) cells. Thus, upon

arrival, a variable length packet is first segmented into multiple fixed-size cells. Each

input port first sends a request to an output port for which it has a head-of-line (HOL)

cell. Once the arbiter resolves input and output port conflicts, it grants permission to the

input ports and sends control signals to set up the crossbar cross points to switch the cells

within the transfer cycle.

Figure 2.4 – Input queued switch

Crossbar

Output 1 Output 2

Input port 1

111111

Input port 2

222221

Input buffer

Arbiter

Requests Grants Configuration

Crossbar

Output 1 Output 2

Input port 1

111111

Input port 2

222221

Input buffer

Arbiter

Requests Grants Configuration

 13

Since packets are variable in length, the last cell of a segmented packet will often

contain padding bytes to ensure that the cell is fixed in length; this results in the transfer

of additional bytes within the switch fabric. Thus, packets requires switch buffers and

fabric to operate faster than the link data rate. In other words, an internal speed-up is

needed to achieve queue stability for high offered loads. In the worst case of S byte cells

and contiguous arrivals of 1+S byte packets, the speed-up needs to be almost a factor of

2 for the S2 bytes of cell data needed to switch 1+S bytes of packet data.

The problem with IQ switches is HOL blocking in the input queues. HOL blocking

occurs when an HOL packet at an input port is not selected, due to an output port

contention, and, thus, blocks the packets behind it that would have been selected.

Because of this problem, IQ switches have been found to have a limited throughput of

58.6% for Bernoulli packet arrivals (for fixed-length packets, or cells) with uniformly and

randomly selected output ports [51]. For bursty arrivals with non-uniformly selected

output ports, throughputs of less than 58.6% are possible [60]. A simple HOL blocking

scenario is illustrated in Figure 2.4: at input port 2, packets destined to output port 2 are

blocked by the HOL packet due to a contention at output port 1.

One solution to the limited throughput resulting from the HOL blocking problem is to

use internal speed-up. However, this would require the buffer memory to operate faster

than the link data rate, a condition that is unrealistic for large N. A more practical

solution to the problem would be to select queued cells other than the HOL cell for

forwarding [50]. This can be accomplished either by relaxing the first-in first-out (FIFO)

queueing discipline, or through input smoothing [50].

 14

The relaxation of the FIFO queueing discipline improves performance by allowing

the first w packets of each input queue to be available for switch outputs [50]. First, the

HOL packet at each input port is used for matching. At inputs not selected to transmit the

HOL packets, the packet behind the HOL packet becomes available for unmatched

outputs during this time slot, and the process repeats up to w times. The maximum

throughput for input queueing with FIFO (58.6%) is increased to 87.5%, with the

relaxation of the FIFO discipline at the input queues; such look-ahead queue servicing is,

however, difficult to implement.

Input smoothing improves the performance of input queueing by storing packets

within a frame of b time slots at each input and forwarding them in parallel into a Nb x

Nb switch fabric [50]. At most, Nb packets can go through the switch fabric, out of

which b packets are destined to each output within a given time slot. The packets are

then multiplexed onto the output line. Although input smoothing increases the

throughput, it requires a costly increase in the switch fabric size (2N to 2)(Nb).

2.5 Virtual output queued IQ switches

IQ switches were considered a mere academic curiosity, due to their poor

performance caused by HOL blocking. A breakthrough in IQ switch architectures,

however, occurred when virtual output queueing (VOQ) for cell-based packet switching

was invented in 1988 by Tamir and Frazier [110] and further developed by Anderson, et

al. [3] in the early 1990s. In a VOQ IQ switch, as shown in Figure 2.5, each input buffer

is partitioned into N queues with one queue for each output port (hence the name

“virtual” output queueing). HOL blocking is eliminated because each arriving packet is

 15

Figure 2.5 – Virtual output queued IQ switch

classified and then queued in the appropriate VOQ according to its determined

destination port. The input buffer memory only needs to operate at link data rate since

the queues are internal implementations within a single memory module.

For VOQs with queued cells, a scheduler must perform the one-to-one matching of

input ports to output ports; therefore, the throughput of the switch is a function of the

number of matches made by the scheduler in each cell transmission cycle. A VOQ IQ

switch will overcome HOL blocking if a satisfactory scheduling of input ports to output

ports is achieved.

2.6 VOQ scheduling algorithms

VOQ scheduling algorithms are used in VOQ IQ switches to achieve a high

throughput. As with pure IQ scheduling, these scheduling algorithms are designed to

Crossbar

Output 1 Output 2

1, 2

2, 1

2, 2

Input port 2

Input port 1
1, 1

VOQ
Classifier

Arbiter

Requests Grants Configuration

Crossbar

Output 1 Output 2

1, 2

2, 1

2, 2

Input port 2

Input port 1
1, 1

VOQ
Classifier

Arbiter

Requests Grants Configuration

 16

schedule fixed length (internal to the switch) cells. VOQ scheduling algorithms require

complete interconnections between all input ports for the parallel sharing of the

scheduling state information (the number of interconnected lines increases as O(N2).

Once a match has been determined, an arbiter sets-up the crossbar cross points to switch

the cells in the transferring cycle. The trade-offs in VOQ switch matrix scheduling are as

follows:

1) Stability - Any schedulable load needs to be carried. Define ji,λ as the offered

load from input port i to output port j where i, j = 1, 2, …, N for an N port switch,

then a schedulable flow is

 and , ,1
1

, j
N

i
ji ∀≤∑

=

λ (2.1)

 . ,1
1

, i
N

j
ji ∀≤∑

=

λ (2.2)

2) Fairness - No starvation should occur and bounded delay should be known for any

queued packets.

3) Implementation complexity – The size of chip I/O limits the switch speed and

size.

The matching of input ports and output ports in the context of a VOQ IQ switch is

equivalent to bipartite graph matching. A bipartite graph is a set of graph vertices

decomposed into two disjoint sets such that no two graph vertices within the same set are

directly connected. A bipartite graph, G, with two disjointed sets, I (input set) and O

(output set), depicts a set of requests from input ports to output ports on an NxN VOQ IQ

switch. Each set has N vertices, and the edges between the vertices represent input-to-

 17

output requests (see Figure 2.6 (a)). Bipartite graph matching is equivalent to finding a

match, M, of any subset in G such that no edges in M have a common vertex (see Figure

2.6. (b)). Bipartite graph matching can be further subdivided into maximum or maximal

matching.

Figure 2.6 – A bipartite graph for NxN VOQ IQ switch

2.6.1 Maximum matching

A maximum match is a maximum cardinality bipartite matching of inputs with packet

queued to N outputs. Maximum matching is further divided into maximum size matching

and maximum weight matching. Maximum size matching [20] maximizes the number of

edges in G, resulting in the highest possible throughput; however, it may result in

instability for some schedulable flows.

Instability occurs when a schedulable flow can not be carried by the switch, a

situation which results in ever increasing queue lengths (i.e., no steady state). Even with

schedulable flows consisting of identical and independently distributed (i.i.d.) Bernoulli

1

2

Set I

N

… …

1

2

N

Set O

1

2

Set I

N

… …

1

2

N

Set O

a) Bipartite graph b) Bipartite graph matching

1

2

Set I

N

… …

1

2

N

Set O

1

2

Set I

N

… …

1

2

N

Set O

a) Bipartite graph b) Bipartite graph matching

 18

arrivals, maximum size matching has been proven unstable [72]. Furthermore, the

complexity of the fastest maximum size matching is at best O ()2/5N [42].

Maximum weight matching achieves a matching, M, that maximizes the total weight,

∑
∈

=
Mji

ijwW
),(

, where wij is the weight of an edge from a vertex i in I to a vertex j in O on G.

Stability can be achieved for all schedulable flows without speed-up if a weighted

maximal match is implemented based on VOQ queue length (e.g., Longest Queue First

(LQF)) or cell age (e.g., Oldest Cell First (OCF)) [77]. LQF can cause starvation of

packets in a short queue and is thus unfair; however, the OCF algorithm uses the age of

the HOL cells as a weight to eliminate starvation. By doing so, it guarantees that all of

the HOL cells will ultimately be served since their age will continue to increase with

time. Even though the OCF algorithm eliminates starvation, weighted matching requires

state information to be exchanged between input and output ports and is thus generally

considered infeasible to implement.

Maximum matching algorithms have a time complexity of O(N3), thus VOQ IQ

switch matrix scheduling algorithms have focused on achieving maximal, not maximum,

matching. With maximal matching, no edges can be added without first removing

previously matched edges. The maximal matching algorithm, which has a time

complexity of O(N2), is of two types: sequential and parallel.

2.6.2 Sequential matching algorithms

Sequential matching algorithms sequentially allocate unmatched output ports. All

non-empty input ports make requests to the output port with the highest priority. The

 19

output port with the highest priority then grants the request of one of the input ports via

round-robin (RR). The process is repeated for all unmatched output ports; thus, it

requires O(N) iterations. The time complexity of sequential matching is O(N2).

2.6.2.1 Wave front arbiter and wrapped wave front arbiter

Wave front arbiter (WFA) [111] is a sequential matching algorithm that performs

matching for requests that lie on the same diagonal of a request matrix in parallel. A

request matrix is an NxN matrix with a binary entry in a cell at row i and column j

indicating a request from an input i to an output j. The parallelism of WFA is based on

the observation that there are no output port conflicts for the requests that lie on the same

diagonal of the request matrix.

Figure 2.7 – Wave front arbiter

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

1

1

1 0

1 0 1

0

0

0

0 0

1 0 1

0

1

0

0 0

0 0 1

0

1

0

1 1

0 0 0

0

(1) (2) (3) (4)

(5)

(6)

(7)

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

1

1

1 0

1 0 1

0

0

0

0 0

1 0 1

0

1

0

0 0

0 0 1

0

1

0

1 1

0 0 0

0

(1) (2) (3) (4)

(5)

(6)

(7)

 20

WFA begins with one top priority cell and makes a diagonal sweep of the request

matrix from the top left to the bottom right corner of the arbiter to complete the matching

process. Figure 2.7 shows the operation of WFA with a top priority cell (1,1), where the

number in the diagonal indicates the progress of the wave front, and the double squares

and the shaded squares indicate requests and grants, respectively. The time complexity

of the WFA is 12 −N as at least 12 −N diagonals are needed to cover the entire request

matrix. To maintain fairness, the top priority cell is reassigned equally among all cells in

every cell cycle.

With the realization that N “wrapped” diagonals (see Figure 2.8) are guaranteed not

to conflict, Wrapped WFA (WWFA) [111] was proposed to reduce the time complexity

to N: all cells in a wrapped diagonal are on different rows and different columns. Thus, N

wrapped diagonals provide coverage of the entire request matrix. Figure 2.8 shows the

operation of WWFA with a high priority diagonal consisting of cells (1,1), (2,4), (3,3),

and (4,2).

2.6.2.2 Two-dimensional round-robin

Two-dimensional round-robin (2DRR) schedulers [61] are a generalization of the

WFA that achieves fairness among inputs and outputs by using a set of generalized

diagonals to match the request matrix. A generalized diagonal is a set of N elements in

an NxN matrix, such that no two elements are in the same row or column [61]. Two

matrices aid the 2DDR: a diagonal pattern matrix and a pattern sequence matrix. The

diagonal pattern matrix is a set of generalized diagonals. The pattern sequence matrix is

a scheduling matrix indicating the order in which the generalized diagonals in a diagonal

 21

Figure 2.8 – Wrapped wave front arbiter

pattern matrix will be used in the different time slots. The pattern sequence matrix is

intended to improve fairness among inputs and outputs by permuting the sequence of the

generalized diagonals. Thus, 2DRR provides a fairness guarantee (bound) of N time slots

for each of the VOQs.

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

1

1

1 0

1 0 1

0

0

0

0 0

1 0 1

0

1

0

0 0

0 0 1

0

1

0

1 1

0 0 0

0

(1) (2) (3) (4)

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

1

1

1 0

1 0 1

0

0

0

0 0

1 0 1

0

1

0

0 0

0 0 1

0

1

0

1 1

0 0 0

0

(1) (2) (3) (4)

 22

2.6.3 Parallel matching algorithms

Parallel matching algorithms use request-grant-accept scheduling cycles to achieve

matching between input ports and output ports. They can match multiple input and

output port pairs in parallel and converge faster than sequential matching. Parallel

matching algorithms can be classified as either non-iterative algorithms that terminate in

a single iteration or as iterative algorithms that perform multiple iterations.

2.6.3.1 Parallel iterative matching

The first scheduling algorithm for IQ switches based on maximal matching is parallel

iterative matching (PIM) [3]. For each iteration of PIM, three steps are executed as

shown in Figure 2.9. A key characteristic of PIM is the random selection made by

outputs and inputs in steps 2 and 3, respectively. This randomness guarantees that no

VOQ is starved. Furthermore, PIM does not require previous state information to

perform next maximal matching: no memory for storing previous input-output match

information is needed.

Figure 2.9 – PIM algorithm

1.(Request): Each unmatched input sends a request to every output
for which it has a queued cell.

2.(Grant): If an unmatched output receives any requests, it randomly
selects one to grant.

3.(Accept): If an input receives any grants, it randomly accepts one.

1.(Request): Each unmatched input sends a request to every output
for which it has a queued cell.

2.(Grant): If an unmatched output receives any requests, it randomly
selects one to grant.

3.(Accept): If an input receives any grants, it randomly accepts one.

 23

PIM can only achieve a throughput of 63%, since the probability of an input

remaining not granted is
N

N
N








 −1 , or %6311 ≈−
e

 for a large N [3]. Higher throughput

can be achieved by iterating the PIM algorithm. Each iteration of PIM achieves three-

fourths of the remaining possible matches and the algorithm converges to a maximal

match in O(logN) iterations [3]. Thus, it has been shown that running more than four

iterations achieves no significant improvement for a 16 x 16 switch [3].

2.6.3.2 Statistical matching

Statistical matching [3], based on PIM, provides bandwidth guarantees between

individual input-output pairs. Statistical matching performs iterative matching similar to

PIM, with the exception that the request-grant-accept cycle is reduced to a grant-accept

cycle. Statistical matching, in the grant stage, randomly selects one of the inputs to grant,

proportional to bandwidth reservation. In the accept stage, an input receiving any grants

1) reinterprets the grants as zero or more virtual grants based on bandwidth allocation, 2)

randomly selects a virtual grant, and 3) grants the output corresponding to the virtual

grant. The drawback is that statistical matching can only allocate bandwidth up to 72%.

This is due to not having a request step; thus, the grant pointer may point to an input that

does not have a cell waiting to be transmitted to the output.

2.6.3.3 Weighted PIM

Weighted PIM (WPIM) [107] further improves bandwidth allocation support of PIM.

WPIM allocates credits to each input-output pair based on their bandwidth requirements

 24

in every frame (a time slot consisting of an integer multiple of cell-transmission time) and

supports both connection-level and flow-level bandwidth allocation within a frame. The

second stage of the request-grant-accept cycle of PIM is sub-divided into two stages as

shown in Figure 2.10.

WPIM eliminates the 72% capacity limitation of the statistical matching algorithm.

The problem with PIM and its variants is that they require a very fast generation of

random numbers, which is considered impractical.

Figure 2.10 – Grant stage of WPIM

2.6.3.4 Round-robin matching

Round-robin matching (RRM) is designed to improve on two aspects of PIM:

computation complexity and fairness [71]. The RRM algorithm uses priority encoder-

based round-robin (RR) arbiters that are much simpler than the random arbiters used by

PIM [71]. Furthermore, RRM, with a cyclic property of the RR arbiters, results in fairer

scheduling than PIM. The three steps in RRM are shown in Figure 2.11.

Accept and grant counters are maintained in each input and output port, respectively.

RRM grant arbiters tend to synchronize, and multiple arbiters tend to grant to the same

2.1.(Mask): If an unmatched output receives any requests, it generates a mask
consisting of one bit per request as follows: the mask bit is set to 1
for each input that has transmitted at least as many packets as is
their credit to the output port in the current frame. Otherwise, the
mask bit is set to 0.

2.2.(Grant): An unmatched output randomly grants a request with a mask bit
of 0 (unmasked).

2.1.(Mask): If an unmatched output receives any requests, it generates a mask
consisting of one bit per request as follows: the mask bit is set to 1
for each input that has transmitted at least as many packets as is
their credit to the output port in the current frame. Otherwise, the
mask bit is set to 0.

2.2.(Grant): An unmatched output randomly grants a request with a mask bit
of 0 (unmasked).

 25

input. As a result, RRM can only achieve a 63% throughput for uniform i.i.d. Bernoulli

arrivals. This poor throughput is due to the synchronization effect of grant arbiters [71].

Figure 2.11 – RRM algorithm

2.6.3.5 SLIP

SLIP [71] is designed to improve RRM by reducing the degree of synchronicity of

the grant arbiters. SLIP achieves a randomized matching under high utilization due to a

“slip” between counters (hence the name: SLIP). SLIP is based on RRM providing

grants and accepts in round robin sequences. The only difference between RRM and

SLIP is that SLIP updates the grant counters differently. In SLIP, a grant counter is

updated only if the granted path is accepted by the corresponding input port. The

request-grant-accept cycle of the SLIP is shown in Figure 2.12. An example of the three

steps of SLIP is shown in Figure 2.13. Due to the round robin sequences, SLIP

guarantees to fairly provide connections to each input-output combination. Furthermore,

1.(Request): Each unmatched input sends a request to every output for which it has
a queued cell.

2.(Grant): If an unmatched output receives any requests, it grants the one that
appears next in the round robin, starting from the one indicated by the grant
pointer of the grant arbiter. The grant pointer is then updated to modulo N
to one position next to the granted input.

3.(Accept): If an input receives any grants, it accepts the one that appears next in the
round robin, starting from the one indicated by the accept pointer of the
accept arbiter. The accept pointer is then updated to modulo N to one
position next to the granted output.

1.(Request): Each unmatched input sends a request to every output for which it has
a queued cell.

2.(Grant): If an unmatched output receives any requests, it grants the one that
appears next in the round robin, starting from the one indicated by the grant
pointer of the grant arbiter. The grant pointer is then updated to modulo N
to one position next to the granted input.

3.(Accept): If an input receives any grants, it accepts the one that appears next in the
round robin, starting from the one indicated by the accept pointer of the
accept arbiter. The accept pointer is then updated to modulo N to one
position next to the granted output.

 26

SLIP can achieve almost a 100% throughput under uniform i.i.d. Bernoulli arrivals due to

the slip effects achieving a low degree of synchronicity of the grant arbiters.

Figure 2.12 – SLIP algorithm

Figure 2.13 – SLIP with request and grant arbiters

1

23

4
1

1

23

4
2

1

23

4
3

1

23

4
4

1

23

4
1

1

23

4
2

1

23

4
3

1

23

4
4

1

23

4
1

1

23

4
2

1

23

4
3

1

23

4
4

1

23

4
1

1

23

4
2

1

23

4
3

1

23

4
4

1

2

3

4

Inputs
Grant
arbiters

Accept
arbiters

Accept
arbiters

Grant
arbitersOutputs

1

23

4
1

1

23

4
2

1

23

4
3

1

23

4
4

1

23

4
1

1

23

4
2

1

23

4
3

1

23

4
4

1

23

4
1

1

23

4
2

1

23

4
3

1

23

4
4

1

23

4
1

1

23

4
2

1

23

4
3

1

23

4
4

1

2

3

4

Inputs
Grant
arbiters

Accept
arbiters

Accept
arbiters

Grant
arbitersOutputs

1.(Request): Each unmatched input sends a request to every output for which it has a
queued cell.

2.(Grant): If an unmatched output receives any requests, it grants the one that
appears next in the round robin, starting from the one indicated by the
grant pointer of the grant arbiter. The grant pointer is updated to modulo
N to one position next to the granted input if and only if the grant is
accepted in step 3.

3.(Accept): If an input receives any grants, it accepts the one that appears next in the
round robin, starting from the one indicated by the accept pointer of the
accept arbiter. The accept pointer is updated to modulo N to one position
next to the granted output.

1.(Request): Each unmatched input sends a request to every output for which it has a
queued cell.

2.(Grant): If an unmatched output receives any requests, it grants the one that
appears next in the round robin, starting from the one indicated by the
grant pointer of the grant arbiter. The grant pointer is updated to modulo
N to one position next to the granted input if and only if the grant is
accepted in step 3.

3.(Accept): If an input receives any grants, it accepts the one that appears next in the
round robin, starting from the one indicated by the accept pointer of the
accept arbiter. The accept pointer is updated to modulo N to one position
next to the granted output.

 27

2.6.3.6 Iterative SLIP

SLIP can be iterated to improve its performance [71]. Iterative SLIP (iSLIP) involves

three steps as shown in Figure 2.14. iSLIP is used on Tiny-Tera developed at Stanford

University [74]; and ESLIP, a variation of iSLIP that can handle unicast and multicast

scheduling, is used in Cisco backplane routers [70].

Figure 2.14 – iSLIP algorithm

2.6.3.7 FIRM

Significant research has been done to improve the performance of iSLIP, resulting in

several variations. FIRM (FCFS in round-robin matching) [102] is identical to iSLIP

except for a difference in the round-robin policy at the output ports (grant stage). In the

grant stage of FIRM, if an unmatched output receives any requests, it grants the one that

appears next in the round robin, starting from the one indicated by the grant pointer of the

1.(Request): Each unmatched input sends a request to every output for which it has
a queued cell.

2.(Grant): If an unmatched output receives any requests, it grants the one that
appears next in the round robin, starting from the one indicated by the grant
pointer of the grant arbiter. The grant pointer is updated to modulo N to one
position next to the granted input if and only if the grant is accepted in step 3
of the first iteration.

3.(Accept): If an input receives any grants, it accepts the one that appears next in the
round robin, starting from the one indicated by the accept pointer of the
accept arbiter. The accept pointer is updated to modulo N to one position
next to the granted output only if the input has accepted the grant in the
first iteration.

1.(Request): Each unmatched input sends a request to every output for which it has
a queued cell.

2.(Grant): If an unmatched output receives any requests, it grants the one that
appears next in the round robin, starting from the one indicated by the grant
pointer of the grant arbiter. The grant pointer is updated to modulo N to one
position next to the granted input if and only if the grant is accepted in step 3
of the first iteration.

3.(Accept): If an input receives any grants, it accepts the one that appears next in the
round robin, starting from the one indicated by the accept pointer of the
accept arbiter. The accept pointer is updated to modulo N to one position
next to the granted output only if the input has accepted the grant in the
first iteration.

 28

grant arbiter. The grant pointer is updated to modulo N, to one position next to the

granted input if and only if the grant is accepted in the following step (the accept stage).

If a grant is not accepted, the grant pointer is advanced to point to the granted input. This

results in a fairer scheduling than is available with iSLIP, by better approximating first-

come first-served (FCFS). FIRM also reduces the maximum waiting time for any of the

VOQ HOL cells from 22)1(NN +− for SLIP to 2N for FIRM.

2.6.3.8 Shakeup techniques

Shakeup (randomization) techniques, used in conjunction with other matching

algorithms, have been studied [32]. These techniques assume an initial bipartite graph

matching generated through other matching algorithms. Each unmatched vertex in I is

allowed to establish a match for itself even if it may “knock-out” any existing matching.

The idea is to help a scheduler to escape from a local maximum solution [32]. Shakeup

techniques can be performed after various existing maximal matching algorithms to

improve their performance. For instance, simulation evaluations show that the shakeup

techniques improve both PIM and iSLIP for uniform, non-uniform, and bursty traffic.

2.6.3.9 Dual round-robin matching

Dual round-robin matching (DRRM) [12] eliminates the accept stage requiring only

request and grant stages, thus making the scheduler both faster and simpler to implement.

DRRM operates as shown in Figure 2.15. Unlike RRM, SLIP, and its variations, only

one request per input is made during step 1, and each input receives at most one grant.

Thus, step 3 (the accept stage) is not needed. DRRM is shown to have a lower delay than

 29

iSLIP for non-uniformity on the output side [48]. In general, 3-stage schedulers (with

request-grant-accept cycles) outperform 2-stage schedulers (with request-grant cycles) for

non-uniformity on the input side, while the latter outperforms the former in non-

uniformity on the output side [48]. DRRM is implemented on the SATURN switch [13].

Figure 2.15 – DRRM algorithm

2.6.3.10 Load-balancing Birkhoff-von Neumann switch

An entirely new approach using a two-stage switch with a single stage buffer was

introduced in [11]. A load-balancing switch is followed by an input-buffered Birkhoff

von Neumann switch that performs switching for load balanced traffic as shown in Figure

2.16. At the first stage, the load balancing switch produces uniform traffic. At the

second stage, the capacity decomposition is performed. The decomposition approach

reduces the two-dimensional rate assignment problem to a one-dimensional problem so

that the Packetized Generalized Processor Sharing (PGPS) algorithm [92] (the Weighted

Fair Queueing (WFQ) in [28]) can be applied. The load-balancing Birkhoff and von

Neumann switch provides uniform service guarantees for all non-uniform traffic.

1.(Request): Each unmatched input sends a single request to an output that appears
next in the round robin, starting from the one indicated by the request
pointer of the request arbiter. The request pointer is updated to modulo
N to one position next to the requested output if and only if the request is
granted in step 2.

2.(Grant): If an unmatched output receives any requests, it grants the one that
appears next in the round robin, starting from the one indicated by the grant
pointer of the grant arbiter. The grant pointer is updated to modulo N to one
position next to the granted input.

1.(Request): Each unmatched input sends a single request to an output that appears
next in the round robin, starting from the one indicated by the request
pointer of the request arbiter. The request pointer is updated to modulo
N to one position next to the requested output if and only if the request is
granted in step 2.

2.(Grant): If an unmatched output receives any requests, it grants the one that
appears next in the round robin, starting from the one indicated by the grant
pointer of the grant arbiter. The grant pointer is updated to modulo N to one
position next to the granted input.

 30

Specifically, if the two conditions (1) and (2) are true (if input traffic is a schedulable

flow), then there exists a scheduling algorithm, such that

jijijiji sstsCtC ,,,,)()()(−−≥− λ for ,,, tsji ≤∀ and some 22 , +−≤ NNs 2
ji [11]. It

was also proven that load-balancing Birkhoff and von Neumann switches can achieve a

100% throughput without internal speed-up [11].

Figure 2.16 – Load balancing Birkhoff-von Neumann switch

2.7 Combined input and output queued switches

Combined input and output queued (CIOQ) switches provide buffering at both the

input ports and output ports as shown in Figure 2.17. CIOQ switches improve the

performance of IQ switches by having output buffers with a modest speed-up. CIOQ

switches were first studied in the late 1980’s and were shown to improve maximum

throughput over IQ switches with a limited speed-up at output ports [88]. Subsequently,

it was found that the performance limiting factor was the HOL blocking for an output

speed-up greater than three [37]. The advent of VOQ eliminated the HOL blocking of

the CIOQ switch (as with IQ switch). It was shown that)2/(N x output speed-up is

sufficient to exactly emulate an OQ switch with a VOQ CIOQ switch [73]. Further

Birkhoff von

Neumann switch

Load-balancing

… …

…
…

……

Input 1

Input N Output N

Output 1

Birkhoff von

Neumann switch

Load-balancing

… …

…
…

……

Birkhoff von

Neumann switch

Load-balancing

… …

…
…

……

Input 1

Input N Output N

Output 1

 31

studies demonstrated that a 2x output speed-up is sufficient to exactly emulate an OQ

switch with a VOQ CIOQ switch [56], [108], [20].

Figure 2.17 – Combined input and output queued switch

2.8 Crossbar queued switches

Both VOQ IQ and VOQ CIOQ switch architectures scale-up to very high speeds and

have been the subject of intense research in the past decade. These VOQ switches

require centralized switch matrix scheduling algorithms to match input ports to output

ports. These scheduling algorithms are currently one of the bottlenecks in the process. A

CrossbarInput 1

Input 2

Input buffer

Arbiter

Requests Grants Configuration

Output 1 Output 2

Output buffer

CrossbarInput 1

Input 2

Input buffer

Arbiter

Requests Grants Configuration

Output 1 Output 2

Output buffer

 32

buffered crossbar switch, as described in this section, is based on distributed schedulers

and scales to large switch sizes and link data rates.

Buffered crossbars go back to a 1982 patent [6]. In 1987, a physically large multi-

cabinet buffered crossbar was used by Nojima [85] to implement a bus matrix switch

(BMX). The BMX uses a cross-point (CP) buffer as a packet queueing medium as shown

in Figure 2.18. CP buffers are implemented with dual port memories allowing

asynchronous operation among input and output ports. Thus, parallel operations of

packet switching on each bus as well as variable-length packet switching are possible.

By increasing the number of buses, the BMX can increase the switch capacity by a factor

of 16 (160-Mbps to 2.6-Gbps for CMOS), and simulation results confirm that the

switching delay is independent of the number of buses.

Figure 2.18 – Buffered crossbar switch

Buffered crossbar

Output 1 Output N

Input 1

Input N

CP1,NCP1,1

CPN,1 CPN,N

…

…

…

…

Buffered crossbar

Output 1 Output N

Input 1

Input N

CP1,NCP1,1

CPN,1 CPN,N

…

…

…

…

 33

Multi-stage crossbar switches with buffered 2x2 crossbar stages have been studied in

[54], [31], [125], and others. A multi-stage self-routing (MSSR) switch proposed in [31]

is realized by connecting self-routing switch modules (SRM) in a three stage

configuration that is conceptually equivalent to a single stage crosspoint buffered switch.

Multiple routes between the first stage SRM and the third stage SRM result in efficient

routing. As stated earlier, this dissertation focuses on single stage buffered crossbar

switches.

A CP buffered only switch performs better than IQ and OQ switches without speedup

because no internal collisions occur within the CP buffered only switch, given an infinite

CP buffer size [94]. It is clearly seen that the buffered crossbar with an infinite CP buffer

size is equivalent to an OQ switch having dedicated memory for packets from each input.

By limiting the CP buffer size to 53-bytes (ATM cell size) and by having a sufficient

input buffer size, a CICQ switch significantly reduces the total memory size required

[39]. This CICQ switch, with selection based on HOL blocking, achieves an 87.5%

throughput under uniform traffic for a 16x16 switch [39]. This work was extended to

support two levels of delay-dependent priority classes, which resulted in an increase in

throughput from 87.5% to 91% [40]. The improvement was due to the preemption of low

priority packets from the HOL position by the arrival of high priority packets. The CICQ

switch is further studied in [29] and [95]. It has been proven that throughput for a CP

buffered switch with FIFO and random (RND) selection policy can approach 100%

throughput [95].

A switch that supports QoS and variable-length packets was developed and evaluated

[106]. This switch has both buffering and packet fair queueing servers [28] within the

 34

input ports, crossbars, and output ports. A speed-up of slightly less than 2x is needed to

support variable-length packets.

2.9 VOQ CICQ switches

In 2000, the first VOQ CICQ switch was proposed by Nabeshima [84]. The VOQ

CICQ switch significantly reduced the amount of buffering in crossbar. The HOL cell

with the longest delay is selected for both the input port (by a polling of all VOQs) and

the CP buffer (by a polling of all CP buffers) (see Figure 2.19). The VOQ CICQ switch

entirely eliminates HOL blocking, and it has a lower mean cell delay than a pure IQ

switch above 65% loads. A popular textbook belief is that crossbar switch fabrics are

limited in scalability by an 2N increase in cross points. In fact, scalability is not limited

by the transistors required for 2N cross points, but, instead, by pin count of an integrated

circuit (IC). As VLSI density has continued to increase, it is now feasible to implement

small amounts of buffering at each cross point in a crossbar [46], [104], [97].

Xilinx implements a buffered crossbar in FPGA technology for its Virtex-Extended

Memory (Virtex-EM) devices [104]. In 2000, the commercially available Xilinx

XCV812E device contained over 1.12 Mbytes of block RAM, enabling 4Kbytes of buffer

space for each cross point of a 16x16 switch. This is the emergence of the modern CICQ

switch, which, when coupled with VOQs at input port buffers, is the switch architecture

for the future. For a cell-based switch, the buffering at each cross point is sufficient to

hold one cell. The CP buffer occupancy status is reported from each crossbar row to its

input port where an independent RR selection of VOQs is made for the next available CP.

The buffer occupancy status must be reported at a rate equal to the maximum cell

 35

transmission rate, which can be done asynchronously for each input port. No

communication of state is necessary between output and input ports.

Figure 2.19 – VOQ CICQ switch

A VOQ CICQ switch can have round robin polling of the VOQs at the input ports and

round robin polling of the CP buffers [119], and is thus a RR/RR CICQ switch (referred

to as a CICQ switch throughout the remainder of this dissertation). The CICQ switch in

[119] natively supports variable-length packets: it does not require complex packet

segmentation or reassembly mechanisms. It was shown that the CICQ switch has a lower

delay than a VOQ IQ switch with iSLIP for both cell and packet switching under uniform

traffic [119].

Occupancy feedback
Buffered crossbar

Output 1
VOQ polling

Cross point polling

Output N

Classifier

VOQ1,1
Input 1

VOQ1,N

VOQN,1Input N

VOQN,N

CP1,NCP1,1

CPN,1 CPN,N
…

…

…
…

…

…

 36

A Combined Input-One-cell-CP Buffer crossbar (CIXB-1) with VOQs at the inputs

and round-robin arbitration was shown to achieve 100% throughput under uniform traffic

[97]. The mean delay of CIXB-1 was proportional to burst length and very close to that

of an OQ switch. A Combined Input-CP-Output Buffered (CIXOB-k, where k is the size

of the CP buffer) with VOQs at the inputs and round-robin arbitration requires buffers at

each input, output, and CP [98]. A CIXOB-k switch improved CIXB-1 to achieve 100%

throughput under uniform as well as non-uniform traffic. A full-scale system design of a

terabit switch incorporating ideas for the CIXOB-k switch architecture is described in

[13]. Scheduling algorithms for the VOQ CICQ switch are investigated in [41], [78],

[93].

 37

Chapter 3: Performance Evaluation of the CICQ Switch

This chapter describes the evaluation of the CICQ switch via simulation modeling.

The simulation model, traffic input, experiments, and results are covered.

3.1 The simulation model

A discrete-event queueing model of single-stage switches was built using CSIM18

[101]. CSIM18 is a process-oriented discrete event simulation function library for C and

C++. It maintains a linked list of “events” in simulated time order. A call to a CSIM

function generates a CSIM process that models the active elements of a system. For

instance, a VOQ arbiter, CP arbiter, and packet can all be represented by a CSIM process.

A CSIM process can be in an active, holding, or waiting state. Only in an active state can

the process be executed; otherwise, the process has to wait in the holding state for a

period of time to elapse, or it has to wait in the waiting state for an event to occur.

3.1.1 Switch model

The CICQ, VOQ IQ with iSLIP scheduling algorithm, OQ with FIFO schedulers, and

their variants are all implemented at the system level. Figure 3.1 shows a list of the

modules, each with a list of the CSIM functions developed for modeling the CICQ

switch. Mapping of the modules to the CICQ switch architecture is shown in Figure 3.2.

 38

Figure 3.1 – List of modules and functions for CICQ switch model

Figure 3.2 – CICQ switch model

Buffered crossbar

Output 1
VOQ polling

Cross point polling

Output N

Classifier

VOQ1,1
Input 1

VOQ1,N

VOQN,1Input N

VOQN,N

CP1,NCP1,1

CPN,1 CPN,N

…

…

…

…
…

…

input_port.c
output_port.c

generate.c

Buffered crossbar

Output 1
VOQ polling

Cross point polling

Output N

Classifier

VOQ1,1
Input 1

VOQ1,N

VOQN,1Input N

VOQN,N

CP1,NCP1,1

CPN,1 CPN,N

…

…

…

…
…

…

input_port.c
output_port.c

generate.c

• generate.c

- bernoulli()

- ibp()

• inport.c

- voq_arbiter()

- input_port ()

• outport.c

- cp_arbiter()

- output_port()

• generate.c

- bernoulli()

- ibp()

• inport.c

- voq_arbiter()

- input_port ()

• outport.c

- cp_arbiter()

- output_port()

 39

A sequence of processes to represent cell or packet arrivals to the input ports of the

switch is created using a traffic generator: generate.c. This module includes a bernoulli()

function for Bernoulli arrival and an ibp() function for Interrupted Bernoulli Process

arrival of cells (details of these probability distributions are described in the next section).

Figure 3.3 shows a CSIM code for bernoulli() function. A bernoulli_arrival process is

first created by create(‘bernoulli arrival”) (line 7). In every iteration of the loop,

simulation time is incremented by hold(CELL_TIME) (line 13). Based on a random

variable generated by uniform() (line 16), a cell arrival to an input port is generated (line

17-line 23).

Figure 3.3 – Source code for bernoulli ()

1. void bernoulli (int in_id)
2. {
3. double z; // Uniform RV from 0.0 to 1.0
4. double org_time; // Origination time of a cell
5. int out_id; // Destination outport number
6.
7. create(“bernoulli_arrival");
8.
9. // Do forever
10. while(TRUE)
11. {
12. // Hold for one cell time
13. hold(CELL_TIME);
14.
15. // Determine if there is to be a cell in this slot
16. z = uniform(0.0, 1.0);
17. if (z <= Lambda)
18. {
19. // Generate output port id and origination time
20. out_id = random_int(0, N - 1);
21. org_time = clock;
22. in[in_id](in_id, out_id, org_time);
23. }
24. } // end of while loop
25. }

1. void bernoulli (int in_id)
2. {
3. double z; // Uniform RV from 0.0 to 1.0
4. double org_time; // Origination time of a cell
5. int out_id; // Destination outport number
6.
7. create(“bernoulli_arrival");
8.
9. // Do forever
10. while(TRUE)
11. {
12. // Hold for one cell time
13. hold(CELL_TIME);
14.
15. // Determine if there is to be a cell in this slot
16. z = uniform(0.0, 1.0);
17. if (z <= Lambda)
18. {
19. // Generate output port id and origination time
20. out_id = random_int(0, N - 1);
21. org_time = clock;
22. in[in_id](in_id, out_id, org_time);
23. }
24. } // end of while loop
25. }

 40

Each cell or packet process consists of a source (input port) id, a destination (output

port) id, and an arrival time that are set upon process creation. These cell or packet

processes are controlled by a series of events inside the input port module, input_port.c,

and the switch fabric and output port module, output_port.c. When they depart from the

output ports, simulated internal switch delay times are computed and recorded for later

statistics.

Multi-level priority support was also implemented in the iSLIP and CICQ switch

models. For the iSLIP switch, no priority is assumed for the transmission of packets

from the output queues (iSLIP speed-up results in queueing, and hence buffer

requirements, at the output ports). For priority support in a CICQ switch, an RR poller

per priority queue is implemented. All high priority VOQs and CP buffers are serviced

before any low priority VOQs or CP buffers are serviced.

For validation purpose, performance of CICQ, IQ, and OQ switch models are

carefully compared with simulation results in [72], [32], [46]. The simulation model is

available from [15] and requires CSIM18 libraries [101].

3.1.2 Stopping criteria

Two stopping criteria were used in the simulation experiments. Some experiments

were run for a fixed number of cells or packets. Other experiments were run until a

specified accuracy level was achieved with a 95% confidence interval. CSIM18 has a

built-in run length control algorithm that monitors simulation statistics and terminates

simulation when desired statistical conditions are achieved. In this chapter, all simulation

experiments were run until a 2% accuracy was achieved, unless otherwise stated.

 41

3.2 Traffic models for evaluating the CICQ switch

Theoretical and empirical probability distributions were used to generate packet

arrivals to the simulation. The theoretical probability distributions used to generate

traffic are a Bernoulli arrival process and an Interrupted Bernoulli Process (IBP). The

Bernoulli model is a common traffic model for evaluating switch performance [3], [71],

[32], [46], [76]. An IBP arrival process is used to approximate the bursty nature of packet

switched traffic [119], [86], [93].

3.2.1 Bernoulli and Interrupted Bernoulli Process arrival processes

For fixed-length cell traffic, Bernoulli and Interrupted Bernoulli Process (IBP) arrival

processes are used. At most, one cell arrival occurs at each port during a time slot as

shown in Figure 3.4. For Bernoulli traffic, the output ports are uniformly selected for

each cell. For IBP traffic,

 []state on in is IBP | at arrivalPr t=α , (3.1)

[]t tp at state on in is IBP | 1at state on in is IBPPr += , and (3.2)

 ttq at state offin is IBP |1at state offin is Pr[IBP +=]. (3.3)

The mean length of an on state is ()p−11 and the mean length of an off state is

()q−11 . In an off state, there are no arrivals. An off state is at least one slot in length.

The mean arrival rate or offered load, ρ , is

 ,
2

)1(
qp

q
−−

−= αρ (3.4)

 42

Figure 3.4 – Cell arrivals in time slot

and the Coefficient of Variation (CoV) is

()()
() 










−

−−
+−+= 1

2
11CoV 2qp

qppα . (3.5)

In this dissertation, α is always set to 1.0, so that traffic is generated at line data rate in

the ON state, while no traffic is generated in the OFF state. This condition is better

described as a two-state Markov chain as shown in Figure 3.5. The parameters p and q

are varied to achieve a desired CoV and offered load. All packets in a burst are destined

to the same output port, which is uniformly selected at the start of the burst.

Figure 3.5 – Two-state Markov chain

OFF qp

1-p

1-q

ON OFF qp

1-p

1-q

ON

t = i t = i+1

Time slot

cell

t = i - 3 t = i -1t = i -2

cell

t = i t = i+1

Time slot

cell

t = i - 3 t = i -1t = i -2

cell

 43

3.2.2 USF synthetic traffic

For variable-length packet traffic, Poisson arrivals with uniformly selected output

ports are used. Packet lengths are independently pulled from an empirical “USF

distribution” based on over 5 million packets collected during the middle of a day in

November 2001 at the University of South Florida Gigabit Ethernet backbone (USF

traced traffic #1). Figure 3.6 shows the packet length histogram where all packet lengths

from 64 to 1518 bytes are represented. The mean length is 364.7 bytes. The most

common packet length is 64 bytes (with 41.5%) followed by 1518 bytes (8.2%), 558

bytes (7.0%), 90 bytes (5.9%), and 570 bytes (5.5%). All other packet lengths occur at

less than 2.5%. Using this real packet length distribution allows for speed-up issues in an

iSLIP switch to be studied.

Figure 3.6 – Histogram of “USF distribution” of Ethernet packet lengths

0.0001

0.001

0.01

0.1

1

10

100

64 320 576 832 1088 1344

Packet length (bytes)

O
cc

ur
re

nc
e

(%
)

Mean packet length = 364.7 bytes

0.0001

0.001

0.01

0.1

1

10

100

64 320 576 832 1088 1344

Packet length (bytes)

O
cc

ur
re

nc
e

(%
)

Mean packet length = 364.7 bytes

 44

3.3 Simulation experiments

For all simulation experiments, the mean and standard deviation of switch delay, or

response time is measured. Switch queueing delay is the performance criteria (switch

queueing delay plus cell or packet transmission time). For cell traffic, response time is in

cell times, and each CP buffer size is set to hold one cell. For variable length packet

traffic, the link data rate is assumed to be 10 Gbps, response times are in microseconds,

and each CP buffer size is set to 1518 bytes. The performance of infinite buffer size, 16-

port CICQ, iSLIP (for four iterations), and output buffered switches are compared. The

delay performance of the OQ switch serves as a lower bound on response time. The

experiments are as follows:

1) Bernoulli experiment: Bernoulli arrival of cells with uniformly selected outputs.

Offered load is ranged from 50% to 98%. This is the “classic” experiment for

evaluating switch performance and also serves as a validation of the iSLIP switch

model with the simulation results given in [69].

2) IBP experiment: IBP arrivals of cells with uniformly selected outputs for bursts

(i.e., for on periods) of cells. The CoV is fixed at 2.0 and the p and q values

solved (using Eq. (3.1) and (3.2)) for offered loads from 50% to 90%. For 50%

offered load, the mean on and off periods are 5 cell times each. For 90% offered

load, the mean on period is 105 cells, and the mean off period is 11.67 cell times.

This experiment evaluates switch performance for bursty cell traffic.

3) Packet experiment: Poisson arrivals of variable length “USF distribution” packets

with uniformly selected outputs. The offered load is varied from 50% to 98%. A

CICQ switch is compared with an iSLIP switch with packet segmentation and re-

 45

assembly, and with an output buffered switch. For the iSLIP switch, an internal

cell size of 64 bytes is used with no speed-up, 1.05x speed-up, and 2x speed-up of

memories and crossbar. A 3% accuracy (95% confidence interval) was used as

the simulation stopping criterion to achieve acceptable simulation run times.

4) Fairness experiment: To test fairness and traffic isolation in VOQ packet

switches, the performance of the iSLIP and CICQ switch with two-level priority

support was evaluated. A periodic constant bit rate (CBR) stream of 10% offered

load of 1500 byte packets was sent to port 0 and destined to port 0. An interfering

load of 50% to 88% of low (no) priority Poisson arrivals were sent to ports 0

through 15. This Poisson stream was destined uniformly for ports 0 to 15 and had

packet lengths pulled from the “USF distribution”. The periodic stream is the

modeled real-time traffic and is measured for cases, 1) with no priority, and 2)

with priority. This experiment tests fairness and traffic isolation in VOQ packet

switches. To evaluate the performance of the priority implementations, infinite

buffer size, 16-port CICQ, and iSLIP packet switches were similarly modeled.

The speed-up of the iSLIP switch was set to 1.05x.

3.4 Experiment results

Figure 3.7 shows the mean response time results for the Bernoulli experiment. The

mean response time for CICQ is lower than that of iSLIP for offered loads greater than

75%. The iSLIP and output buffered switch results exactly match the results shown in

Figure 10 of [69], serving as a validation of the iSLIP and output buffered switch models.

At lower offered loads, the two store-and-forward operations within the CICQ switch

 46

dominate the response time (the crossbar buffering was implemented as store-and-

forward memory in the simulation model). If one store-and-forward delay is removed,

the series shown with the dotted line is achieved and the response time is less than that of

an iSLIP switch for all offered loads. The output buffered switch remains as a lower

Figure 3.7 – Results for the Bernoulli experiment (mean response time)

Figure 3.8 – Results for the Bernoulli experiment (std dev of response time)

1

10

100

50 55 60 65 70 75 80 85 90 95 100
Load (%)

S
td

 D
ev

 o
f r

es
po

ns
e

tim
e

(c
el

ls
)

CICQ

Ouput

iSLIP

1

10

100

50 55 60 65 70 75 80 85 90 95 100
Load (%)

M
ea

n
re

sp
on

se
 ti

m
e

(c
el

ls
)

CICQ

Ouput

iSLIP

CICQ minus 1 cell time

= 95% confidence interval

1

10

100

50 55 60 65 70 75 80 85 90 95 100
Load (%)

M
ea

n
re

sp
on

se
 ti

m
e

(c
el

ls
)

CICQ

Ouput

iSLIP

CICQ minus 1 cell time

= 95% confidence interval= 95% confidence interval= 95% confidence interval

 47

bound to delay. The ordering for standard deviation of response time are the same as the

mean response times, except that CICQ is always less than iSLIP as shown in Figure 3.8.

Figure 3.9 shows the mean response time results for the IBP experiment. iSLIP has

lower delay than CICQ at low loads while they have roughly similar delay at high loads.

The order for standard deviation of response time is the same as for the mean response

time as shown in Figure 3.10.

Figure 3.9 – Results for IBP experiment (mean response time)

Figure 3.11 shows the mean response time results for the packet experiment. For the

iSLIP switch without speed-up, a 98% offered load cannot be carried. With a mean

packet length of 364.7 bytes, six 64-byte cells of total 384 bytes are needed for 5%

overhead. It can be seen that internal speed-up is needed to achieve full throughput. The

results show that CICQ is better than iSLIP, with no speed-up and 1.05x speed-up.

1

10

100

1000

50 55 60 65 70 75 80 85 90
Load (%)

M
ea

n
re

sp
on

se
 ti

m
e

(c
el

ls
)

Ouput

iSLIP

CICQ

iSLIP

CICQ

= 95% confidence interval= 95% confidence interval= 95% confidence interval

 48

Figure 3.10 – Results for IBP experiment (std dev of waiting time)

Figure 3.11 – Results for packet experiment (mean response time)

For 2x speed-up, iSLIP is almost identical to an output buffered switch. For CICQ

compared to output buffered, at 50% offered load there is an additional 0.7 microseconds

of delay and at 95% an additional 11.8 microseconds. At 10-Gbps the transmission time

1

10

100

1000

50 55 60 65 70 75 80 85 90
Load (%)

S
td

 D
ev

 o
f r

es
po

ns
e

tim
e

(c
el

ls
)

Ouput

iSLIP

CICQ

0

5

10

15

20

25

30

50 55 60 65 70 75 80 85 90 95 100
Load (%)

M
ea

n
re

sp
on

se
 ti

m
e

(m
ic

ro
se

c)

Ouput

iSLIP-1x

CICQ

iSLIP-1.05x

iSLIP-2x

= 95% confidence interval= 95% confidence interval= 95% confidence interval

 49

for a 1500 byte packet is 1.2 microseconds. The order for standard deviation of response

time are the same as for the mean response time as shown in Figure 3.12.

Figure 3.12 – Results for packet experiment (std dev of waiting time)

Figures 3.13 and 3.14 show the mean and standard deviation results for the fairness

experiment, respectively. For case (1), the mean and standard deviation of response time

for the CBR are very high. For case (2), low mean and standard deviation of delay is

maintained even at very high offered loads. At 98% offered load and 0.5 seconds of

simulated time, the maximum and 99% response time for the real-time priority stream for

the iSLIP switch was 25.1 and 17.8 microseconds, respectively. For the CICQ switch,

the maximum and 99% response times were 13.8 and 8.9 microseconds, respectively. A

CICQ switch has lower response times for priority streams at high loads. This simple

priority implementation for iSLIP and CICQ can starve low priority traffic.

0

5

10

15

20

25

30

50 55 60 65 70 75 80 85 90 95 100
Load (%)

S
td

 D
ev

 re
sp

on
se

 ti
m

e
(m

ic
ro

se
c)

Ouput

iSLIP-1x

CICQ

iSLIP-1.05x

iSLIP-2x

 50

Figure 3.13 – Results for fairness experiment (mean response time)

Figure 3.14 – Results for the fairness experiment (std dev of response time)

1

10

100

60 65 70 75 80 85 90 95 100
Load on port 0 (%)

M
ea

n
re

sp
on

se
 ti

m
e

(m
ic

ro
se

c)

CICQ (no priority)

iSLIP-1.05x (no priority)

iSLIP-1.05x (priority)
CICQ (priority)

0.1

1

10

100

60 65 70 75 80 85 90 95 100
Load on port 0 (%)

S
td

 D
ev

 re
sp

on
se

 ti
m

e
(m

ic
ro

se
c)

CICQ (no priority)

iSLIP-1.05x (no priority)

iSLIP-1.05x (priority)
CICQ (priority)

 51

Chapter 4: Eliminating Instability in IQ and CICQ switches

A major issue in VOQ switch matrix scheduling is stability. Stability refers to

bounded queue length for schedulable loads. IQ cell switches use iterative request-grant-

accept scheduling cycles to achieve a maximal one-to-one matching. Existing scheduling

algorithms for IQ cell switches based on an unweighted maximal matching (such as PIM

[3] and iSLIP [71]) are not stable unless internal speed-up is used. A 2x speed-up has

been proven to be sufficient for stability for all schedulable flows for CIOQ switches

[20]. CICQ switches can use independent RR selection of VOQs and CP buffers;

however, instability occurs unless OCF or LQF is used to select VOQs in an input port

[46]. Both OCF and LQF require comparisons between all N ports during each

scheduling cycle. This requires either N sequential comparisons or Log2(N) comparisons

with a tree circuit containing 1−N comparators. Simpler methods [79], [99] for

achieving stability are needed. This need is addressed in this chapter. Parts of this

chapter resulted from a collaboration with Dr. Neil J. Gunther from Performance

Dynamics Company. The instability region identified in a previous literature is

described, and a method for achieving stability in this region is proposed and evaluated.

4.1 Unstable regions in VOQ switches

An unstable region in the iSLIP and CICQ switches is considered in this section.

Bernoulli arrivals with rate ijλ for Nji ,,1, �= where i is the input port number, j the

 52

output port number, and 0.10 ≤≤ ijλ are assumed. A Bernoulli model is a common

traffic model for studying switch performance (e.g., as used in [3], [46], [72], [76]).

Definition 1. Let λ1 be the offered load at port 1. The fraction f of offered traffic going to:

1) VOQ11 is 111 λλ =f

2) VOQ12 is 121)1(λλ =− f

where 12/1 << f .

Corollary 1. 12111 λλλ +=

Remark 1. Note that: 1112 1 λλ −≠ unless 11 =λ . The mean interarrival time of cells at

port 2 is 1
22
−= λτ . But 221 λλ ≡ by virtue of .022 =λ

A region of instability for iSLIP IQ and CICQ switches for a schedulable, asymmetric

traffic load to two ports is demonstrated [46]. For any two ports arbitrarily identified as

ports 1 and 2, let .0 and , , 22122112111 ==+= λλλλλλ Within a region of 5.011 >λ and

high offered traffic load, instability occurs. This instability condition is not limited to a

two-port switch, but can occur between any two ports of a large switch. The offered load

that causes instability for an CICQ switch ranges from a low of approximately 0.9 in the

range of 7.06.0 11 << λ to a high of 1.0 at 5.011 =λ and 0.111 =λ . This instability exists

for a switch of size N input and output ports where any two of the N ports have the traffic

load specified above. The instability range for an iSLIP IQ switch is larger in area. The

simulation model is developed and used to reproduce the instability results in [46].

Infinite size VOQ buffers are assumed for both an iSLIP IQ and CICQ switch. For the

iSLIP IQ switch, four iterations are used per scheduling cycle.

 53

As an experimental mean to detect instability, simulation experiments were run for

100 million cell times and terminated as unstable if any queue length exceeded 5000

cells. Five thousand cells are equivalent to 256 microseconds in drain time on a 10-Gbps

link data rate and 320 Kbytes in size. A similar experimental means of detecting

instability is used in [32]. Figure 4.1 shows the simulation results for the iSLIP and

CICQ instability regions, which exactly match the results in [46]; the region for iSLIP is

slightly larger than for the CICQ switch. For this same simulation experiment, OCF/RR

and LQF/RR for a CICQ switch do not exhibit instability.

Figure 4.1 – Instability in CICQ and iSLIP

The instability in the CICQ switch is caused when VOQ12 is empty (drained) and

VOQ11 is blocked from transferring a cell to its cross point buffer (CP11) due to CP11

being already full and CP21 transferring to output 1. A solution is to service VOQ12 less

Figure 4.1- Instability in RR/RR CICQ and iSLIP0.45
0.5

0.55

0.6
0.65
0.7

0.75
0.8

0.85

0.9
0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
λ 12

λ
11

Border (CICQ)

Unstable region is
between border and
schedulable line.

Schedulable line

Border (iSLIP)

Figure 4.1- Instability in RR/RR CICQ and iSLIP0.45
0.5

0.55

0.6
0.65
0.7

0.75
0.8

0.85

0.9
0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
λ 12

λ
11

Border (CICQ)

Unstable region is
between border and
schedulable line.

Schedulable line

Border (iSLIP)

0.45
0.5

0.55

0.6
0.65
0.7

0.75
0.8

0.85

0.9
0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
λ 12

λ
11

Border (CICQ)

Unstable region is
between border and
schedulable line.

Schedulable line

Border (iSLIP)

 54

aggressively so that VOQ12 will have queued cells that can be transferred (to CP12) when

VOQ11 is blocked. In this case, work conservation of input port 1 can be maintained.

Both OCF and LQF achieve stability by more aggressively draining VOQ11 than VOQ12

in this configuration. This observation was used to propose a burst stabilization protocol

(described in Section 4.3) that does not require a comparison of state information

between VOQs [120].

4.2 An Erlang space model for unstable region

Analysis was made to gain deeper insight of instability caused by the asymmetric

traffic load to two ports. Consider each VOQ in Figure 2.5 (and Figure 2.19) as separate

queues with polling suppressed. Let ijS be the cell service time. The respective server

utilization is then bounded by

 ,1}{ ≤= ijijij SEλρ 2,1, =ji (4.1)

since 1≤ijλ and 1}{1 ==−
ijSEµ cell time. Similarly, the total capacity iµ (in Erlangs)

of port i is bounded 1≤iu . This capacity conservation can be used to bind the region of

CICQ stability in Erlang space),(iiij ρρ shown in Figure 4.1, although the traffic at port

1 is asymmetric 1211 λλ ≥ , 2/111 ≥ρ and 2/112 ≥ρ such that utilization is conserved

across the two servers,

 .
2
1

2
1

1211 






 −=






 − ρρ (4.2)

The trivial solution is

 55

 1211 1 ρρ −= (4.3)

which corresponds to the linear boundary of the unstable region in Figure 4.1.

Generalizing eq. (4.2) and noting that 022 =ρ , capacity conservation across the servers in

both ports 1 and 2 can be written as

 






 −






 −+






 −






 −=






 −
2
1

2
1

2
1

2
1

2
1

1221211211 ρρρρρ (4.4)

Since the indices can be permuted, the following simplification ensues:

 






 −






 −+= 211211 2
1

2
12

2
1 ρρρ

2

122
12

2
1








 −+= ρ (4.5)

 2
1212 221 ρρ +−= (4.6)

Eq. (4.5) is recognizable as a conic section with eccentricity 1e = and vertex

,2/1(},{ =kh)2/1 and corresponds to the parabolic locus in Figure 4.1. Both eq. (4.3)

and eq. (4.6) confirm the alternative derivation in [120].

4.3 The new burst stabilization protocol

A good solution to instability in VOQ switches should not require internal speed-up

or the comparison of state information between VOQs. A newly proposed burst

stabilization protocol (‘threshold and burst method’ in [120]) neither requires costly

 56

internal speed-up nor the comparison of state information between VOQs. When a VOQ

in an input port is selected for the forwarding of a cell in the next cycle, a threshold

comparison is made. As long as the current VOQ queue length exceeds a set

THRESHOLD, then up to BURST cells can be transmitted from the VOQ before another

VOQ from the same input port is allowed to be matched. This is similar in general

principle to Threshold RRM (T-RRM) in [25]; in T-RRM BURST is effectively always 1.

Each VOQ has a cell burst counter that decrements on consecutive cell transfers (from

the VOQ). This burst counter is set to BURST when a VOQ drains, or when the accept

pointer is incremented (in iSLIP IQ) or the RR poll counter is incremented (in CICQ). In

a CICQ switch, if a full CP buffer blocks the currently selected VOQ then the input port

RR poll counter is always incremented. Specifically, for CICQ: The RR poll counter in

an input port is not incremented if the currently selected VOQ is above THRESHOLD in

queue length and the cell counter is greater than zero. The cell counter decrements on

consecutive cell transfers from a VOQ. This counter is set to BURST when a VOQ drains

or the RR poll counter is incremented (in CICQ). If a full CP buffer blocks the currently

selected VOQ, then the input port RR poll counter is always incremented. This method

can also be applied to iSLIP switches [120]. For the remainder of this chapter, we

consider only the CICQ switch.

4.4 Simulation evaluation of burst stabilization protocol

Using a CSIM18 [101] simulation model, the effect of THRESHOLD and BURST

values on stability and delay was studied for Bernoulli arrival of cells. Figure 4.2 shows

mean switch delay (for VOQ11, VOQ12, and VOQ21 combined) for iSLIP and CICQ with

 57

THRESHOLD set to 32 and BURST set to 0 and 64 for 99.01 =λ . Also shown are results

from an OCF/RR CICQ switch (the VOQs are scheduled with OCF and the CP buffers

with RR). These results show that with no bursting (BURST = 0) instability occurs, but

with bursting the switch is stable. Figure 4.3 shows the mean switch delay for each VOQ

for iSLIP and CICQ switch with THRESHOLD and BURST set to 32 and 64,

respectively. This shows that iSLIP and CICQ switches with THRESHOLD and BURST

have roughly similar delays for all VOQs, except VOQ11.

Figure 4.2 – Stability results for CICQ and iSLIP

To understand how the THRESHOLD and BURST method affects delay, three

experiments varying BURST, THRESHOLD, and λ11 were conducted (all with).99.01 =λ

The measured variable was mean switch delay. The experiments were as follows:

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ 11

M
ea

n
sw

itc
h

de
la

y
(c

el
ls

)

OCF/RR CICQ

iSLIP (B=64)

iSLIP and RR/RR CICQ
with no bursting

RR/RR CICQ (B=4)

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ 11

M
ea

n
sw

itc
h

de
la

y
(c

el
ls

)

OCF/RR CICQ

iSLIP (B=64)

iSLIP and RR/RR CICQ
with no bursting
iSLIP and RR/RR CICQ
with no bursting

RR/RR CICQ (B=4)

 58

Figure 4.3 – Results for individual VOQs

1) BURST experiment #1: The effect of BURST is evaluated by varying λ11 and

BURST for a fixed THRESHOLD = 32.

2) BURST experiment #2: The effect of offered load is evaluated by varying BURST

and λ11 for a fixed THRESHOLD = 32.

3) THRESHOLD and BURST experiment: The effect of THRESHOLD and BURST

was evaluated by varying THRESHOLD and BURST for a fixed .80.011 =λ

Figures 4.4 and 4.5 show the CICQ switch mean delay for VOQ11 for BURST

experiments #1 and #2, respectively. Figure 4.4 shows that the mean delay for all BURST

values is identical for .65.011 <λ Only the BURST value of 64 achieves stability for

all 11λ . Figure 4.5 shows that larger 11λ requires larger BURST values. These results

show that a too small BURST value results in instability for large 11λ . For all cases, the

mean delay for iSLIP is similar to that of CICQ and is not shown. Figure 4.6 shows the

0

20

40

60

80

100

120

140

160

0.4 0.5 0.6 0.7 0.8 0.9 1
λ11

M
ea

n
sw

itc
h

de
la

y
(c

el
ls

)

 VOQ11 (RR/RR CICQ)

VOQ11 (iSLIP)

 VOQ21 VOQ12 (RR/RR CICQ)

VOQ12

 59

Figure 4.4 – Results for BURST experiment #1

Figure 4.5 – Results for BURST experiment #2

mean delay for experiment #3 with BURST ranging from 15 to 55. THRESHOLD = 32

results in lower delay than THRESHOLD = 64, which in return has the lower delay than

0

20

40
60

80

100

120

140
160

180

200

0 10 20 30 40 50 60

M
ea

n
sw

itc
h

de
la

y
(c

el
ls

)

λ 11 = 0.7

λ 11 = 0.8
λ 11 = 0.9

λ 11 = 0.6

BURST

0

20

40
60

80

100

120

140
160

180

200

0 10 20 30 40 50 60

M
ea

n
sw

itc
h

de
la

y
(c

el
ls

)

λ 11 = 0.7

λ 11 = 0.8
λ 11 = 0.9

λ 11 = 0.6

BURST

0

20

40

60

80

100

120

140

160

180

200

0.5 0.6 0.7 0.8 0.9 1
λ11

M
ea

n
sw

itc
h

de
la

y
(c

el
ls

)

 BURST = 16

 BURST = 64

 BURST = 32

 60

Figure 4.6 – Results for THRESHOLD and BURST experiment

THRESHOLD = 128. THRESHOLD values of 8 and 16 both result in instability. These

results show that lower THRESHOLD values achieve lower delay, but too small of a

THRESHOLD value results in instability. When THRESHOLD is too small, bursting

(and its queue grows without bound). The mean delay for VOQ12 decreases as the delay

for VOQ11 increases. The mean delay for VOQ21 is not significantly affected by the

values of THRESHOLD, thus these results are not shown in the graph.

4.5 An analytical model of burst stabilization

In this section, an analytical model to predict the minimum BURST value needed to

stabilize the system is developed. The work in this section is largely by Dr. Neil J.

Gunther [36]. Goals to be established concerning the burst stabilization protocol are as

follows:

0

50

100

150

200

250

15 20 25 30 35 40 45 50 55

M
ea

n
sw

itc
h

de
la

y
(c

el
ls

) THRESHOLD = 128

THRESHOLD = 64

THRESHOLD = 32

BURST

0

50

100

150

200

250

15 20 25 30 35 40 45 50 55

M
ea

n
sw

itc
h

de
la

y
(c

el
ls

) THRESHOLD = 128

THRESHOLD = 64

THRESHOLD = 32

BURST

 61

1) Whether it is sufficient to inhibit such instabilities. This is discussed in Section

4.5.1.

2) Whether the magnitude of the BURST parameter can be predicted with sufficient

accuracy for the important range of loads expected in a real switch. Section 4.5.5

contains those details.

The polled queues at each port are intrinsically stable if inputs and outputs are not

oversubscribed. That is, 1,λ
N

1i
≤∑

=
ij j.i <�

The instability (described in Section 4.1) arises primarily from the blocking of a VOQ on

one port by the transmission from a VOQ on another port via the corresponding output

CP buffer on the crossbar. For example, buffer CPii blocks transmissions from VOQii

because of the presence of a cell in the downstream buffer CPji due to transmissions from

VOQji where .ij >∀≥ This study shows that ijB̂ , the estimate for the minimum BURST

parameter, comprises two terms:

 jiij BBB +=ˆ (4.7)

where Bi is due to traffic arriving at port i and Bj due to traffic arriving at port .> ij The

interaction between these two traffic sources is such that their contribution to the

minimum BURST size is both additive and load-dependent. In the subsequent discussion,

ijB̂ signifies the minimum value of the BURST parameter required to stabilize the VOQs.

All queue lengths are defined with respect to the THRESHOLD value, which (as

mentioned in Section 4.4) acts as an arbitrary reference level.

 62

Stability analysis is intrinsically difficult because transient effects [26], [46], [56],

[75] may not possess a closed analytic form and only asymptotic bounds may be

represented [35], [115]. Moreover, the VOQs at each input port in Figure 2.5 (and Figure

2.19) are subject to asymmetric traffic and even the steady-state behavior of such

asymmetric polling systems can be difficult to express analytically [109]. Surprisingly,

however, an accurate steady-state bound for CICQ switch stabilization is presented based

on the fact that certain aspects of this problem resemble the equilibrium queue length,

()

λµ
λ

µλµ
λ

−
+

−
=

2
1-}{

22
sCQE (4.8)

for an M/G/1 model of an exhaustive polling system [8], [10], and [59] with 2

sC the

squared coefficient of variation of the service time S.

4.5.1 Vacating server approximation

The principles of operation of the burst stabilization protocol are best understood in

the context of a simplified model having a single burst-stabilized queue. The

generalization from this simple burst model to the multi-queue configuration in the real

CICQ switch proceeds in a straightforward way.

Consider a single queue with arrivals that are Poisson distributed with rate 2/1≥λ

and serviced in FCFS order. Poisson-distributed events have interarrival periods that are

exponentially distributed and the latter distribution is the continuous analog of the

discrete Bernoulli distribution used in the simulations of Section 4.3. Upon servicing a

single request, the server vacates the queueing center for one service period 1-}{ µ=SE .

 63

During that vacation period, other requests may arrive in the queue. From the standpoint

of an arriving request, the expected service time appears to be 2=}{SE because

processing time is split equally between servicing the next request at the head of the

queue and the next vacation period, i.e., an effective rate 2/1=µ . Since µλ ≥ , such a

queue is non-ergodic, and therefore subject to unstable queue growth.

Now, suppose that when the queue size exceeds THRESHOLD the server ceases

vacating the queue and proceeds to service at most BURST requests at a rate 1=µ before

taking the next vacation period. Is it possible to find a BURST value large enough to bind

the queue size over a sufficiently long time period? This question can be addressed using

an M/G/1 generalized service time distribution model [8]; however, it will prove more

instructive for later discussion to present a simpler rate matching argument.

In a fluid approximation [26], [46] the necessary condition (see Proof 1 in [36]) for

stability is that BURST (B) requests be serviced in a time τ such that:

 λ
τ

=B (4.9)

The time-averaged rate of service must match the mean arrival rate in the long run.

Applying this condition to our vacating server model, at most B requests must be serviced

in a period ;/1+= µBτ where the “1” refers to the mean vacation period. The rate

equation,

 λµ =
+1B

B (4.10)

 64

corresponds to the fraction of time for which the effective service rate reaches 1=µ in

this model. It follows that the BURST size must be

λµ

λ≥B (4.11)

which is finite and bounded, provided µλ < .

It is noteworthy that a term similar to eq. (4.11) arises in the steady-state limit of the

rate processing function for leaky bucket queue management [34]. More importantly, it

corresponds to the second term in eq. (4.8). This observation is further investigated in

Section 4.3.

4.5.2 Port 2 analysis

Continuing this line of thought, it is easier to understand the contribution to BURST

from port 2=j interactions before turning to those due to port 1=i traffic.

Definition 2. Let λ2 be the offered traffic at port 2. The fraction of offered traffic going

to VOQ21 is)1(11221 λλλ −+= at instability and 022 =λ .

Corollary 2. 2112 λλ = iff 11 =λ .

The mean interarrival time of cells at port 2 is 1
22
−= λτ . But 221 λλ ≡ by virtue of

.022 =λ Then 1
21212
−== λττ , and 2

1
21 1

21
B+=≡ −λτ by analogy with the discussion in

Section 4.5.1. Applying Proof 2 in [36], the contribution to BURST from port 2 is

11

11

1
1

21

21
2 λ

λ
λ

λ
−

≡
−

=B (4.12)

 65

Finally, eq. (4.12) can be rewritten in terms of the fraction of traffic going to VOQ11 as

1

1

1
)(2 λ

λ
f

f
fB

−
= (4.13)

by application of Definition 1.

This result states that the mean number of cells burst from VOQ11 prior to processing

being blocked by transmissions from VOQ12 is the same as the equilibrium queue size for

the vacating server model in Section 4.5.1. The reason is that a cell will be present at

VOQ21 every τ21 cell times (on average) causing the scheduler to vacate VOQ11 and

service VOQ12.

4.5.3 Port 1 analysis

The study now turns to the analysis of port 1=i . Because bursts can be interrupted

with a mean time τ21, there is also the possibility that VOQ12 can burst. As seen from the

standpoint of VOQ11, the vacation period is extended beyond that accounted for by eq.

(4.13). Since cells will continue to arrive into VOQ11 the burst size will need to be larger

than B2.

The average number of arriving cells 1L that accumulate during this extended

vacation period is directly proportional to the arrival rate at port 1 according to Little’s

Law,

 111 WL λ= (4.14)

where W1 is the expected waiting-time. Eq. (4.14) corresponds to the first term in eq.

 66

(4.8) viz,

2

)1(
1

2

1

2
1

1
−

−
= sCL

λ
λ

 (4.15)

with 1=µ . In polling systems near saturation, waiting-times approach a gamma

distribution and higher moment effects vanish under heavy traffic [114].

The instability of interest to the present study, however, arises from heavy

asymmetric traffic into VOQ11. This has the effect of making the residual service time in

eq. (4.15) a load-dependent function via the squared coefficient of variation,

 






 −+=
2
1

5
41)(2 ffC s (4.16)

such that B1 in eq. (4.7) becomes:

 






 −














−
=

2
1

15
2)(

1

2
1

1 ffB
λ

λ (4.17)

with 2/1≥f the asymmetric fraction of the offered load arriving at VOQ11. Note that f

is the only variable in eq. (4.17).

As expected the length of the waiting line, and hence its contribution to the minimum

BURST size, is directly proportional to the imbalance in VOQ11 traffic. When 2/1=f

(symmetric case) this term vanishes and does not contribute ijB̂ .

 67

4.5.4 Bounds on BURST

The complete expression for estimating the minimum BURST as defined in eq. (4.7)

is

 ,
12

1
15

2)(ˆ
2

i

i

i

i
ij f

f
ffB

λ
λ

λ
λ

−
+







 −










−
= ji <∀ (4.18)

More formally BURST corresponds to the infimum (greatest lower bound) of)(ˆ fBij . As

a practical matter, this can be evaluated most simply as the ceiling function  ⋅ applied to

eq. (4.18). For 1≤iλ and 2/1=f , ()  12/1 =iB and ()  .02/1 =jB

As expected from the simulation experiments (Figure 4.7), eq. (4.18) is an increasing

function of f but not necessarily monotonic. It does not scale with the number of ports

Figure 4.7 – Prediction of minimum BURST value

0

5

10

15

20

25

30

35

40

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Fraction (f) of offered load (%)

M
in

im
um

 B
U

R
S

T
si

ze

B analytical (λ1= 0.99)

B sim(λ 1=0.99)

B sim (λ 1=0.98)

B analytical (λ 1= 0.98)

0

5

10

15

20

25

30

35

40

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Fraction (f) of offered load (%)

M
in

im
um

 B
U

R
S

T
si

ze

B analytical (λ1= 0.99)

B sim(λ 1=0.99)

B sim (λ 1=0.98)

B analytical (λ 1= 0.98)

 68

(N) since blocking between any pair of ports (as remarked in Section 3) is sufficient to

cause unstable queue growth. Eq. (4.18) is rather remarkable in that it is based on a

steady-state representation yet the fluctuations concerning these mean values can be very

significant. It is also surprising that it can be expressed entirely in terms of the fractional

load at VOQii. It should be noted that eq. (4.18) is not valid for 1=f since there is a cell

in every slot and the behavior becomes D/D/1 (i.e., non-Poisson arrivals).

4.5.5 Numerical results

For the simulation results, the experiment of Section 3.2 was repeated (again using

THRESHOLD = 32) with a BURST size that was incrementally increased across each run

until the sampled drift in VOQ11 queue growth was observed to be adiabatically zero.

Tables 4.1 and 4.2 present the results for a range of λ1 values and a comparison with the

corresponding predictions of eq. (4.18). Under- and over-estimations are indicated

respectively by (–) and (+) signs. Figure 4.7 also shows the measured (Bsim) and the

predicted (Banalytical) minimum BURST values. Banalytical is defined as equivalent to 




 ∧

12B .

These results demonstrate that increasing the value of BURST achieves stability by

increasing the bandwidth for VOQ11 at the expense of VOQ12. For 98.01 =λ and

.99.01 =λ the value of BURST was determined for the stability achieved. In this way it

was established that eq. (4.18) predicts the exact BURST size with less than or equal to

10% relative error for 98.01 =λ and less than 20% relative error for .99.01 =λ In all

cases, except one, the relative errors are conservative since they are overestimates.

 69

Table 4.1 – Calculated and simulated minimum BURST values for λλλλ1 = 0.98

Loads Model Comparison

f λ11 λ12 B2 B1 B12 12B̂ Bsim Error

0.50 0.49 0.49 0.96 0.00 0.96 1 1 0.00

0.55 0.54 0.44 1.17 0.96 2.13 3 3 0.00

0.60 0.59 0.39 1.43 1.92 3.35 4 4 0.00

0.65 0.64 0.34 1.75 2.88 4.64 5 5 0.00

0.70 0.69 0.29 2.18 3.84 6.03 7 7 0.00

0.75 0.74 0.25 2.77 4.80 7.58 8 8 0.00

0.80 0.78 0.20 3.63 5.76 9.39 10 10 0.00

0.85 0.83 0.15 4.99 6.72 11.71 12 12 0.00

0.90 0.88 0.10 7.47 7.68 15.16 16 16 0.00

0.95 0.93 0.05 13.49 8.64 22.14 23 21 + 0.10

Table 4.2 – Calculated and simulated minimum BURST values for λλλλ1 = 0.99

Loads Model Comparison

f λ11 λ12 B2 B1 B12 12Β̂ Bsim Error

0.50 0.54 0.45 0.98 0.00 0.98 1 1 0.00

0.55 0.54 0.45 1.20 1.96 3.16 4 4 0.00

0.60 0.59 0.40 1.46 3.92 5.38 6 7 – 0.14

0.65 0.64 0.35 1.81 5.88 7.69 8 8 0.00

0.70 0.69 0.30 2.26 7.84 10.10 11 10 + 0.10

0.75 0.74 0.25 2.88 9.80 12.68 13 11 + 0.18

0.80 0.79 0.20 3.81 11.76 15.57 16 14 + 0.14

0.85 0.84 0.15 5.31 13.72 19.03 20 17 + 0.18

0.90 0.89 0.10 8.17 15.68 23.86 24 22 + 0.09

0.95 0.94 0.05 15.81 17.64 33.45 34 33 + 0.03

 70

Chapter 5: Switching Variable-Length Packets

As evidenced by the USF distribution packet length statistics, most network traffic

consists of IP packets, often framed with an Ethernet header and trailer. IP packets are

variable in length. Most applications generate data in variable sized blocks. Thus, the

study of high-speed switches that support variable-length packets is significant. Section

5.1 investigates switching variable-length packets for IQ switches. Most of Section 5.1

resulted from collaborations with Dr. Allen Roginsky at IBM Corporation and Dr. Neil J.

Gunther at Perfomance Dynamics Company. Section 5.2 investigates switching variable-

length packets for CICQ switches.

5.1 Packet-to-cell segmentation schemes in IQ switches

Existing IQ switches used in IP networks segment external variable-length packets

into internal fixed-length cells. Variable length packets are segmented into fixed-length

cells in the input ports; the cells are then scheduled and transferred, and subsequently

reassembled into packets in the output ports. Figure 5.1 shows a VOQ switch with each

input port containing a packet classifier to determine the destination output port, packet-

to-cell segmenter, VOQs, and a scheduler. Switch matrix scheduling algorithms for

VOQ crossbar switches inherently require the use of internal fixed-length cells. This is

because the crossbar is scheduled in cycles, one cycle for each set of cells forwarded

 71

Figure 5.1 – VOQ switch showing packet-to-cell segmenter

from matched input ports to output ports. Thus, input buffered switches segment packets

into cells, internally switch the cells, and then reassemble the cells into packets in

reassembly buffers at the output ports.

 The IP-PIM algorithm for IQ switches [86] uses a “cell train” in which the matching

of a head-of-packet cell is maintained until all cells of that packet have been forwarded.

Cell trains are also used in iSLIP based IQ switches [68], [65], [55], [81]. The use of cell

trains within a switch simplifies packet reassembly at the output ports since the cells of a

segmented packet are stored in the output buffer without interleaving of cells from other

segmented packets. The use of cell trains provides better performance than individual

cell-by-cell scheduling for variable-length packets for iLQF, iOCF, and iSLIP [66].

 Few packets have a length that is an even multiple of the internal cell length requiring

internal speed-up, and the overhead from speed-up adds cost to a switch implementation.

Control flow

Classifier

Crossbar

Scheduler

Output 1 Output 2

1, 1

1, 2

Input 1

2, 1
2, 2

Input 2

1,1 1,2

2,1 2,2

VOQs

VOQs

Segmenter

Control flow

Classifier

Crossbar

Scheduler

Output 1 Output 2

1, 1

1, 2

Input 1

2, 1
2, 2

Input 2

1,1 1,2

2,1 2,2

VOQs

VOQs

Segmenter

 72

No existing work quantitatively addresses how much speed-up is needed. A new method

for reducing speed-up needs to be investigated. These open problems are addressed.

5.1.1 Models of quantized service time queues

It is assumed that packet lengths are randomly distributed and their distribution is

known. For a given packet of length L bytes and a cell of size S bytes, ()SLceil cells are

needed to segment the packet where ceil is the standard ceiling function. The last packet

in the sequence, or “train”, of cells will have rS − padding or overhead bytes where

()SLRemr ,= when L is not a multiple of S; Sr = otherwise. This results in an internal

packet length (in cells) of rSL −+ bytes. Thus, an internal speed-up factor of

LrS /)(1 −+ is needed to switch the packet at link data rate. For a given distribution of

packet lengths, the study investigates how this discretization (or quantization) caused by

segmentation into cells changes the mean and variance of the number of bytes to be

transported. This changes the service time of a queue modeling the input buffer of a

packet switch that segments packets to cells as described. The study also models

queueing delay of three classical queues given a ceiling of service time.

5.1.1.1 Ceiling of well known distributions

Let X be an arbitrary random variable for which it is known that ()XE and ()XVar .

Let Y be the integer-valued random variable that is the ceiling of X and let XYZ −= . If

X has a wide smooth distribution and is not concentrated near a particular integer or set of

integers, it can be assumed that Y and Z are almost independent and the distribution of Z

 73

on)1,0(is roughly uniform. We have () 21=ZE and () 121=ZVar . We have

() ()ZXEYE += () ()ZEXE += () 21+= XE and, () ()Z YVar XVar −= () ()ZVarYVar +=

() 121+= YVar , and hence () () 121−= XVarYVar .

For an exponentially distributed random variable X with () x
X exf µµ −= , let

()XceilY = . Then Y is geometrically distributed with

 () µ−−
=

e
YE

1
1 and (5.1)

 () 2)1(µ

µ

−

−

−
=

e
eYVar . (5.2)

The proof of this is in [16]. As expected,

2
11

1
1

0
=







 −
− −→ µµµ e

lim and (5.3)

 () 12
11

1 220
−=














−

− −

−

→ µµ

µ

µ e
elim . (5.4)

Let H2 denote a two-stage hyperexponentially distributed random variable X with

() xx
X eexf 21

2211
µµ µαµα −− += and 0>x , 0, 21 ≥αα , and 121 =+αα , let ()XceilY = .

Then,

()
21 11

21
µµ

αα
−− −

+
−

=
ee

YE and (5.5)

() ()()2
2221)1(

1
)1(

1
2

2

1

1

YE
e
e

e
eYVar −

−
++

−
+= −

−

−

−

µ

µ

µ

µ

αα . (5.6)

The proof of this is in [16].

 74

Let E2 denote a two-stage Erlang distributed random variable X with xxexf µµ −= 2)(

(i.e., both service rates are the same). Then Y has,

() 2)1(
1)1(

µ

µµ
−

−

−
+−=

e
eYE and (5.7)

() 4

223

)1(
])2()1()1[(

µ

µµµ µµµ
−

−−−

−
+−−−+=

e
eeeYVar . (5.8)

The proof of this is in [16]. It can be seen that, when)(YVar is evaluated numerically, it

is usually greater than the value of)(XVar , which is equal to 2/2 µ . The reason for this

is that the Erlang distribution does not satisfy the heuristic assumptions made earlier in

this section. It has a peak, which makes the discrete picture more complicated.

5.1.1.2 M/G/1 analysis

The quantization described in Section 5.1.1.1 corresponds to taking the ceiling

function of the continuous-valued service time. We introduce a superscript notation ∆ for

these quantized service times so that the quantized version of an M/M/1 queue is denoted

/1M/M∆ , which is also equivalent to M/Geo/1 with mean service time () 11 −−− µe defined

by eq. (5.1). Since ()YE and ()YVar are continuous functions, the mean number of

customers in the system ()NE can be determined from the standard Pollaczek-

Khintchine (P-K) M/G/1 formula [5]:

()
()
() 






+

−
+=

YE
YVarNE 2

2

1
12

)(
ρ

ρρ . (5.9)

where ()YEλρ = is the quantized load. For /1M/M∆ eq. (5.9) reduces to

 75

 








−+
−= − 1

2
2

)(
λ

λλ
µe

NE (5.10)

with µ the mean service rate of the underlying exponential distribution used to calculate

the quantized service times. The study also solved /1M/H2
∆ and /1M/E2

∆ queues for

()NE , but those formulas are far more complex than eq. (5.10) and are not shown here.

Moreover, beyond the special cases discussed in Section 5.1.1.1, an arbitrary response

time distribution is not expected to possess an analytic quantized form, so a more general

approach is needed.

5.1.1.3 Application of models to packet-to-cell segmenting

At this point in the study the /1M/M∆ model is applied to predict ()NE in packets

given L, S, and a utilization ρ . The utilization, ρ , is based on the arriving rate of

packets (in bits per second) divided by the link rate (in bits per second). Packet arrivals

are Poisson, and packet lengths are exponentially distributed. These assumptions are

very restrictive and unrealistic of real packet traffic. However, even with these restrictive

assumptions, the general behavior of segmentation and speed-up can be observed. In the

next section, these restrictive assumptions are removed in a simulation study.

For a given L and S, the mean service time in cell time units is SLTs = . For a given

link utilization based on packets, ρ , the mean interarrival time is ρsa TT = . Then, the

mean arrival rate is aT1=λ and mean service rate is sT1=µ . For the M/M/1,

µλρ = and mean number of packets in the system () ()ρρ −= 1NE . For the

/1M/M∆ , the utilization for quantized service time is, () ()µλλρ −−=⋅=′ eYE 1 . The

 76

speed-up, σ , needed to achieve a carried load equal to the offered load (i.e., stability for

all offered loads up to 1=ρ) is () ()µµµρρσ −−==′= eYE 1 . Figure 5.2 shows the

numerical results for ()NE for a range of 0.1 , ,51.0 ,50.0 l=ρ and =L 100, 500, and

1000 bytes for 64=S bytes. To achieve stability, the speed-up required is 354.1=σ for

100=L bytes, 065.1=σ for 500=L bytes, and 032.1=σ for 1000=L bytes. These

numerical results show that, without speed-up, 1000=L increases rapidly at high offered

loads and that the smaller L is, the greater the effect of segmentation on ()NE . The

analytical results in Figure 5.2 have been validated with a simulation model. This model

was then used in the next section for more realistic traffic models.

Figure 5.2 – Numerical results for /1M/M∆ for various values of L

0

5

10

15

20

25

30

35

40

45

50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

L=100 bytes L=500 bytes

L=1000 bytes

Cell size, S = 64 bytes

0

5

10

15

20

25

30

35

40

45

50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

L=100 bytes L=500 bytes

L=1000 bytes

Cell size, S = 64 bytes

 77

5.1.2 Simulation of iSLIP with packet segmentation

 The effects of discretization on a real network traffic using a simulation model with a

packet trace as input was evaluated. A previously built and validated iSLIP simulation

model from chapter 3 was used.

5.1.2.1 Traffic model

Traced traffic was used for the simulation evaluation of the cell merging method.

USF traced traffic #2: Over 60 million IP packets were collected from the University of

South Florida (USF) Internet2 OC-3 (155-Mbps) link on December 10, 2002. USF

traced traffic #2 is needed because the size of USF traced traffic #1 (5 million packets) is

not large enough for the experiment. Packet size distributions from the two traced traffic

collections resemble each other, and the shape of packet size distributions are bimodal for

both traced traffic collections. Figure 5.3 shows the packet length histogram where all

packet lengths from 64 to 1518 bytes are represented. The mean packet length was 764

bytes. Thus, an external-packet/internal-cell switch with a cell size of 64 bytes requires a

speed-up of 1.005 to achieve stability)005.11.764/)6412(=× . The most common

packet length was 1518 bytes (31.4% of all packets), followed by 64 bytes (28.7%), 1438

bytes (7.7%), 70 bytes (2.7%), and 594 bytes (1.4%). All other packet length occurs at

less than 1%.

The trace file of 60 million packets was split into 16 smaller files, each with the same

number of packets. Each of these smaller files was then input to a port in the modeled

16-port iSLIP switch. The destination output port was assigned using a modulo-16

function of the packet IP destination address. Output port utilization of a switch is not

 78

uniform for real traffic. In this experiment, utilization is referred to as the maximum

offered load among all 16 ports. Service time (i.e., simulated link data rate) is controlled

to achieve a desired utilization. Using this traced traffic with a real packet length

distribution allows speed-up issues in an IQ switch to be studied.

Figure 5.3 – Histogram for USF traced traffic #2 of Ethernet packet lengths

5.1.2.2 Simulation experiments

For all experiments, control variables are offered load and speed-up, and the response

variable is mean queue length. An internal cell size of 64 bytes (minimum Ethernet

packet size) was used. A 3% accuracy (95% confidence interval) was used as the

simulation stopping criterion.

0.0001

0.001

0.01

0.1

1

10

100

64 320 576 832 1088 1344
Packet length (bytes)

O
cc

ur
re

nc
e

(%
)

Mean packet length = 764 bytes

0.0001

0.001

0.01

0.1

1

10

100

64 320 576 832 1088 1344
Packet length (bytes)

O
cc

ur
re

nc
e

(%
)

Mean packet length = 764 bytes

 79

1) Stability experiment: For iSLIP with no speedup, 1.05x, and 1.1x speedups with

segmentation and cell padding, mean queue length is measured for utilization

ranging from 50% to 99%.

2) Speed-up experiment: The minimum speedup needed for 99% utilization is

systematically identified. A queue length of 5000 or greater is considered a sign

of instability.

5.1.2.3 Experiment results

Figure 5.4 shows the results for the Stability experiment. It can be seen that no

speedup and the 1.05x speedup cases become unstable above 93% and 97% utilization,

respectively. Only the 1.1x speedup case can achieve stability for the entire range of

utilizations. For Speed-up experiment, it was found that the minimum speed-up needed

for 99% utilization was 1.06x.

Figure 5.4 – Results for stability experiment

0

25

50

75

100

125

150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

Padding 1.1x

Padding

Padding 1.05x

= 95% confidence interval= 95% confidence interval= 95% confidence interval

 80

5.1.3 Packet-to-cell segmentation with the new cell merging method

For input buffered switches, a new method of segmenting packets into cells that

reduces the amount of speed-up needed to achieve stability is proposed. When a packet

is segmented into cells (i.e., in the segmenters shown in Figure 5.1) the last cell of a

packet may be a partially filled cell. Instead of queueing this partial cell (with padding

bytes) to the VOQ, it is held back to wait for the next arriving packet. The next arriving

packet then starts its segmentation with the held-back cell from the previous packet; i.e.,

the header bytes of the arriving packet are merged with the trailer bytes from the previous

packet. This is called cell merging. A finite state machine (FSM) for cell merging is

shown in Figure 5.5. The EMPTY state occurs when there is no held back cell and the

segmenter is idle.

Figure 5.5 – FSM for cell merging

An arriving packet transitions (T0) the FSM to the SEGMENTING state where the

packet is segmented into cells and the cells queued in the VOQ. If the last cell in a

packet is a partial cell it is held back and the FSM transitions (T1) to the PARTIAL state

(otherwise, the transition is to the EMPTY state (T2)). In the PARTIAL state, the

segmenter is idle and waiting for an arriving packet to transition (T3) back to the

EMPTY SEGMENTING PARTIAL

T0 packet arrival T1 last cell is partial

last cell is full T2 packet arrival T3

cell merging timer expires T4

EMPTY SEGMENTING PARTIAL

T0 packet arrival T1 last cell is partial

last cell is full T2 packet arrival T3

cell merging timer expires T4

 81

SEGMENTING state. In the PARTIAL state a cell merging timer is started when the

VOQ is empty (e.g., all cells segmented and queued have been forwarded). If this timer

expires before an arriving packet, then the held back cell is queued with padding bytes

and transition (T4) is to the EMPTY state. The purpose of the timer is to prevent a

packet from being unfairly starved if there are no subsequent arrivals for a long period of

time.

 For the cell merging mechanism, the effect of cell merging timer values was

evaluated in advance, and the cell merging timer expiration value was set to 10 cell times.

A large (100 or 1000 cell times) timer value results in high queueing delays at low

utilizations, and no benefit at high utilizations (where a time-out would rarely occur due

to frequently arriving packets). A value of 10 cell times maintained a low queueing delay

at both low and high utilizations. For a 10-Gbps link, 10 cell times corresponded to a

very small 512 ns.

5.1.3.1 Simulation evaluation of cell merging

Experiments from Section 5.1.2.2.were repeated for the cell merging mechanism with

the cell merging timer expiration value set to 10 cell times. Figure 5.6 shows the mean

queue of cell merging compared with the results of Figure 5.4 (padding). The packet

merging mechanism with no speedup became unstable above 95%. The cell merging

mechanism with a speedup of 1.05x and 1.1x achieved stability for all offered load

measured. Cell merging resulted in a lower mean queueing delay for high utilizations.

From the Speed-up experiment it was found that the minimum speedup needed was

1.04x. Thus, cell merging required 2% less speedup than packet-to-cell segmentation

 82

Figure 5.6 – Results for stability experiment with cell merging

without cell merging. Cell merging timer values were experimented with. A large (100

or 1000 cell times) timer value would result in high queueing delays at low utilization

and no benefit at high utilizations (where a time-out would rarely occur due to frequently

arriving packets). A value of 10 cell times maintained a low queueing delay at both low

and high utilizations. For a 10-Gbps link, 10 cell times corresponds to a very small 51.2

ns.

In summary, the cell merging method reduces the required speed-up in an IQ switch.

This is significant because increases in link data rate continue to outpace improvements

in memory speed. It is not productive to justify up to a 2x speed-up just for handling the

variable length nature of IP packets in the Internet. Even a small speed-up adds cost to

high-speed packet switches.

0

25

50

75

100

125

150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

1.05x

1.0x

1.1x

 = Padding
 = Merging
 = 95% confidence interval

0

25

50

75

100

125

150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

1.05x

1.0x

1.1x

 = Padding
 = Merging
 = 95% confidence interval

 83

5.2 Switching variable-length packets for CICQ switches

As seen in the previous section, a VOQ IQ switch requires costly internal speed-up to

support variable-length packets. A CICQ switch does not require internal speed-up since

it can natively forward variable-length packets [121]. In a CICQ switch, each VOQ has

its own output buffer in the form of a CP buffer. When a complete packet finally exists

in a CP buffer, that buffer is then eligible to transfer its contents to an output port on the

next RR poll. Such a switch requires no speed-up since neither padding bytes nor

segmentation/reassembly of the packets at the input/output ports are needed.

5.2.1 Unfairness among VOQs in CICQ switch

Variable-length packets result in unfairness among VOQs in the CICQ switch as

follows: Figure 5.7 shows a 1x2 CICQ switch with two VOQs, VOQ1,1 (VOQ at input

port 1 for output port 2) and VOQ1,2. Let VOQ1,1 be saturated with packets of length L;

let VOQ1,2 be saturated with packets of length 2L; and the size of .4CP L≥ Both CP1,1

(CP for packets from input port 1 to output port 1) and CP1,2 can start forwarding packets

to output ports 1 and 2, respectively, as soon as they receive packets, and, thus, are ready

to accept the next packet from the VOQs (they always have a sufficient buffer available

for at least one more packet of size 2L). VOQ1,1 and VOQ1,2 are selected alternatively;

thus, more bits are transferred from VOQ1,2. This condition can obviously exist in a

switch with any port count. It is desired that the complexity of the

segmentation/reassembly of packets, the speed-up of switch fabric, and the unfairness

among queues be reduced or eliminated.

 84

Figure 5.7 – 1x 2 CICQ switch showing packet-level unfairness

5.2.2 Block transfer mechanism

A block transfer mechanism for the CICQ switch to resolve the unfairness caused by

variability of packet lengths is proposed and evaluated. The block transfer mechanism

transfers up to a predefined number (BLOCK) of bytes of packet data from a selected

VOQ to a CP. Figure 5.8 and 5.9 show the block transfer mechanism and the pseudocode

for the block transfer mechanism, respectively. Each block of size (transfer_size) can be

a set of entire packets and/or portions of a packet. If a selected VOQ has less than or

equal to BLOCK bytes, entire packets are transferred (as is the case for VOQ1,1 in Figure

5.5). If a selected VOQ has more than BLOCK bytes, the last packet may or may not be a

part of the block. If the last packet is a part of the block, at least 64 bytes of the last

packet (as is the case for VOQ1,2 in Figure 5.8) are held back to ensure that the bus

between an input port and a CP is optimally utilized during the scheduling time, even if

all other VOQs are empty, (Here it is assumed that the scheduling time is less than or

equal to 64-byte packet transfer time.) If the last packet is not a part of the block, a block

of BLOCK bytes is transferred (as is the case for VOQ1,3 in Figure 5.8).

Occupancy feedback

CrossbarVOQ1,1

RR scheduler

Output 1 Output 2

2L 2L

Input 1

CP 1,1 CP 1,2VOQ1,2

≥ 4L
L L L L

≥ 4L

Occupancy feedback

CrossbarVOQ1,1

RR scheduler

Output 1 Output 2

2L 2L

Input 1

CP 1,1 CP 1,2VOQ1,2

≥ 4L
L L L L

≥ 4L

 85

Figure 5.8 – Block transfer mechanism

Figure 5.9 – Pseudocode for block transfer mechanism

The complete packets at a CP are forwarded to a corresponding output link when

selected by RR arbitration. CPi,j periodically (in every 64-byte data transfer time) checks

if the CPi,j has at least BLOCK bytes of free space, and sends a status bit, CP_statusi,j (1 =

full, 0 = empty), to an input porti. The block transfer mechanism allows a block of up to

BLOCK bytes to be transferred from a selected VOQ regardless of the individual packet

size. Thus, the unfairness due to the variability of the packets is removed. Suppose

Block with BLOCK bytes Occupancy feedback

Input port

RR polling64-byte packet segment

VOQ1,1

VOQ1,2

VOQ1,3

Block with BLOCK bytes Occupancy feedback

Input port

RR polling64-byte packet segment

VOQ1,1

VOQ1,2

VOQ1,3

At each input porti,
1. do forever
2. Select with RR the first non-empty VOQi,j where CP_ statusi,j = 0.
3. If (total packet size at VOQi,j is less than or equal to BLOCK) then
4. transfer_size = total packet size at VOQi,j
5. else
6. if (total packet size at VOQi,j – BLOCK) < 64 then
7. transfer_size = total packet size at VOQi,j – 64
8. else
9. transfer_size = BLOCK

At each input porti,
1. do forever
2. Select with RR the first non-empty VOQi,j where CP_ statusi,j = 0.
3. If (total packet size at VOQi,j is less than or equal to BLOCK) then
4. transfer_size = total packet size at VOQi,j
5. else
6. if (total packet size at VOQi,j – BLOCK) < 64 then
7. transfer_size = total packet size at VOQi,j – 64
8. else
9. transfer_size = BLOCK

 86

VOQ1,1 and VOQ1,2 from Figure 5.4 are saturated with 64-byte packets and 1518-byte

packets, respectively. Without the block transfer mechanism, one 64-byte packet from

VOQ1,1 and one 1518-byte packet from VOQ1,2 are scheduled alternatively. This results

in VOQ1,2 transferring 23.7-times (1518 divided by 64) more data than VOQ1,1. With the

block transfer mechanism, both VOQ1,1 and VOQ1,2 are scheduled with the same amount

of data, resulting in perfectly fair scheduling.

5.2.3 Evaluation of block transfer mechanism

This section evaluates the performance of the CICQ switch with a block transfer

mechanism. Using CSIM18 [101], simulation models were developed for an CICQ

switch with native packet forwarding, a CICQ switch with the block transfer mechanism,

an iSLIP-scheduled IQ switch with cell train, and an OQ switch. A 16-port switch is

modeled, and infinite buffer sizes are assumed for all experiments. iSLIP is implemented

for four iterations. For all experiments, control variables and response variables are

offered load and switching delay, respectively.

5.2.3.1 Traffic models

Both synthetic and traced traffic were used for the simulation evaluation of the block

transfer mechanism.

1) USF synthetic traffic: See Chapter 3.3.3 for the description.

2) Bimodal synthetic traffic (64, 1472): Arrivals are Poisson, and packet lengths are

either 64 bytes or 1472 bytes. Both 64 bytes and 1518 bytes (minimum and

maximum Ethernet frame sizes, respectively) are the common Internet packet

 87

sizes. 1472 byte packets were used instead of 1518 byte packets, so that no

speedup was required for an external-packet/internal-cell switch with a cell size of

64 bytes).23641472(⋅= Bimodal synthetic traffic is used since the realistic

Ethernet packet length distribution is bimodal, as seen in both USF traced traffic

#1 and #2 packet length distributions.

3) USF traced traffic #2: See Section 5.1.2.1 for the description.

5.2.3.2 Simulation experiments

Five simulation experiments are designed to evaluate block move. Output port

destination configurations based on high-degree balanced, low-degree balanced, and low-

degree unbalanced probability density functions [32] are examined using USF

distribution (see section 3.2.3). These experiments evaluate how packet switches perform

with different output port destination configurations. A diagonal scenario [67] is

examined using the bimodal synthetic traffic. This experiment evaluates the fairness

among different packet length. For all experiments, one second of simulated time with a

10-Gbps link data rate is assumed unless otherwise stated.

1) High-degree balanced experiment: With USF synthetic traffic, each of the 16

input ports chooses an output port with a uniform distribution over the 16 output

ports. All input ports and output ports have an identical offered load ranging from

80% to 99%.

2) Low-degree balanced experiment: With USF synthetic traffic, each of the 16

input ports chooses an output port with a uniform distribution over k output ports

(where 16<k). All input ports and output ports have an identical offered load; k

 88

random permutations are used to assign input and output pairs; k is set 4, and the

offered load ranged from 80% to 99%.

3) Low-degree unbalanced experiment: With USF synthetic traffic, half of the input

ports chooses an output port with a uniform distribution over k ports, and the

other half chooses an output port with a uniform distribution over 2k output ports.

Each flow rate is identical. If half the input ports are loaded at λ  the other half of

the input ports are loaded at .2λ Each output port receives either k or 2k flows.

2k random permutations are used to assign input and output pairs; k is set 4, and

the offered load ranged from 80% to 99%.

4) Diagonal experiment: With bimodal synthetic traffic, each of the 16 input ports

chooses an output port with a uniform distribution over the 16 output ports.

Packets from input port i are destined to output port j where ji = for all packets

of length 1472 bytes only. Otherwise, packet lengths are 64 bytes. All input ports

and output ports have identical offered load, ranging from 80% to 99%.

5) Traced packet experiment: The USF traced traffic #2 was used, and modulo N of

the destination IP addresses were assigned to each packet as its output port

destination. The media rate of the simulation model was modified to achieve a

desired offered load of 40 to 60%, and the simulation results were scaled to match

the results of a 10-Gpbs switch. Simulation was run until a trace to any one of

input port ran out.

 89

5.2.3.3 Experiment results

Figure 5.10 shows the results for the high-degree balanced experiment. It shows that

the mean delay of the iSLIP switch with cell train has the highest mean delay, and the

iSLIP with cell train becomes unstable above a 96% load. The high mean delay and

instability of the iSLIP with cell train is due to the overhead resulting from the transfer of

empty padding bytes for every packet whose length is not divisible by 64 (the internal

fixed-cell size in bytes). The mean delays of the iSLIP with cell train and 1.05x speed-

up, that of the CICQ switch, and that of the CICQ switch with block transfer mechanism

Figure 5.10 – Results for high-degree balanced experiment

are similar, except the CICQ has a slightly higher mean delay than the other two at a 99%

load. The speed-up used with the iSLIP with cell train compensates for the transferring

of empty bytes, achieving the switch stability for all offered load being measured. Both

the CICQ switch and the CICQ switch with block transfer natively supports variable-

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

OQ

CICQ block

iSLIP cell train 1.05x

CICQ

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

OQ

CICQ block

iSLIP cell train 1.05x

CICQ

 90

length packets, and they do not require speed-ups to achieve stability. As was expected,

the OQ switch has the lowest mean delay.

Many matching algorithms have poor performances with unbalanced output port

destination [32]. Figure 5.11 shows the results for the low-degree balanced experiment.

The iSLIP with cell train, the iSLIP with cell train and 1.05x speed-up, and the CICQ

switch became unstable above 90%, 94%, and 94% load, respectively. Similar results

were obtained for iSLIP in [32]. The CICQ switch with block transfer mechanism and

the OQ switch are stable for all offered loads being measured.

Figure 5.11 – Results for low-degree balanced experiment

As shown in Figure 5.12, the iSLIP with cell train and the iSLIP with cell train and

1.05x speed-up become unstable above a 92% and 96% load, respectively, for the low-

degree unbalanced experiment. Thus, both the iSLIP with cell train and the iSLIP with

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

CICQ block

iSLIP cell train 1.05x

OQ

CICQ

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

CICQ block

iSLIP cell train 1.05x

OQ

CICQ

 91

Figure 5.12 – Results for low-degree unbalanced experiment

cell train and 1.05x speed-up reduced the instability region obtained from the low-degree

balanced experiment. This is because the total offered load of N output ports for the low-

degree unbalanced configuration is less than that for the low-degree balanced

configuration. Similarly, the instability region of the CICQ switch is reduced. The CICQ

with block transfer mechanism and the OQ switch are stable for all offered loads being

measured.

Figures 5.13, 5.14, and 5.15 show the results for the diagonal experiment. Figures

5.13 and 5.14 show the mean delays of large and small packets, respectively. The CICQ

switch with block transfer mechanism has a higher large packet mean delay than the OQ

switch; however, it has a lower small packet mean delay than the OQ switch. The CICQ

without block transfer mechanism also has a lower small packet mean delay than the OQ

switch at high offered loads.

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

CICQ

iSLIP cell train 1.05x

OQ

CICQ block

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

CICQ

iSLIP cell train 1.05x

OQ

CICQ block

 92

Figure 5.13 – Results for diagonal experiment (large packets)

Figure 5.14 – Results for diagonal experiment (small packets)

The OQ switch is purely First Come First Serve (FCFS); however, the CICQ switch,

having 2 stages of buffering, introduces priority based on packet lengths. In the CICQ

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c) iSLIP cell train

CICQ block

Output

CICQ

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c) iSLIP cell train

CICQ block

Output

CICQ

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

CICQ BLOCK

Output

CICQ

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

CICQ BLOCK

Output

CICQ

 93

switch, the transfer time required for packets to transfer from a VOQ to a CP is

proportional to the size of the packet, and a smaller packet requires less transfer time

from a VOQ to a CP. Suppose the transfer of a small packet from port 1 to CP1,1,

Packet11, and the transfer of a large packet from port 2 to CP2,1, Packet21, begins at the

same time. Packet11 arrives at CP1,1 before Packet21 arrives at CP2,1. Thus, Packet11 will

be selected for transmission to an output link via RR scheduling. The effect is

demonstrated by the smaller mean delay of the CICQ switch than that of the OQ switch

for small packets (as in Figure 5.14) at a high offered load. The CICQ switch with block

transfer mechanism further adds the packet size-based priority within each port. With the

CICQ switch with block transfer mechanism, a multiple of small packets are scheduled

from a single VOQ for each RR polling at an input port, giving higher priority to smaller

packets over larger packets within the input port. This explains the small packet mean

delay of the CICQ switch with block transfer mechanism being lower than the OQ switch

for all offered loads measured. Figure 5.15 shows the mean delay of both large and small

packets combined. The CICQ switch with block transfer mechanism has the lowest mean

delay. The total number of small packets is about 16 times more than that of large

packets (for).16=N Thus, the mean delay of large and small packets combined is

dominated by the small packet delay.

For the traced packet experiment, all switches become unstable above a 55% load as

shown in Figure 5.16. Internet traffic has a high degree of burst, and packet destinations

(and output port to which packets are destined within a switch) are not uniform. Figure

5.17 shows the individual output port utilization, relative to the port with the highest

offered load (output port 4), of the OQ switch in the trace packet experiment. Output port

 94

Figure 5.15 – Results for diagonal experiment (small and large packets)

Figure 5.16 – Results for traced packet experiment

has the highest offered load, and its buffer (or corresponding VOQs for port 4 for iSLIP

and CICQ switches) becomes saturated with buffered packets before average offered load

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

CICQ block

Output

CICQ

1

10

100

1000

80 82 84 86 88 90 92 94 96 98 100
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

iSLIP cell train

CICQ block

Output

CICQ

1

10

100

1000

40 45 50 55 60
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

OQ

CICQ block

iSLIP cell train 1.005x

CICQ

1

10

100

1000

40 45 50 55 60
Load (%)

M
ea

n
sw

itc
h

de
la

y
(m

ic
ro

se
c)

OQ

CICQ block

iSLIP cell train 1.005x

CICQ

 95

among all 16 ports becomes 100%. The instability of the switches at a low (55%) offered

load occurs when the intensive traffic to output port 4 reaches 100%. At a 52.5% offered

load (a measurement point before instability point), iSLIP with cell train and 1.005x

speed-up has a mean delay of 340 microseconds, while the CICQ switch, the CICQ

switch with block transfer mechanism, and the OQ switch have similar mean delays of

140, 121, and 110 microseconds, respectively.

Figure 5.17 – Relative utilization of port for traced packet experiment

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Port #

U
til

iz
at

io
n

(%
)

.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Port #

U
til

iz
at

io
n

(%
)

.

 96

Chapter 6: Design and Implementation of CICQ Switches

In this chapter, the design and implementation of CICQ switches are described. The

feasibility of the CICQ switch architecture for 24 ports and a 10-Gbps link data rate is

shown with an FPGA-based design in section 6.1. The bottleneck of a CICQ switch with

RR scheduling is the RR poller. In section 6.2, a priority encoder based RR poller that

uses feedback masking was implemented. The feasibility of both the CICQ switch

architecture and RR poller using FPGA technology provides a significant promise that

the same switch architecture that supports greater link data rates and port sizes can be

implemented with custom silicon. To improve the scalability of the RR polling unit in

the switch scheduler, a fully scalable arbiter that is independent of the size of the inputs is

proposed in section 6.3.

6.1 Design of an FPGA-based CICQ Switch

To show the feasibility of the CICQ switch architecture, a 24-port, 10-Gbps link data

rate switch was designed. The target technology was the Xilinx Virtex II Pro series of

FPGAs [116]. A Xilinx application note [104] describes a buffered crossbar. Cisco sells

the 12416 Internet Router, which supports 10-Gpbs with 16 slots [22]. The cost of the

Cisco 12416 is $100,000 [23], which is 400% greater (per port) than the estimated cost of

our switch (the cost estimate for our switch is in Section 4.4).

 97

Figure 6.1 – Chassis-level design of FPGA CICQ switch

6.1.1 Chassis-level design

Figure 6.1 shows the chassis-level design of our FPGA-based CICQ switch for 24

ports and 10-Gbps link data rate. The CICQ switch consists of eight circuit boards (six

port cards, a crossbar card, and a bus motherboard). The dimensions of the cards are

selected to fit a rack based on the Network Equipment Building System (NEBS)

standards [7]. A port card has 32 serial I/Os and 24 parallel I/Os, or a total of 56 I/Os.

The crossbar card has 196 serial I/Os and 24 parallel I/Os, or a total of 216 I/Os. Each

serial I/O of a port card has a dedicated path to/from a serial I/O of crossbar card through

the bus board. Each line card shares a bus for its parallel I/Os with other line cards.

These I/Os are described in detail in Sections 4.2 and 4.3.

The switch size is constrained by the number of serial I/Os available on the device

being used. Serial I/Os available on the Xilinx Virtex II Pro will be increased from 16

Motherboard

Port cards
Crossbar card

19
”

7”

6”

6”

Motherboard

Port cards
Crossbar card

19
”

7”

6”

6”

 98

(Q1 of 2003) to 24 (Q3 of 2003) [4]. Similar increase is expected to enable the

implementation of a 32x32 10-Gbps switch with the same design.

6.1.2 Line card design

Figure 6.2 shows the board-level design of the port card. Each port card consists of

four port devices. Each port device is a Xilinx Virtex-II Pro XC2VP20 device and an

Intel XPAK TXN17201/9 optical transceiver, which is connected by serial I/Os. Four

Rocket I/O transceivers (full-duplex serial 3.125 Gbps channels) handle 10-Gbps data

transmission to/from the optical transceiver. Block SelectRAMs (fully synchronized dual

port memory on Virtex-II Pro devices) are used to implement VOQs. Each VOQ consists

of four 16-bit wide logical data slices each of which is connected to two Rocket I/O

transceivers (one to the optical transceiver and another to a crossbar slice). The Media

Access Controller (MAC) function can be implemented within the XC2VP20 device

[117].

Figure 6.2 – Line card design of FPGA CICQ switch

Optical
transceivers

56 pins

248 8

Virtex-II Pro

XC2VP20

Serial I/Os

8
8

Virtex-II Pro

XC2VP20

Virtex-II Pro

XC2VP20

Virtex-II Pro

XC2VP20

8 8

8
8

Optical
transceivers

56 pins

248 8

Virtex-II Pro

XC2VP20

Serial I/Os

8
8

Virtex-II Pro

XC2VP20

Virtex-II Pro

XC2VP20

Virtex-II Pro

XC2VP20

8 8

8
8

 99

A total of eight Rocket I/O transceivers are used: two Rocket I/O transceivers per

data slice for four data slices. The XC2VP20 has a total of 200 Kbytes of storage that

can store 3096 64-byte cells (it takes about 150 microseconds to drain a queue at 10-Gbps

line rate). A queueing delay of over 100 microseconds would likely be undesirable in an

operational 10-Gbps switch. Parallel I/Os (24 bit) are used at each port device to receive

the state of crossbar buffer occupancy from the crossbar card.

6.1.3 Buffered crossbar design

Figure 6.3 shows the board-level design of a crossbar card. The crossbar card

consists of four crossbar slices. Each crossbar slice is implemented using a Xilinx

Virtex-II Pro XC2VP125 device. Crossbar slices have 24 Rocket I/O transceivers, each

of them are mapped to a unique port I/O. Thus, a total of 96 Rocket I/O transceivers (24

Rocket I/O transceivers per crossbar slice times 4 crossbar slices) are used in the crossbar

card. Parallel I/Os (24 bit) are used at one of the four crossbar slices to transmit the state

of crossbar buffer occupancy to all of the 24 port devices in 24 clock cycles.

Block SelectRAMs are used to implement cross point buffers. The XC2VP125 has

556, 18 Kbit BlockRAMs, which is a sufficient enough number to implement 552 (23 x

23) individual CP buffers (For a switch with N ports, () ()11 −− NxN CP buffers are

required since transmission to and from the same port is unnecessary).

The data width of the Block SelectRAM ports is configured as 16-bits to match the

data slice width of the VOQs. Schedulers are needed in the crossbar slices and ports. For

a CICQ switch, round robin polling is used in the port cards (one poller per input port to

poll VOQs) and the cross bar card (one poller per crossbar slice column of CP buffers

 100

dedicated to an output port). Thus, no communication between the crossbar slices is

needed. The poller is the performance bottleneck for a CICQ switch, where it is required

that a complete poll of all VOQs in an input port (or all CP buffers for an output port) be

completed in a time frame that is less than the time required to forward a single cell. This

bottleneck is addressed in Section 6.2 and 6.3 of this dissertation.

Figure 6.3 – Buffered crossbar design of FPGA CICQ switch

6.1.4 Cost estimate of the FPGA design

The parts used for the port devices, crossbar slice, and optical (fiber to/from copper)

transceiver dominate the total cost of implementation. The cost of an XC2VP20 device, a

Xilinx chip used for a port device, is under $500 for a purchase of over 100 units [87].

Although the price of an XC2VP125 device (a Xilinx chip used for a crossbar slice) is not

specified as of September 2002, it is estimated to be no more than $1000. The Intel

XPAK TXN17201/9 optical transceiver costs $500 [45]. Thus, the 10-Gbps switch with

24-port can be built for the estimated price of $30,000 (24 x $500 port devices,

48 2448 48 48

Virtex-II Pro

XC2VP125

216 pins
Parallel I/Os
Serial I/Os

Virtex-II Pro

XC2VP125

Virtex-II Pro

XC2VP125

Virtex-II Pro

XC2VP125

48 2448 48 48

Virtex-II Pro

XC2VP125

216 pins
Parallel I/Os
Serial I/Os

Virtex-II Pro

XC2VP125

Virtex-II Pro

XC2VP125

Virtex-II Pro

XC2VP125

 101

4 x $1,000 crossbar slices, 24 x $500 optical transceivers, and less than $2,000 for

chassis, boards, connectors, power supply, etc).

6.2 Fast RR arbiter

Many switch architectures, including iSLIP [71] and DRRM [12], use round robin

(RR) arbiters as part of their switch matrix scheduling. The CICQ switch uses two levels

of RR arbitration. A good switch matrix scheduler should enable 100% throughput for

all schedulable offered loads and be feasible to implement.

Round robin polling is the bottleneck for increasing the link data rate and/or the

number of ports in a switch. The worst case poll is N ports. For a 10-Gbps switch with

16 ports and 64 byte cell size, this is 3.2 nanoseconds per port. An increase in the switch

size makes this a great challenge. Thus, to improve the scalability of switch designs that

use round robin scheduling, new and faster methods of round robin arbitration need to be

investigated. To achieve this requirement, time over space optimization can be justified.

In this section, delay with increase in a cost of (cell level) space for an FPGA

implementation is improved upon existing designs [38].

6.2.1 Existing fast RR arbiter designs

A priority encoder was implemented in [27] at the CMOS transistor level. This

implementation uses a priority look-ahead approach that is similar to look-ahead adders

with 4.1 nanosecond priority encoding for 32-bit input and 1 micron implementation. For

this study, a fast round-robin poller was implemented at the logic gate level, where the

individual priority encoder block can be implemented at either the gate or transistor level.

 102

The most common design for a round-robin poller is the double barrel-shift RR poller

(called SHFT_ENC in [38]), which is shown in Figure 6.4. It consists of two barrel

shifters and a simple priority encoder, smpl_pe. Request bits Req of size N are rotated by

an amount P_enc (P_enc is log2(N) bits) indicating the VOQ with the currently selected

buffer. This is inputted into a smpl_pe and again rotated by P_enc in the reverse

direction. The outputs are grant bits Gnt of size N and a bit, anyGnt, indicating whether

there is a grant. For example, let Req = 10110100, P_enc = 011, Gnt = 00000100, and

.8=N First, Req is shifted 4 positions to get 01001011. Second, the smpl_pe outputs

01000000. Finally, 01000000 is shifted 4 positions right to obtain 00000100.

Figure 6.4 – Double barrel-shift RR poller [38]

The barrel shifters dominate the critical path delay. Other designs (in [38]) include

fully serial ripple (RIPPLE), fully parallel exhaustive (EXH), and a new look-ahead

approach called PROPOSED (shown in Figure 6.5). The PROPOSED design, which has

better delay performance than any existing design, eliminates the programmable part of a

programmable priority encoder (PPE) by pre-processing inputs. This is done by

“thermometer” encoding of a log2(N)-bit wide vector x into an N-bit wide vector y with

an equation, Nixvalueiiffiy ≤≤∀<= 0)),((1][.

Shifter smpl_pe Shifter
N N N N

log2N

Req

P_enc

Gnt
Shifter smpl_pe Shifter

N N N N

log2N

Req

P_enc

Gnt

 103

Figure 6.5 – McKeown PROPOSED RR poller [38]

The PROPOSED design eliminates a combinational feedback loop (e.g., as found in

the carry look-ahead (CLA) design) that is difficult for synthesis tools to optimize, and a

long critical path caused by a programmable highest priority level [38]. The four basic

steps in the PROPOSED are shown in Figure 6.6.

Figure 6.6 – McKeown’s PROPOSED algorithm [30]

P_enc
lgN

N

new_Req

N

Req

Gnt_smpl_pe_thermo

Gnt_smpl_pe
smpl_pe_thermo smpl_pe

Gnt anyGnt

N

N

P_thermo
to_thermo

N

anyGnt_smpl_pe

anyGnt_smpl_pe_thermo

N

P_enc
lgN

N

new_Req

N

Req

Gnt_smpl_pe_thermo

Gnt_smpl_pe
smpl_pe_thermo smpl_pe

Gnt anyGnt

N

NN

P_thermo
to_thermo

N

anyGnt_smpl_pe

anyGnt_smpl_pe_thermo

N

1.Transform P_enc to thermometer encoded P_thermo using the thermometer encoder
to thermo.

2. Bit-wise AND with Req to get new_Req.

3. Feed Req and new_Req into smpl_pe and smple_pe_thermo (another instance of
a simple priority encoder), respectively.

4. Select Gnt_smpl_pe_thermo (the encoded value from smple_pe_thermo) if non-zero
and select Gnt_smpl_pe (the encoded value by smpl_pe), otherwise (a bit signal
anyGnt_smple_pe_thermo and anyGnt_smpl_pe are ORed used to compute anyGnt).

thermoP _

1.Transform P_enc to thermometer encoded P_thermo using the thermometer encoder
to thermo.

2. Bit-wise AND with Req to get new_Req.

3. Feed Req and new_Req into smpl_pe and smple_pe_thermo (another instance of
a simple priority encoder), respectively.

4. Select Gnt_smpl_pe_thermo (the encoded value from smple_pe_thermo) if non-zero
and select Gnt_smpl_pe (the encoded value by smpl_pe), otherwise (a bit signal
anyGnt_smple_pe_thermo and anyGnt_smpl_pe are ORed used to compute anyGnt).

1.Transform P_enc to thermometer encoded P_thermo using the thermometer encoder
to thermo.

2. Bit-wise AND with Req to get new_Req.

3. Feed Req and new_Req into smpl_pe and smple_pe_thermo (another instance of
a simple priority encoder), respectively.

4. Select Gnt_smpl_pe_thermo (the encoded value from smple_pe_thermo) if non-zero
and select Gnt_smpl_pe (the encoded value by smpl_pe), otherwise (a bit signal
anyGnt_smple_pe_thermo and anyGnt_smpl_pe are ORed used to compute anyGnt).

thermoP _

 104

6.2.2 Masked priority encoder

For this study, the new Masked Priority Encoder (MPE) poller design (shown in

Figure 6.7) was developed and evaluated. The MPE is a priority encoder that uses bit-

wise masking to select an appropriate VOQ. As with the PROPOSED design, no

programmability is required, and only a smpl_pe is needed. The four basic steps (marked

in Figure 6.7) in the MPE are shown in Figure 6.8. The masking bits are generated (for

),...,1,0 Ni = by]1[...]2[]1[][][−⋅⋅+⋅+⋅= NGntiGntiGntiGntiMsk . The MPE directly uses

a previously derived N-bit grant value for the next polling. Thus, it neither requires an

encoder nor decoder to convert the N-bit form to or from a log2(N)-bit form. Figure 6.9

shows the logic diagram of the MPE poller for N = 4.

Figure 6.7 – MPE RR arbiter design (block diagram)

NReq

Generate

Msk

All 0’s ?

N

M_Req
N Mask-out

Smpl

_pe
MUX

N N

Gnt

Msk

1 2 3 4

NReq

Generate

Msk

All 0’s ?

N

M_Req
N Mask-out

Smpl

_pe
MUX

N N

Gnt

Msk

1 2 3 4

 105

Figure 6.8 – MPE RR arbiter algorithm

Figure 6.9 – MPE RR poller design (logic diagram)

6.2.3 Evaluation of MPE

In this study the programmable priority encoder RR poller designs in [38] were

implemented using VHDL, and they were simulated with the Xilinx WebPACK 4.2

ModelSim XE [118]. The targeted device was the Xilinx Virtex II XC2V40 FG256.

Simulations were run with the same time and space optimization settings for all designs.

Gnt

Gnt[0]

Gnt[1]

Gnt[2]

Gnt[3]

Req[0]

Req[1]

Req[2]

Req[3]

smpl

_pe
4

31 2 4

anyGnt

Msk[0]

Msk[1]

Msk[2]

Msk[3] M_req[3]

M_req[2]

M_req[1]

M_req[0]

Gnt

Gnt[0]

Gnt[1]

Gnt[2]

Gnt[3]

Req[0]

Req[1]

Req[2]

Req[3]

smpl

_pe
4

31 2 4

anyGnt

Msk[0]

Msk[1]

Msk[2]

Msk[3] M_req[3]

M_req[2]

M_req[1]

M_req[0]

1. Generate masking bits Msk based on the previously selected VOQ value.

2. Mask out request bits that are equal or less than the value of the previously selected
VOQ.

3. If masked requests M_req is nonzero then select M_req. Otherwise select Req.

4. Encode the selected bits (M_req or Req) with smpl_pe.

1. Generate masking bits Msk based on the previously selected VOQ value.

2. Mask out request bits that are equal or less than the value of the previously selected
VOQ.

3. If masked requests M_req is nonzero then select M_req. Otherwise select Req.

4. Encode the selected bits (M_req or Req) with smpl_pe.

 106

The delay and space requirement was measured for each design. Table 6.1 shows the

delay (in nanoseconds) and Table 6.2 shows the space in basic elements (BEL) of the

round robin poller designs. BELs are the building blocks that make up a component

configurable logic block (CLB) for FPGA, which includes function generators, flip-flops,

carry logic, and RAM. The relative results do not exactly match with the results in [38].

In [38] two input gate equivalents are used to size the designs. The design in [38] uses a

digital signal processor (DSP) as the target device; however, the target device used for

this study was an FPGA, which is capable of handling the high-speed data on the chip.

This difference in targeted devices results in the use of different simulation tools and

configurations.

Study results show that the MPE has lower delay than any other design for all

measured values of N. However, it requires more space than any other design, except

EXH. The evaluation results in Tables 6.1 and 6.2 show this, with the last row indicating

the improvement of MPE over the design with the next best performance. With modern

VLSI technology, space is rarely the constraining factor. The better delay performance

of the MPE is due to the fact that the MPE uses N bits to determine the value for the next

poll. The MPE does not require an encoder or decoder to convert the N-bit form to and

from a log2(N)-bit form, which would result in a speed-up at the cost of space required to

accommodate N bits versus log2(N) bits. In addition, since encoders and decoders are so

common in FPGA designs, many synthesizers have space-optimized models for them.

The two designs that do not require an encoder or decoder, SHFT_ENC and MPE, are

similar in size possibly because a space-optimized macro was not used.

 107

6.3 Scalable RR arbiter

A scheduler must be work-conserving. For a switch to be work-conserving, output

port links must be fully utilized as long as any cells destined to them exist at any input

ports. A switch that is non-work-conserving can not achieve 100% throughput. The RR

arbiter is one of the bottlenecks of a switch as the number of ports and link rates increase.

 Table 6. 1 – Evaluation of delay (nanoseconds)

Design N = 8 N = 16 N = 32 N = 64

RIPPLE 17 24 41 73

CLA 14 17 23 23

EXH 10 16 26 50

SHFT_ENC 15 24 37 64

PROPOSED 13 21 33 55

MPE 10 11 1 3 16

Improvement 0.0 % 47.6 % 43.5 % 30.4 %

 Table 6.2 – Evaluation of space (FPGA BELs)

Design N = 8 N = 16 N = 32 N = 64

RIPPLE 17 31 126 380

CLA 21 41 145 418

EXH 132 473 2391 10134

SHFT_ENC 58 143 350 836

PROPOSED 37 74 150 318

MPE 65 134 355 798

Improvement –282.6% –332.3 –181.7 % –150.9 %

 108

Fast schedulers are needed to support ever-increasing switch size and link data rate. For

example, for a switch with 16 ports and 100-Gbps link data rates, a 64-byte cell has to be

forwarded every 5.12 nanoseconds, and a scheduling cycle also completed in this time.

In this study a scheduler for N queues was considered. Each queue buffers fixed

length cells. A scheduler must exhibit fairness (i.e., short and long term fairness). In a

short-term scheduler, all N nodes receive an opportunity to forward a cell within every N

cell forwarding time. In a long-term fair scheduler, all N nodes receive an opportunity to

forward a cell in a finite time (i.e., scheduling delay is bounded).

6.3.1 Existing scalable RR arbiters

In the context of RR scheduling, a slotted system with N queues, iQ , was considered,

where .,...,2.1 Ni = Each queue buffers fixed-length cells arriving from external sources.

This is a time slotted system where a slot either contains a cell or is empty. The cell

queues may correspond to Virtual Output Queues (VOQ) at a switch input port. The time

to forward a cell is cT .

A poller visits queues, iQ , in sequential RR fashion with a delay of pT for each queue

visited. The delay pT occurs whether the visited queue is occupied or empty. If

cp TTN <⋅ then a simple two-stage RR arbiter that can select the next queue while the

currently selected queue is forwarding a cell is sufficient, meaning that the arbiter can be

work-conserving, such that the output link is never idle if there are cells queued in any of

the N queues. Most existing RR arbiters are based on a two-stage approach when

scheduling is done simultaneously with cell transmission. That is, the cell forwarded in

 109

time slot it was scheduled in time slot 1−it . In existing two-stage designs, 100%

throughput can only be achieved if cp TTN <⋅ . For the purposes of this study, an

overlapped round robin (ORR) arbiter is proposed, which will remove this limitation.

Existing RR arbiters can be categorized as follows:

1) Sequential polling

2) Non-sequential polling

3) Tree arbitration

4) Pipeline structures

Sequential polling is the simplest implementation of RR polling. A RIPPLE design is

described in [38]. Such a design has O(N) scalability with each new node adding a delay

pT to the scheduling delay. Token tunneling, a form of non-sequential polling, proposed

in [13], allows a pointer to skip a set of ports if none of the ports has packets to send.

Token tunneling reduces the arbitration time of sequential polling to)(NO .

Tree-structured RR arbiter designs [14], [38], [103], [122], [124] reduce the

arbitration time over a sequential design. The arbitration time of the Ping-Pong

Arbitration (PPA) scheme [14] for an N-input switch is proportional to  2/log2 N . The

arbitration time is only 11 gate delays for a 256x256 switch. The Parallel RR Arbiter

(PRRA) using a binary tree structure is presented in [124]. As with PPA it has

))((log2 NO gate delays, but it resolves an unfairness problem in PPA. Arbitration time

of the tree-structured RR arbiters described in [38], [103], [122] is also))((log2 NO .

Pipelined arbiter designs are used in several switch architectures [43], [82], [105].

Round-robin greedy scheduling (RRGS) [105] scales to a large switch because the

 110

amount of information transferred among function modules is small. However, the

scheduling delay increases in proportion to the number of switch ports, and scheduling

can be unfair. The Group-Pipeline Scheduler (GPS) [82] improves on RRGS by dividing

N nodes into K groups (KN / nodes per a group), and assigns an RRGS function module

to each group. It has a smaller arbitration time and better fairness than RRGS. An FPGA

implementation of RR scheduling using a Pipelined Priority Encoder and Barrel Shifter is

presented in [43]. Encoded bits are divided and inputted into multiple smaller priority

encoder units. Outputs from these units are merged and inputted into another priority

encoder to obtain the final encoded result. An arbitration time of))((log2 NO can be

obtained at the cost of using more FPGA space.

Some pipelined arbiters are not of a two-stage design. One example is the pipeline-

based concurrent round-robin dispatching scheme using multiple subschedulers [89].

Each subscheduler provides a dispatching result in every P scheduling cycle, where P is

the number of subschedulers. The arbitration time required for scheduling an IQ switch

can be relaxed by using a four-stage (cell arrival/departure, request transmission,

arbitration, and grant transmission) pipelined operation [47].

The scheduling delay of existing RR arbiter designs is a function of N. For some

values of N and cT the design becomes insufficient to achieve 100% throughput. An RR

arbitration scheme that can schedule and achieve 100% throughput independent of N and

cT is needed.

 111

6.3.2 Overlapped RR arbiter

To improve the scalability of RR polling, an Overlapped Round Robin (ORR) arbiter

is proposed that fully overlaps polling and cell scheduling [123]. In a system of N

queues, each queue has one control input (select) and one control output (arrival). Figure

6.10 shows a cell queue and Figure 6.11 shows the system of N queues with an (a) RR

polling unit and (b) cell scheduling unit. The polling algorithm is shown in Figure 6.12

and the scheduling algorithm in Figure 6.13. A counter iC1 is incremented on cell

arrivals to iQ and decremented on scheduled cell departures. The arrival output causes

the increment of .1iC The decrement of iC1 is caused by the scheduling algorithm. The

counter iC1 represents the number of cells currently queued in iQ . A counter iC2 is

decremented on cell departures from iQ and is increased in the polling algorithm shown

in Figure 6.11. The counter iC2 represents the number of cells in a queue “marked” for

forwarding. At all times, .021 ≥− ii CC The input select is used to select a queue for

forwarding cells. Only one select line can be active on any given cell slot. A single

counter 3C representing the number of cells permitted to be forwarded in the scheduling

Figure 6.10 – Queue with control and data lines

select

cells

cell queue (Q)

cells

The select input enables the queue to
forward a cell. The arrival output indicates
that a cell has arrived and been queued.

arrival

select

cells

cell queue (Q)

cells

The select input enables the queue to
forward a cell. The arrival output indicates
that a cell has arrived and been queued.

arrival

 112

Figure 6.11 – Cell queues and scheduling queue

Figure 6.12 – Polling algorithm

queue is also maintained. All counters are stored in the polling unit. A constant value, K,

is used in the polling unit. The counter 3C and the setting of K are described later.

…

scheduled cells

scheduling queue

1

2

N

S value from RR poll

cell queues

C1, C2, C3 decrement

(a) (b)

(a) = Polling algorithm (Figure 6.12). The counters
C1, C2, and C3 are maintained here.

(b) = Scheduling algorithm (Figure 6.13) with
decrement signal to counters in (a).

S.i to select queue

C1 increment

…

scheduled cells

scheduling queue

1

2

N

S value from RR poll

cell queues

C1, C2, C3 decrement

(a) (b)

(a) = Polling algorithm (Figure 6.12). The counters
C1, C2, and C3 are maintained here.

(b) = Scheduling algorithm (Figure 6.13) with
decrement signal to counters in (a).

S.i to select queue

C1 increment

1. do forever
2. i = mod(i, N) + 1
3. while (C3 > K) wait
4. mark = min(K, C1i – C2i)
5. if (mark > 0)
6. C2i = C2i + mark
7. C3 = C3 + mark
8. S.i = i
9. S.m = mark

10. queue S to the scheduling queue

1. do forever
2. i = mod(i, N) + 1
3. while (C3 > K) wait
4. mark = min(K, C1i – C2i)
5. if (mark > 0)
6. C2i = C2i + mark
7. C3 = C3 + mark
8. S.i = i
9. S.m = mark

10. queue S to the scheduling queue

 113

The polling algorithm (Figure 6.12) “visits” each queue by testing whether

.021 >− ii CC (line 4). If this holds, then there are unmarked cells in the queue. When a

queue is visited and the mark value (line 4) is non-zero, the counters iC2 and 3C are

updated and a scheduling value, S, comprising the queue index, i, concatenated with the

number of cells marked in this visit, m),1(Km ≤≤ is queued in a special scheduling

queue. The polling time pT is incurred in lines 2 to 10 of the polling algorithm and in

the time to increment iC1 For this study, the notation S.i and S.m are used to mean the

index value and marked cell count, respectively, for a given value of S. The value S is of

size)(log)(log 22 KN + bits. Line 3 in the polling algorithm stops the polling if the value

of 3C exceeds K. The counter 3C contains the sum of S.m currently queued in the

service queue. The poll stopping in line 3 is essential to improving long-term fairness,

and its properties are discussed later in this section.

Figure 6.13 – Scheduling algorithm

The scheduling algorithm (Figure 6.13) dequeues S from the scheduling queue when

all currently scheduled cells have been forwarded. For example, if the currently

dequeued scheduling value has S.m equal to 3, then after 3 cell forwarding times, the next

1. do forever
2. if (the scheduling queue is non-empty)
3. S = dequeue from scheduling queue
4. set select for queue S.i
5. do for j = 1 to S.m
6. wait for a cell to finish forwarding
7. decrement C1S.i, C2S.i, and C3
8. reset select for queue number S.i

1. do forever
2. if (the scheduling queue is non-empty)
3. S = dequeue from scheduling queue
4. set select for queue S.i
5. do for j = 1 to S.m
6. wait for a cell to finish forwarding
7. decrement C1S.i, C2S.i, and C3
8. reset select for queue number S.i

 114

queued scheduling value will be dequeued. The index S.i is the queue to be issued a

select for forwarding of S.m cells. The polling and scheduling algorithms run

concurrently. The value of K is set so that work conservation is achieved for all possible

cases of queued cells in the N queues. The value of K also binds the maximum delay a

cell arriving to an empty queue will experience.

Lemma. The smallest integer K needed for the ORR scheduling to achieve work

conservation for all possible cases of queued cells in the N queues can be derived as









=

c

p

T
T

NK . (6.1)

Proof. A time to poll all N nodes; ,pNT divided by cT is the total cell forwarding time

required to poll all N nodes. That is, cp TNT / cells are forwarded during one RR

scheduling cycle. If this RR scheduling time is less than the cell forwarding rate, at least

one cell is scheduled during one cell forwarding time. Thus the system becomes work-

conserving for any ./ cp TNTK > The least integer greater than or equal to cp TNT / is a

ceiling of ./ cp TNT

Theorem. A new HOL cell at any queue of the ORR arbiter can be forwarded in less than

12)1(++−⋅ KNK cell forwarding time.

Proof. By definition, the ORR poller visits any of N queues in every N polling time where

each queue marks up to K cells per polling time. Thus, a HOL cell at any queue has to

wait, at most,)1(−NK cell forwarding time if the scheduled queue was empty. Since

the sum of S.m in the scheduling queue can be as large as ,2K a new HOL cell at any

queue has to wait, at, most KNK 2)1(+− cell forwarding time.

 115

6.3.3 The ORR arbiter in the CICQ switch

The ORR arbiter can be used to implement the RR arbitration in the CICQ switch.

The input ports require knowledge of CP occupancy from each cross point to prevent the

overflow of the CP. Each of N CPs, CPi where Ni ,...,2,1= associated with VOQi

sends one bit of CP status, Fi, to its input port. For a CP buffer size of K⋅3 cells, Fi of 0

is sent if the occupancy at CPi is below K. An Fi of 1 is sent if the occupancy at CPi is at

or above K (at most K⋅2 cells destined to CPi may be queued in the scheduling queue

of the ORR arbiter). Thus, Fi controls the operation of the line 5 of the polling algorithm

in Figure 6.12 as if ((mark > 0) and (F i == 0)). The RR arbiters in the crossbar can be

replaced with the ORR arbiters in the same fashion.

6.3.4 Evaluation of the ORR arbiter

In this study, the performance of the ORR arbiter was compared with that of a two-

stage RR arbiter and an ideal sequential RR arbiter with zero polling time. For the two-

stage RR arbiter, the scheduling time is assumed to be exactly .cT The ideal RR arbiter

can not be implemented, but serves as a useful comparative lower bound. For all

experiments, ,NK = ,cp TT = and a simulation time of 1 million cell times was used,

unless otherwise stated. Cell arrivals were Bernoulli distributed, unless otherwise stated.

6.3.5 Simulation experiments

Experiments were performed to evaluate work conservation and fairness, and to

characterize the output process. The experiments were as follows:

 116

1) Work conservation experiment: For ,4=N M queues are saturated with 1000

cells each. The drain time of the queues is measured. The value of M ranges

from 1 to 4, and K ranges from 1 to 8.

2) Fairness experiment #1: For 4=N the arrival rates are set to λ1.0 for queue

1, λ2.0 for queue 2, λ3.0 for queue 3, and λ4.0 for queue 4, with

λ ranging from 0.50 to 0.99. The mean queueing delay is measured for each of

the four queues. Instability was also tested, by checking for any queue length

exceeding 5000 cells in 100 million cell times. (Evaluating stability in this

experimental manner was also done in [32].)

3) Fairness experiment #2: For 16=N , 1 to 15 queues are saturated, and tagged

cells arrive at a low rate (in randomly chosen time slots) to the empty queue. The

scheduling delay of the tagged cells is measured. This experiment demonstrates

the head-of-line cell forwarding time bound derived in the theorem of Section 3.

4) Output characterization experiment: For 16=N the arrival rates are set to

N/λ for each queue, with λ ranging from 0.60 to 0.90. The value of K ranged

from 2 to 16. The coefficient of variation of the output interdeparture times was

measured for a simulation run consisting of a 10 million cell times.

6.3.6 Experiment results

Figure 6.14 shows the results for the work conservation experiment. For the ORR, all

queues are entirely drained in M⋅1000 cell times for 4≥K for all M measured. This

supports the K derived in Eq. (1). For the two-stage RR and the ideal RR, all queues are

also entirely drained in M⋅1000 cell times.

 117

Figure 6.14 – Results for the work conservation experiment

Only the results for the fairness experiment #1 with Q1 and Q4 are shown in Figure

6.15. Results show that the mean queueing delay for each queue scheduled by the ORR

is greater than the mean queueing delay scheduled by the two-stage RR arbiter and the

ideal RR arbiter for all λ measured. The ORR, two-stage RR, and ideal RR are all stable

and thus also long-term fair. Fairness experiment #2 resulted in a maximum measured

scheduling delay of 240 cell times. The maximum, according to the theorem of Section

6.3.2, is 273 cell times.

Figure 6.16 shows the results for the output characterization experiment. The

coefficient of variation of the output interdeparture times for the two-stage RR and the

ideal RR is smaller than the coefficient of variation of interarrival time for all

λ measured. The coefficient of variation of interdeparture time for the ORR, with

8=K and 16, is greater than that of Bernoulli traffic for all λ measured. The

coefficient of variation of interdeparture time for the ORR is smaller than that of

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8
K

M =4

D
ra

in
 ti

m
e

(c
el

l t
im

e)

M =1

M =2

M=3

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8
K

M =4

D
ra

in
 ti

m
e

(c
el

l t
im

e)

M =1

M =2

M=3

 118

Bernoulli traffic for all λ measured only with .2=K These results show that the

value of K used for the ORR arbiter influences the output traffic characteristics.

Figure 6.15 – Results for fairness experiment #1

Figure 6.16 – Results for output characterization experiment

0

1

2

3

4

5

6

7

8

9

10

0.5 0.6 0.7 0.8 0.9 1
γ

M
ea

n
de

la
y

(c
el

l t
im

e)

ORR (Q1)

ORR (Q4)

Ideal RR (Q4)

RR (Q4)

RR (Q1)

Ideal RR (Q1)
0

1

2

3

4

5

6

7

8

9

10

0.5 0.6 0.7 0.8 0.9 1
γ

M
ea

n
de

la
y

(c
el

l t
im

e)

ORR (Q1)

ORR (Q4)

Ideal RR (Q4)

RR (Q4)

RR (Q1)

Ideal RR (Q1)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

0.6 0.7 0.8 0.9
γ

C
oe

ffi
ci

et
 o

f v
ar

ia
tio

n

ORR (K=16)

Arrival traffic
ORR(K=2)

ORR (K=8)

RR and Ideal

ORR (K=4)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

0.6 0.7 0.8 0.9
γ

C
oe

ffi
ci

et
 o

f v
ar

ia
tio

n

ORR (K=16)

Arrival traffic
ORR(K=2)

ORR (K=8)

RR and Ideal

ORR (K=4)

 119

Chapter 7: Scalable CICQ Switches

This chapter investigates the scalability of future CICQ switches. Problems incurred

with CICQ switches for ever-increasing link data rates (40 to 160 Gbps) are described

and resolved using a distributed rate controller. It is proven that the rate controller will

significantly reduce the CP buffer requirement. Simulation evaluation demonstrates that

the delay overhead due to the distributed rate controller is acceptable.

7.1 Scalability of existing packet switch

Until recently, a packet switch was built in a single cabinet as shown in Figure 7.1(a).

To accommodate the growth of the Internet traffic, current packet switches handle OC

768 (40-Gbps) link data rates and will need to handle 3072 (160-Gbps) and higher link

data rates in the near future. These future link data rates are likely to be an aggregate of a

large number of OC192 link data rates, due to the limitations of the SRAM clock cycle

[80]. Consequently, a large number of line cards are required per packet switch [80].

This results in the following:

1) Increases in physical space

2) Increases in power consumption

These phenomena consequently required that a new packet switch architecture be

distributed: line cards and switch fabrics are distributed in multiple cabinets as shown in

 120

figure 7.2(b). New routers, including Alcatel 7670 RSP [2], Avici TSR [5], and Juniper

TX8/T640 [49], are all designed in this manner. Thus, the new packet switch architecture

requires the interconnection between the line cards and the switch fabric to be 10s meters

apart [80]. Consequently, the round-trip time (RTT) delay internal to the switch must be

taken into account in designing the next generation of CICQ switches.

Figure 7.1 – Trend in switch design

In 1993, Link level credit-based flow control (FC) for ATM networks was studied

[57]. In [113], it was shown that RTT delay significantly increases contention on output

ports for VOQ IQ switches based on parallel and iterative scheduling algorithms [113].

The performance evaluation of CICQ switches with RTT delay is studied in [1]; and the

backpressure in IQ and OQ switches is studied in [100]. ATLAS I (ATm multi-LAne

backpressure Switch One) is a single-chip gigabit ATM switch with optional credit-based

flow control that returns two credits per packet cycle [52], [62]. Credits are returned per

input using an FIFO discipline, and the credit memory must be large enough to hold all

Crossbar

Linecards

a) Single-cabinet switch (past)

30 meters

Crossbar

b) Multi-cabinet switch (current-future)

Interconnect cable

Crossbar

Linecards

a) Single-cabinet switch (past)

30 meters

Crossbar

b) Multi-cabinet switch (current-future)

Interconnect cable

 121

credits that are allowed to circulate per adapter/switch input pair [52]. Thus, the FIFO

size is proportional to the number of ports N and the memory size M assigned per switch

input/output pair, and has the complexity O(MN). Furthermore, the FIFO access speed

must be fast enough to handle N writes per packet cycle to account for N packet

departures from the same row in parallel.

The BNR/Harvard switch uses a link-level FC protocol based on absolute credits,

which requires)log(MVN ⋅ bits of credit information to be transmitted per packet cycle

where V is the total number of connections shared in a single link [58]. The ATLAS and

DEC ANS switches [91] reduce the total amount of credit information to be transmitted

per packet cycle to)log(MVN ⋅ bits. A reception scheduler is used to reduce the credit

feedback rate to a one-per-cell transfer cycle without a noticeable performance reduction

in [33].

Several studies address the issue of CP buffer size. A reduction of CP buffer for

CICQ switches with multiple-priority traffic is investigated in [63], where CP buffer size

is reduced from RTT
2 TPN to 1PTN RTT

2 −+ where RTTT is RTT delay in cell time. A

two-lane buffered crossbar design was proposed to handle more than two levels of

priority traffic using only two queues per CP [19] and [18]. It was observed that the

CICQ switch with a CP buffer size that can hold 60% of back-to-back cells in transit

between the line card and the CP buffer has an acceptable performance [33]. Simulation

evaluations of the effect of RTT and CP buffer size for variable-length packets were

carried out [53]. As link data rates and internal cable lengths increase, the minimum

number of feedback credits needed to maintain work conservation of the switch

increases. Consequently, the switch fabric will no longer be able to implement CP

 122

buffers sufficient to maintain work conservation of the switch. CICQ switches that scale

independently of the growth of the RTT value are needed.

7.2 Distributed rate controlled CICQ switches

A new distributed rate-controlled CICQ switch is proposed to reduce the CP buffer

size of the CICQ switch. The goal is to implement a switch that is fully scalable and

independent of the RTT value. Figure 7.2 shows an overview of the distributed rate-

controlled CICQ switch architecture. The distributed rate-controlled CICQ switch

consists of inter-connected line card cabinets and a crossbar cabinet. The interconnection

of line card cabinets forms a ring where scheduling information is circulated among line

cards. No communication is needed between the line card and crossbar for scheduling

purposes, thereby reducing the I/O requirement at crossbar chips. The formal CICQ

switch architecture uses credit-based flow control via CP buffer occupancy status. Thus,

it requires a communication link between the crossbar fabric and line cards for the

Figure 7.2 – Distributed rate controller (overview)

Interconnection among line
cards

Interconnect cable

Crossbar

Linecards

Interconnection among line
cards

Interconnect cable

Crossbar

Linecards

 123

transferring of CP buffer occupancy status in addition to an interconnected link for

transferring packet payload. This configuration is undesirable for a switch with a large

number of ports, since crossbar chips have a limited number of pins for I/Os [21].

The distributed rate-controlled CICQ switch uses overlapped rate allocation and VOQ

scheduling phases in a time cycle, called a frame, that consists of multiple cell scheduling

cycles: the rate allocated in framei is used by VOQ scheduling in framei+1 (see Figure

7.3). It allocates a rate to each VOQ so that over allocation of the CP buffer is prevented.

Figure 7.3 – Overlapped rate allocation and VOQ scheduling phases

Figure 7.4 shows the pseudocode for the rate allocation. Each input port first generates

an N-bit vector, VOQ_empty[1..N], with 0 and 1 bits indicating non-empty VOQ and

empty VOQ, respectively (step 1). Another vector to store the current VOQ occupancy

status, VOQ_current[1..N], is also generated (step 1). The allocation of rates to VOQs is

achieved by distributing the VOQ occupancy status of each input port through a ring of

interconnected line cards (step 2). Each input port monitors the arrival of the VOQ

occupancy status and keeps track of how may VOQs that share a common output

famei+1frameiframei-1

Rate allocation for framei+1

VOQ scheduling

Rate allocation for framei

VOQ scheduling

Cell scheduling cycle

famei+1frameiframei-1

Rate allocation for framei+1Rate allocation for framei+1

VOQ scheduling

Rate allocation for frameiRate allocation for framei

VOQ scheduling

Cell scheduling cycle

 124

destination are non-empty; it does this via N counters, cnt[1…N] (one for each set of

VOQs with a common output port destination) (step 3). Once the VOQ occupancy

statuses are all distributed, each input port updates a set of N threshold values,

threshold[1...N], and generates a masking vector, VOQ_msk[1…N] (step 5).

Figure 7.4 – Rate control

Figure 7.5 – VOQ scheduling

At each input port in every cell scheduling cycle,

1. Increment rate_cnt[1…N] for all VOQ_msk[1…N] == 1.

2. Select the next non-empty VOQ with its rate_cnt[1…N] greater than its
threshold[1…N]. If such a VOQ exists, increment the RR pointer by one
beyond modulo N and reset rate_cnt[1…N] associated with the selected
VOQ to 0.

At each input port in every cell scheduling cycle,

1. Increment rate_cnt[1…N] for all VOQ_msk[1…N] == 1.

2. Select the next non-empty VOQ with its rate_cnt[1…N] greater than its
threshold[1…N]. If such a VOQ exists, increment the RR pointer by one
beyond modulo N and reset rate_cnt[1…N] associated with the selected
VOQ to 0.

At each input port in every frame,

1. Generate VOQ_empty[1…N] and VOQ_current[1…N] with
1 bit for all non-empty VOQ. Otherwise 0.

2. Forward the VOQ_empty[1…N] to the next input port,
and receive the VOQ_empty[1…N] from the previous input port.

3. Increment cnt[1…N] for all 1’s (non-empty) in VOQ_empty[1…N].

4. Repeat step 2 and 3 for N-1 time.

5. Update threshold[1…N] = cnt[1…N]
and VOQ_msk[1…N] = VOQ_current[1…N]

At each input port in every frame,

1. Generate VOQ_empty[1…N] and VOQ_current[1…N] with
1 bit for all non-empty VOQ. Otherwise 0.

2. Forward the VOQ_empty[1…N] to the next input port,
and receive the VOQ_empty[1…N] from the previous input port.

3. Increment cnt[1…N] for all 1’s (non-empty) in VOQ_empty[1…N].

4. Repeat step 2 and 3 for N-1 time.

5. Update threshold[1…N] = cnt[1…N]
and VOQ_msk[1…N] = VOQ_current[1…N]

 125

In the VOQ scheduling phase (Figure 7.5), rate counters, rate_cnt[1…N] are

incremented by 1 in every cell scheduling cycle. A cell may be scheduled once the HOL

cell has waited for a period of time equal to or greater than threshold[1...N].

7.3 Properties of distributed rate controlled CICQ switches

In the distributed rate-controlled CICQ switch, the rate may be overallocated to a

VOQ with a small number of cells, resulting in under utilization of the link between the

line card and crossbar. Figure 7.6 illustrates a simple scenario of a non-work conserving

system, where marked slots represent the transfer of cells. For N = 3, frame = 6 cell

scheduling times, and assuming VOQ11 and VOQ21 are saturated, suppose a cell arrives

to an empty VOQ31 during framei-1; this cell will not be “visible” to the VOQ scheduler

in framei-1, or framei. During framei, cells from VOQ11 and VOQ21 depart with a total

rate of 6 cells/frame. During the rate allocation phase in framei, a rate of 2 cells/frame is

Figure 7.6 – Underallocation of rate

VOQ11

VOQ21

VOQ31

framei framei+2framei+1

Non-work conserving period

VOQ11

VOQ21

VOQ31

framei framei+2framei+1

Non-work conserving period

 126

allocated to all three VOQs; however, only one cell can be transferred from VOQ31

during the VOQ scheduling phase in framei+1. The condition could repeat indefinitely,

resulting in an overflow of cells at VOQ11 and VOQ21.

To make the distributed rate-controlled CICQ switch work-conserving, a comparison

of VOQ length with threshold is introduced. In step 1 of the rate allocation phase (Figure

7.4), VOQ_empty[1…N] is set to 1 only if the length of the associated VOQ exceeds a

predefined threshold value. A threshold value greater or equal to frame is sufficient to

make the switch work conserving. To avoid a starvation of VOQ, a timer is set to drain

cells at a VOQ less than the threshold value. A similar approach is taken in [16].

It can be shown that the switch size, N, is the bounding factor of the CP buffer size

for the distributed rate-controlled CICQ switch.

Lemma. Total number of cells existing in a set of CP buffers that have a common output

destination never exceeds N for any RTT value.

Proof. The maximum number of cell arrivals to a set of CP buffers with a common

output destination in any N cell transfer interval is N (by the definition of the distributed

rate-controlled CICQ switch). As many as N cells can be transferred from a set of CP

buffers sharing a common output destination, to an output link, as long as a cell exists in

any one of the CP buffers (by definition of RR arbitration). Thus, the total number of

cells buffered in a set of CP buffers sharing a common output destination is at most N.

Theorem. A CP buffer size equivalent to N cells is sufficient for implementing an

internally loss-less distributed rate-controlled CICQ switch for any RTT value.

Proof. Lemma directly implies that any CP buffer will never exceed N cells at any given

time.

 127

The maximum queue length of N in a CP buffer occurs in the following scenario:

Suppose all VOQs with common outputs, say VOQi0 for Nii ≤≤∀ 1 , have a queued

cell(s). In this scenario, it is possible for all HOL cells at the VOQs to be dequeued at the

same cell scheduling cycle. It is also possible for this event to occur at the last cell

scheduling cycle of framek. In framek+1, a rate allocation phase in framek may be such

that the set of VOQs with the common output port 0 may allocate the entire rate to a

single VOQ, say VOQ00. If no rate is allocated for all VOQ0j Nii ≤≤∀ 1 , a CP00 will

receive N cells from VOQ00, while the CP arbiter for output port 0 transfers the N

previously queued cells, one cell from each CPi0 Nii ≤≤∀ 1 .

7.4 Evaluation of the distributed rate controlled CICQ switches

This section evaluates the performance of the distributed rate controlled CICQ

switch. Simulation models were developed for the CICQ switch and the distributed rate

controlled CICQ switch with a CP buffer size = N x 64-byte cells. For all experiments,

the response variable is switching delay. Control variables are N, RTT, frame, and

offered load.

7.4.1 Traffic models

Both Bernoulli and IBP traffic are used to evaluate the performance of the distributed

rate-controlled CICQ switch.

1) Bernoulli traffic: See Chapter 3.2.1 for the description.

2) IBP traffic: See Chapter 3.2.1 for the description.

 128

7.4.2 Simulation experiments

Four simulation experiments are designed to evaluate the performance of the CICQ

switch with the distributed rate controller. Output port destination configurations based

on high-degree balanced, low-degree balanced, and low-degree unbalanced probability

density functions [32] are examined using Bernoulli and IBP. These experiments

evaluate how packet switches perform with different output port destination

configurations. The same values are used for RTT delay and frame that is varied from 16

to 256 cell times for all experiments unless noted otherwise. For all experiments,

simulation is terminated after 10 million cell times.

1) High-degree balanced experiments: Both Bernoulli and IBP arrival of cells are

used, and each of the 16 input ports chooses an output port with a uniform

distribution over the 16 output ports. All input ports and output ports have an

identical offered load ranging from 80-99% and 60%-90%, for Bernoulli arrival

of cells and IBP arrival of cells, respectively.

2) Low-degree balanced experiments: Both Bernoulli and IBP arrival of cells are

used, and each of the 16 input ports chooses an output port with a uniform

distribution over k output ports (where 16<k). All input ports and output ports

have an identical offered load; k random permutations are used to assign input and

output pairs; k is set to 4, and the offered load ranged from 80-99% and 60% to

90%, for Bernoulli arrival of cells and IBP arrival of cells, respectively.

3) Low-degree unbalanced experiments: Both Bernoulli and IBP arrival of cells are

used, and half of the input ports chooses an output port with a uniform

distribution over k ports; the other half chooses an output port with a uniform

 129

distribution over 2k output ports. Each flow rate is identical. If half the input

ports are loaded at λ , the other half of the input ports are loaded at .2λ Each

output port receives either k or 2k flows. 2k random permutations are used to

assign input and output pairs; k is set to 4 and the offered load ranged from 80-

99% and 60% to 90%, for Bernoulli arrival of cells and IBP arrival of cells,

respectively.

7.4.3 Experiment results

Figure 7.7 shows the results for the high-degree balanced experiment with Bernoulli

arrival of a cell. The distributed rate controlled CICQ switch has a higher delay than the

CICQ switch for all RTT and offered loads being measured. The credit-based CICQ

Figure 7.7 – Results for high-degree balanced (Bernoulli) experiment

0

500

1000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered load (U)

M
ea

n d
el

ay
 (c

el
l t

im
e)

RTT = 128

RTT = 256

RTT = 64

 = CICQ Rate

 = CICQ orginal

 130

switch performs well in this experiment because traffic is not bursty and is uniformly

distributed to each output port. These two conditions help prevent saturations of the

limited CP buffer. RTT is the main element of the switching delay for both switch

architectures.

This is not the case in the results for the high-degree balanced experiment with IBP

arrival of cells (Figure 7.8). Although traffic is uniformly distributed to all 16 ports, the

IBP arrival of cells creates bursty arrival. With an RTT of 256, the CICQ switch has a

higher delay than the distributed rate-controlled CICQ switch at a high offered load.

RTT no longer dominates the overall switching delay for both switch architectures

measured.

Figure 7.8 – Results for high-degree balanced (IBP) experiment

0

500

1000

1500

2000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered load (U)

M
ea

n
de

la
y

(c
el

l t
im

e)

RTT = 128

RTT = 256

RTT = 64

 = CICQ Rate
 = CICQ orginal

 131

Figure 7.9 shows the results for the low-degree balanced experiment with a Bernoulli

arrival of cells. The mean delay of the distributed rate-controlled CICQ switch is higher

than that of the CICQ switch with RTT = 64; however, the CICQ switch with RTT = 128

and 256 are unstable for all offered loads measured. This is expected. Twenty-five

percent of the aggregated traffic to any output port comes from a single input port, since

each input port selects 4 output ports in this experimental setting. For RTT = 128, at least

32 (128 cells / 4 ports) cells per CP are needed to achieve stability for a theoretical 100%

offered load with four output port destinations used in the experiment. The CICQ switch

used in the experiment has limited buffering inside the crossbar sufficient to hold 16 cells

per CP. This buffer size is not sufficient to achieve stability, even with only a 50% offered

load in this configuration. The same conclusion is reached concerning the results for the

low-degree balanced experiment with IBP arrival of cell (Figure 10).

Figure 7.9 – Results for low-degree balanced (Bernoulli) experiment

0

100

200

300

400

500

600

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered load (U)

M
ea

n
de

la
y

(c
el

l t
im

e)

RTT = 128

RTT = 256

RTT = 64

 = CICQ Rate
 = CICQ orginal

 132

Figure 7.10 – Results for low-degree balanced (IBP) experiment

Figures 7.11 and 7.12 show the results for the low-degree unbalanced experiment

with Bernoulli and IBP arrival of cells, respectively. These results indicate that an

unbalanced output port configuration further increases the mean switching delay for both

switch architectures. In particular, the mean delay of the distributed rate-controlled

CICQ switch for the IBP arrival of cells is significantly larger than that measured in the

low-degree balanced experiment.

In summary, the distributed rate control switch exhibits greater delay than the credit-

based (original) CICQ switch. However, the distributed rate control switch is stable in

cases (such as the low-degree balanced and unbalanced traffic, which is typical of real

traffic) where the credit-based switch is unstable. This ability to maintain stability is

significant and demonstrates that internal rate control of input ports is a good solution for

scaling the CICQ switch to multi-cabinet implementations.

0

500

1000

1500

2000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered load (U)

M
ea

n
de

la
y

(c
el

l t
im

e)

RTT = 128

RTT = 256

RTT = 64

 = CICQ Rate
 = CICQ orginal

 133

Figure 7.11 – Results for low-degree unbalanced (Bernoulli) experiment

Figure 7.12 – Results for low-degree unbalanced (IBP) experiment

100

10000

0.6 0.65 0.7 0.75 0.8 0.85 0.9

Offered load (U)

M
ea

n
de

la
y

(c
el

l t
im

e)

RTT = 128
RTT = 256

RTT = 64

 = CICQ Rate

 = CICQ orginal

0

200

400

600

800

1000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered load (U)

M
ea

n
de

la
y

(c
el

l t
im

e)

RTT = 128

RTT = 256

RTT = 64

 = CICQ Rate

 = CICQ

 134

Chapter 8: Summary and Directions for Future Research

The combined input and cross point queued (CICQ) switch architecture has buffering

at each input port and crossbar cross point. This architecture is now feasible due to an

increase in VLSI density. In this dissertation, the evolution of IQ switches to combined

input and crossbar queued (CICQ) switches has been studied. This dissertation has

shown that CICQ switches can have simpler and faster schedulers, result in a lower delay,

and scale better than IQ switches.

Key switch architectures, including output queued (OQ) and input queued (IQ), were

modeled using discrete event simulation techniques. The CICQ switch was modeled and

a performance evaluation comparing the CICQ switch to existing switch architectures

was completed. It was shown that the CICQ switch has a lower delay at high offered

loads than the IQ switch.

IQ switches, including the CICQ switch, are unstable for an unbalanced (schedulable)

traffic load to two ports of a switch. This unstable region occurs when asymmetric

arrivals occur at any two input ports in a switch. The burst stabilization protocol was

proposed as a solution to this instability region. The new protocol uses a queue length

threshold in the switch VOQ buffers. It aggressively serves resources with a queue

length above a threshold value and prevents queues from growing without bound. The

burst stabilization protocol is shown to provide stability for both IQ and CICQ switches.

 135

The significance of the burst stabilization protocol is that a costly internal speed-up of the

switch is not needed, while all existing methods to achieve stability require speed-up.

Variable length packets dominate network traffic (e.g., IP packets in Ethernet

frames). Switching variable length packets in IQ switches rationally requires an internal

switch speed-up, and the segmentation of packets into cells. A method of cell-merging,

where header bytes of the arriving packet are merged with trailer bytes from the previous

packet, is proposed and evaluated. This cell merging method reduces the required speed-

up; no changes to switch-matrix scheduling algorithms are needed. Simulation with a

packet trace shows a reduction in the needed speed-up for an iSLIP scheduled input

buffered switch.

Native switching of variable length packets in CICQ switches results in unfairness

between ports. A block transfer mechanism is proposed to resolve the unfairness caused

by the variability of packet lengths in CICQ switches. The block transfer mechanism

transfers up to a predefined number of bytes of packet data from a selected VOQ. The

CICQ switch with the block transfer mechanism can handle switching of variable-length

packets better than existing IQ switches, which use speed-up for various types of traffic,

including traced packets-based traffic.

The feasibility of the CICQ switch architecture for 24 ports and a 10-Gbps link data

rate is demonstrated with an FPGA-based design. Scalability of the CICQ switch is

dependent on the speed of round robin (RR) polling and the delay of internal switch

feedback. Two new RR arbiters were proposed, modeled, and evaluated. A priority

encoder based RR poller that uses feedback masking was proposed. This design has a

lower delay than any known design for an FPGA implementation. Second, an overlapped

 136

RR (ORR) arbiter design that fully overlaps RR polling and scheduling was proposed.

The ORR arbiter is fully scalable, independent of the size of the inputs, and has been

proven to be work-conserving.

A distributed rated control of input ports was investigated to enable the CICQ switch

to scale to multi-cabinet implementation while bounding the size of the CP buffers. It

was shown that switch stability could be achieved independent of RTT (between line

cards and crossbar) for all types of traffic. The original credit-based CICQ switch, was

unable for realistic low-degree balanced and unbalanced traffic.

8.1 Specific contributions of this research

This research has addressed new methods for improving the performance, stability,

and scalability of the CICQ switch. The five key contributions of the research presented

in this dissertation are as follows:

1) The performance of CICQ switches was evaluated.

2) A new method of achieving switch stability without an internal speed-up for

unbalanced (schedulable) traffic was proposed and investigated.

3) Reduced complexity and reduced speed-up in the scheduling of variable length

packets was achieved for VOQ IQ switches, and the unfairness caused by the

variability of packet lengths in CICQ switches was resolved using a block transfer

mechanism.

4) The feasibility of the implementation of a CICQ switch was investigated: the

hardware design of a 10-Gps 24 port CICQ switch was performed using FPGA

technology, and faster and scalable RR arbiters were designed.

 137

5) A future scalable distributed CICQ switch scheduler was proposed and

investigated.

In summary, the evaluations performed in this research show that CICQ switches have a

lower delay, are simpler to implement, and scale to an ever-increasing link data rate

better than existing VOQ IQ switches. Because it is able to efficiently support variable-

length packets, the CICQ switch architecture could be the next generation of a single-

stage crossbar switch architecture that will enable the future growth of the Internet.

8.2 Directions for future research

This dissertation has addressed the stability, variable-length packet handling

capabilities, and scalability of the CICQ switch. Further scalability can be achieved if the

CP buffer size is further reduced. One possibility for achieving this requirement is by

combining a small amount of the dedicated CP buffer, and a reasonable amount of the

expensive shared memory internal to the switch fabric. Shared memory, if properly

configured, can be flexibly allocated to prevent the temporal overload of any CP buffer.

Implementation of shared buffers per column or per row of a crossbar is worth exploring

in the future.

Only recently, QoS work was addressed in the context of CICQ switch architectures.

In [83], the cell arrival time at the input port is forwarded to the CP buffer along with the

cell, and is used at the CP arbiter. The amount of bandwidth needed to allocate to the

flow in the switch to guarantee delay was determined in [78]. WFQ for a CICQ switch

was implemented and its fairness properties were studied in [17]. It was shown that a

CICQ switch with speed-up of two can emulate an OQ switch [64]; and 3x speed-up is

 138

sufficient to guarantee a delay in the CICQ switch [21]. Further investigation is needed

into QoS in the CICQ switch architecture.

 139

References

[1] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. Hiadis, “A Four-Terabit

Single-Stage packet Switch with Large Round-Trip Time Support,” IBM
Research Report RZ 3430 (#93609), July 2002.

[2] Alcatel, “Alcatel 7670 Routing Switch Platform.” URL:

http://www.alcatel.com/products/productsummary.jhtml?repositoryID=/x/
 opgproduct/Alcatel_7670_RSP.jhtml.

[3] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-Speed Switch

Scheduling for Local-Area Networks,” ACM Transactions on Computer
Systems 11, no. 4 (November 1993): 319-352.

[4] AVNET Inc., “Designing High-Performance Systems with Virtex-II Pro FPGA

Devices,” Presentation given on September 10, 2002 for the Florida Suncoast
IEEE chapter.

[5] Avici Systems, “The Avici TSR: The World First Scalable Router.” URL:

http://www.avici.com/documentation /datasheets/Avici_TSR.pdf.

[6] R. Bakka and M. Dieudonne, “Switching Circuit for Digital Packet Switching

Network,” United States Patent 4,314,367, February 1982.

[7] Bell Labs, “Network Equipment Building Systems Statndards,” URL:

http://www.nebs-faq.com.

[8] G. Bloch, S. Greiner, H. de Meer, and S. Trivedi, Queueing Networks and

Markov Chains: Modeling and Performance Evaluation with Computer Science
Applications. New York: John Wiley & Sons, Inc., 1998.

 140

[9] E. Brockmeyer, H. Halstrom and A. Jensen, “The Life and Works of A. K.
Erlang,” Copenhagen: The Copenhagen Telephone Company, 1948.

[10] W. Bux, “Local-Area Subnetworks: A Performance Comparison,” IEEE

Transactions on Communications 29, no. 10 (October 1981): 1465-1473.

[11] C. Chang, W. Chen, and H. Juang, “On Service Guarantees for Input Buffered

Crossbar Switches: A Capacity Decomposition Approach by Birkhoff and von
Neumann,” Proceedings of IEEE IWQoS, 1999, pp. 79-86.

[12] J. Chao and J. Park, “Centralized Contention Resolution Schemes for a Large-

Capacity Optical ATM Switch,” Proceedings of IEEE ATM Workshop, May
1999, pp. 79-86.

[13] J. Chao, “Saturn: A Terabit Packet Switch Using Dual Round-Robin,” IEEE

Communication Magazine 38, no. 12, (December 2000): 78-84.

[14] J. Chao, C. Lam, and X. Guo, “A Fast Arbitration Scheme for Terabit Packet

Switches,” Proceedings of IEEE GLOBECOM, December 1999, pp. 1236-1243.

[15] K. Christensen, Home Page for Kenneth J. Christensen, 2000. URL:

http://www.csee.usf.edu/~christen.

[16] K. Christensen, K. Yoshigoe, A. Roginsky, and N. Gunther, “Performance of

Packet-to-Cell Segmentation Schemes in Input Buffered Packet Switches,”
Proceedings of the IEEE ICC, June 2004, pp.1097-1102.

[17] N. Chrysos and M. Katevenis, “Weighted Fairness in Buffered Crossbar

Scheduling,” Proceedings of IEEE HPSR, June 2003, pp. 17-22.

[18] N. Chrysos: “Design Issues of Variable-Packet-Size, Multiple-Priority Buffered

Crossbars”, Technical Report FORTH-ICS/TR-325, October 2003.

[19] N. Chrysos and M. Katevenis, “Multiple Priorities in a Two-Lane Buffered

Crossbar,” Technical Report FORTH-ICS/TR-328, November 2003.

 141

[20] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching Output
Queueing with a Combined Input/Output-Queued Switch,” IEEE Journal of
Selected Areas in Communications 17, no. 6 (June 1999): 1030-1039.

[21] S. Chuang, S. Iyer, and N. McKeown, “Practical Algorithms for Performance

Guarantees in Buffered Crossbars,” Stanford HPNG Technical Report TR03-
HPNG-061501, 2003.

[22] Cisco Systems, “Data sheet: Cisco 12416 Internet Router.” URL:

http://www.cisco.com/warp/public/ cc/pd/rt/12000/12416/prodlit/itro_ds.htm.

[23] CNET, 2002. URL: http://shopper.cnet.com/Cisco_12416___router/4014-

3334_9-30108507.html.

[24] S. Crocker, “Host Software,” RFC 001, April 1969. URL:

http://www.funet.fi/index/FUNET/history/internet/en/rfc1.txt.

[25] W. Cui, H. Ko, and S. An, “A Threshold Based Scheduling Algorithm for Input

Queue Switch, “ Proceedings of ICIN, February 2001, pp. 207-212.

[26] J. Dai and B. Prabhakar, “The Throughput of Data Switches with and without

Speedup,” Proceedings of IEEE INFOCOM, March 2000, pp. 556-564.

[27] J. Delgado-Frias and J. Nyathi, “A VLSI High-Performance Encoder with

Priority Lookahead,” Proceedings of the 8th Great Lakes Symposium on VLSI,
February 1998, pp.59-64.

[28] A. Demers, S. Keshav, and S. Shenkar, “Analysis and Simulation of a Fair

Queueing Algorithm,” Proceedings of SIGCOMM, September 1989, pp. 1-12.

[29] Y. Doi and N. Yamanaka, “A High-Speed ATM Switch with input and Cross-

Point Buffers,” IEICE Transactions on Communications E76-B, no. 3 (March
1993): 310-314.

 142

[30] G. Gilder, Telecosm: The World After Bandwidth Abundance, Touchstone,
2002.

[31] P. Goli and V. Kumar, “Performance of Crosspoint Buffered ATM Switch

Fabric,” Proceedings of IEEE INFOCOM, May 1992, pp. 426-435.

[32] M. Goudreau, S. Kolliopoulos, and S. Rao, “Scheduling Algorithms for Input-

Queued Switches: Randomized Techniques and Experimental Evaluation,”
Proceedings of IEEE INFOCOM, March 2000, pp. 1634-1643.

[33] F. Gramsamer, M. Gusat, and R. Luijten, “Flow Control Scheduling,”

Microprocessors and Microsystems 27 (2003): 233-241.

[34] V. Guffens, G. Bastin, and H. Mounier, “Using Token Leaky Bucket with

Feedback Control for Guaranteed Boundedness of Buffer Queue,” preprint
submitted to 2003 European Control Conference, October 2002.

[35] N. Gunther and J. Shaw, “Path Integral Evaluation of ALOHA Network

Transients,” Information Processing Letters 33, no. 6 (1990): 289-295.

[36] N. Gunther, K. Christensen, and K. Yoshigoe, “Characterization of the Burst

Stabilization Protocol for the RR/RR CICQ Switch,” Proceedings of the IEEE
Conference on Local Computer Networks, October 2003, pp. 260-269.

[37] A. Gupta and N. Georganas, “Analysis of Packet Switch with Input and Output

Buffers and Speed Constraints,” Proceedings of IEEE INFOCOM, April 1991,
pp.694-700.

[38] P. Gupta and N. McKeown, “Design and Implementation of a Fast Crossbar

Scheduler,” IEEE Micro 19, no. 1 (January/February 1999): 20-28.

[39] A. Gupta, L. Barbosa, and N. Georganas, “16x16 Limited Intermediate Buffer

Switch Module for ATM Networks,” Proceedings of IEEE GLOBECOM,
December 1991, pp. 939-943.

 143

[40] A. Gupta, L. Barbosa, and N. Georganas, “Limited Intermediate Buffer Switch
Modules and Their Interconnection Networks for B-ISDN,” Proceedings of
IEEE ICC, June 1992, pp. 1646-1650.

[41] M. Han, D. Kwak, and B. Kim, “Desynchronized Input Buffered Switch with

Buffered Crossbar,” IEICE Transactions on Communications E86-B, no. 7 (July
2003): 2216-2219.

[42] J. Hopcroft and R. Karp, “An N5/2 Algorithm for Maximum Matching in

Bipartite Graphs,” Society for Industrial and Applied Mathematics Journal for
Computation 2, (1973): 225-231.

[43] S. Huajin, G. Deyuan, Z. Shengbing, and W. Danghui, “Design Fast Round

Robin Scheduler in FPGA,” Proceedings of IEEE Communications, Circuits
and Systems and West Sino Expositions,” 2002, pp. 1257-1261.

[44] IEEE “IEEE Standards 802.3,” 1983.

[45] Intel Corp., “Intel Accelerates 10-Gigabit Communications in Enterprise Data

Centers with New XPAK Optical Transceiver,” Press Release. URL:
http://www.intel.com/pressroom/archive/releases/20020827net.htm.

[46] T. Javadi, R. Magill, and T. Hrabik, “A High-Throughput Scheduling Algorithm

for a Buffered Crossbar Switch Fabric,” Proceedings of IEEE ICC, June 2001,
pp. 1581-1591.

[47] G. Jeong, J. Lee, and B. Lee, “An Advanced Input-Queued ATM Switch with a

Pipelined Approach to Arbitration,” Proceedings of IEEE ICC, April 2002, pp.
2416-2420.

[48] Y. Jiang and M. Hamdi, “A 2-stage Matching Scheduler for a VOQ Packet

Switch Architecture,” Proceedings of IEEE ICC, April-May 2002, pp. 26-33.

 144

[49] Juniper Networks, “The Essential Core: Juniper Networks T640 Internet
Routing Node with Matrix Technology.” URL:
http://www.juniper.net/solutions/literature/solutionbriefs/351006.pdf.

[50] M. Karol and M. Hluchyj, “Queueing in High-performance Packet-Switching,”

IEEE Journal on Selected Areas in Communications 6, (December 1988): 1587-
1597.

[51] M. Karol, M. Hluchyj, and S. Morgan, “Input versus Output Queueing on a

Space Division Packet Switch,” IEEE Transactions on Communications 35, no.
12 (December 1987): 1347-1356.

[52] K. Katevenis, D. Serpanos, and P. Vatsolaki, “ATLAS I: A General-purpose,

Single-chip ATM Switch with Credit-Based Flow Control,” Proceedings of
IEEE Hot Interconnects Symposium, August 1996, pp. 63-73.

[53] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos, “Variable

Packet Size Buffered Crossbar (CICQ) switches,” Proceedings of IEEE ICC,
June 2004, pp.1090-1096.

[54] Y. Kato, T. Shimoe, K. Hajikano, and K. Murakami, “Experimental Broadband

ATM Switching System,” Proceedings of IEEE GLOBECOM, December 1988,
pp.1288-1292.

[55] H. Kim, J. Son, and K. Kim, “A Packet-Based Scheduling Algorithm for High-

Speed Switches,” International Conference on Electrical and Electronic
Technology, August 2001, pp. 117-121.

[56] P. Krishna, N. Patel, A. Charny and R. Simcoe, “On the Speedup Required for

Work-Conserving Crossbar Switches,” Proceedings of IEEE/IFIP IWQoS, May
1998, pp. 225-234.

[57] H. Kung and A. Chapmann, “The FCVC (Flow-Controlled Virtual Channels)

Proposal for ATM Networks: A Summary,” Proceedings of International
Conference on Network Protocols, October 1993, pp. 116-127.

 145

[58] H. Kung, T. Blackwell, and A. Chapmann, “Credit-Based Flow Control for
ATM Networks: Credit Update Protocol, Adaptive Allocation, and Statistical
Multiplexing, Proceedings of ACM SIGCOMM , 1994, pp. 101-104.

[59] G. Leonidas and W. Szpankowski, “Stability of Token Passing Rings,”

Queueing Systems: Theory and Applications, Vol. 11, pp. 7-33, February 1992.

[60] S. Li and M. Lee, “A Study of Traffic Imbalances in a Fast Packet Switch,”

Proceeding of IEEE INFOCOM, April 1989, pp. 538-547.

[61] R. LoMaire, and D. Serpanos, “Two-Dimensional Round-Robin Schedulers for

Packet Switches with Multiple Input Queues,” IEEE/ACM Transactions on
Networking 2, no. 5 (October 1994): 471-482.

[62] G. Lornaros, D. Pnevmatiakos, P.Vatsolaki, G. Kalokerinos, C. Xanthaki, D.

Mavroidis, D. Serpanos, and M. Katevenis, “Implementation of ATLAS I: A
Single-Chip ATM Switch with Backpressure,” Proceedings of IEEE Hot
Interconnects Symposium, August 1998, pp. 85-96.

[63] R. Luijten, C. Minkenberg, and M. Gusat, “Reducing Memory Size in Buffered

Crossbars with Large Internal Flow Control Latency,” Proceedings of IEEE
GLOBECOM 7 (December 2003): pp. 3683-3687.

[64] R. Magill C. Rohrs, R. Stevenson, “Output Queued Switch Emulation by

Fabrics with Limited Memory,” IEEE Journal of Selected Areas in
Communications 21, no. 4, (May 2003): 606-615.

[65] M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet

Scheduling in Input-Queued Cell-Based Switches,” Proceedings of IEEE
INFOCOM, 2001, pp. 1085-1094.

[66] M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet-Mode

Scheduling in Input-Queued Cell-Based Switches,” IEEE/ACM Transactions on
Networking 10, no. 5, (October 2002): 666-678.

 146

[67] M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet
Scheduling in Input-Queued Cell-Based Switches,” Proceedings of the 20th
Annual Joint Conference of the IEEE Computer and Communications Societies,
2001, pp. 1085-1094.

[68] M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Scheduling in

Input-Queued Cell-Based Packet Switches,” Proceedings of IEEE
GLOBECOM, December 1999, pp. 1227-1235.

[69] N. McKeown and T. Anderson, “A Quantitative Comparison of Iterative

Scheduling Algorithms for Input-Queued Switches,” Computer Networks and
ISDN Systems 30, no. 24, (December 1998): 2309-2326.

[70] N. McKeown, “Fast Switched Backplane for a Gigabit Switched Router,” Cisco

Systems white paper, URL:
http://www.cisco.com/warp/public/cc/cisco/mkt/core/12000/tech/fasts_ws.pdf.

[71] N. McKeown, “Scheduling algorithms for Input-QueuedSwitches,” Ph.D.

Thesis, University of California at Berkley, 1995.

[72] N. McKeown, “The iSLIP Scheduling Algorithm for Input-Queued Switches,”

IEEE/ACM Transactions on Networking 7, no. 2 (April 1999): 188-201.

[73] N. McKeown, B. Prabhakar, and M. Zhu, “Matching Output Queueing with

Combined Input and Output Queueing,” Proceedings of the 35th Allerton
Conference on Communication, Control and Computing, September 1997,
pp.595-603.

[74] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz, “The

Tiny Tera: A packet Switch Core,” IEEE Micro Magazine (Jan.-Feb. 1997): 26-
33.

[75] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% Throughput

in an Input-Queued Switch,” Proceedings of IEEE INFOCOM, March 1996, pp.
296-302.

 147

[76] A. Mekkittikul and N. McKeown, “A Starvation-free Algorithm for Achieving
100% Throughput in an Input-Queued Switch,” Proceedings of IEEE ICCCN,
October 1996, pp. 226-231.

[77] A. Mekkittikul and N. McKeown, “Achieving 100% Throughput in an Input-

Queued Switch,” IEEE Transactions on Communications 47, no. 8 (August
1999): 1260-1267.

[78] L. Mhamdi and M. Hamdi, “MCBF: A High-Performance Scheduling

Algorithm for Buffered Crossbar Switches,” IEEE Communications Letters, pp.
451-453, Vol. 7, (9), September 2003.

[79] L. Mhamdi and M. Hamdi, “Practical Scheduling Algorithms for High-

Performance Packet Switches, Proceedings of IEEE ICC, May 2003, pp. 1659-
1663.

[80] C. Minkenberg, R. Luijte, F. Abel, W. Denzel, and M. Gusat, “Current Issues in

Packet Switch Design,” Proceedings of ACM SIGCOMM, January 2003, p.119-
124.

[81] S. Moon and D. Sung, “High-Performance Variable-Length Packet Scheduling

Algorithm for IP Traffic,” Proceedings of IEEE GLOBECOM, November 2001,
pp. 2666-2670.

[82] A. Motoki, S. Kamiya, R. Ikematsu, and H. Ozaki, “Group-Pipeline Scheduler

for Input-Buffer Switch,” Proceedings of IEEE International Conference on
ATM and High Speed Intelligent Internet Symposium, April 2001, pp. 158-162.

[83] S. Motoyama and M. Arantes, “IP Switch with Distributed Scheduling,” IEE

Electronics Letters, pp. 392-393, April 2002.

[84] M. Nabeshima, “Performance Evaluation of a Combined Input- and Crosspoint-

Queued Switch,” IEICE Transactions on Communications E83-B, no. 3 (March
2000): 737-741.

 148

[85] S. Nojima, E. Tsutio, H. Fukuda, and M. Hashimoto, “Integrated Services
Packet Network Using Bus Matrix Switch,” IEEE Journal of Selected Areas in
Communications 5, no. 8, (October 1987): 1284-1292.

[86] G. Nong, M. Hamdi, and K. Letaief, “Efficient Scheduling of Variable-Length

IP Packets on High-Speed Switches,” Proceedings of IEEE GLOBECOM,
December 1999, pp. 1407-1411.

[87] NuHorizons Electronic Corp., “XC2VP Virtex-II Pro FPGA.” URL:

http://www.nuhorizons.com/products/NewProducts/POQ13/xilinx.html.

[88] Y. Oie, M. Murata, K. Kubota and H. Miyahara, “Effect of Speedup in

Nonblocking Packet Switch,” Proceedings of IEEE ICC, June 1989, pp. 410-
414.

[89] E. Oki, R. Rojas-Cessa, and J. Chao, “PCRRD: A Pipeline-Based Concurrent

Round-Robin Dispatching Scheme for Clos Network Switches,” Proceedings of
IEEE ICC, April 2002, pp. 2121-2125.

[90] E. Oki, R. Rojas-Cessa, and J. Chao, “A Pipeline-Based Approach for Maximal-

Sized Matching Scheduling in Input-Buffered Switches,” IEEE
Communications Letters, pp. 263-265, Vol. 5, (6), June 2001.

[91] C. Ozveren, R. Simcoe, and G. Varghese, “Reliable Efficient Hop-by-Hop Flow

Control,” IEEE Journal of Selected Areas in Communications 13, no. 4 (1995):
642-650.

[92] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to

Flow Control in Integrated Service Networks: The Single-node Case,”
IEEE/ACM Transaction on Networking 1, (1993): 344-357.

[93] I. Radusinovic and M. Pejanovic, “Impact of Scheduling Algorithms on

Performances of Buffered Crossbar Switch Fabrics,” Proceedings of IEEE ICC,
April 2002, pp. 2416-2420.

 149

[94] E. Rathgeb, T. Theimer, and M. Huber, “Buffering Concepts for ATM
switching Networks,” Proceedings of IEEE GLOBECOM, December 1988,
pp.1277-1281.

[95] E. Re and R. Fantacci, “Performance Evaluation of Input and Output Queueing

Techniques in ATM Switching Systems,” IEEE Transactions on
Communications 40, no. 10 (Oct. 1993): 1565-1575.

[96] L. Robert, “Beyond Moore’s Law: Internet Growth Trends,” IEEE Computer

Magazine 33, issue 1 (January 2000): 117-119.

[97] R. Rojas-Cessa, E. Oki, Z. Jing, and H. Chao, “CIXB-1: Combined Input-One-

Cell Crosspoint Buffered Switch,” Proceedings of IEEE Workshop on High
Performance Switching and Routing, May 2001, pp. 324-329.

[98] R. Rojas-Cessa, E. Oki, and H. J. Chao, “CIXOB-k: Combined Input-

Crosspoint-Output Buffered Packet Switch,” Proceedings of IEEE
GLOBECOM, November 2001, pp. 2654-2660.

[99] R. Rojas-Cessa, “High-Performance Round-Robin Arbitration Schemes for

Input-Crosspoint Buffered Switches, Proceedings of IEEE Workshop on High
Performance Switching and Routing, April 2004, pp. 167-171.

[100] R. Schoenen and A. Dahlhoff, “Closed Loop Credit-Based Flow Control with

Internal Backpressure in Input and Output Queued Switches,” Proceedings of
IEEE Workshop on High Performance Switching and Routing, 2000, pp. 195-
203.

[101] H. Schwetman, “CSIM18 - The Simulation Engine,” Proceedings of the 1996

Winter Simulation Conference, December 1996, pp. 517-521. URL:
http://www.mesquite.com.

[102] D. Serpanos and P. Antoniadis, “FIRM: A Class of Distributed Scheduling

Algorithms for High-speed ATM Switches with Multiple Input Queues,”
Proceedings of IEEE INFOCOM, March 2000, pp. 548-555.

 150

[103] E. Shin, V. Mooney III, and G. Riley, “Round-Robin Arbiter Design and
Generation,” Proceedings of the 15th International Symposium on System
Synthesis, October 2002, pp. 243-248.

[104] V. Singhal and R. Le, “High-Speed Buffered Crossbar Switch Design Using

Virtex-EM Devices,” March 14, 2000,
http://www.xilinx.com/xapp/xapp240.pdf.

[105] A. Smiljanic, R. Fan, and G. Ramamurthy, “RRGS-Round-Robin Greedy

Scheduling for Electronic/Optical Terabit Switches,” Proceedings of IEEE
GLOBECOM, December 1999, pp. 1244-1250.

[106] D. Stephens and H. Zhang, “Implementing Distributed Packet Fair Queueing in

a Scalable Switch Architecture,” Proceedings of IEEE INFOCOM, April 1998,
pp. 282-290.

[107] D. Stiliadis and A. Varma, “Providing Bandwidth Guarantees in an Input-

Buffered Crossbar Switch,” Proceedings of IEEE INFOCOM, April 1995, pp.
960-968.

[108] I. Stoica and H. Zhang, “Exact Emulation of an Output Queueing Switch by a

Combined Input Output Queueing Switch,” Proceedings of IEEE/IFIP
International Workshop on Quality of Services, May 1998, pp.218-224.

[109] H. Takagi, “Queueing Analysis of Polling Systems,” ACM Computing Surveys

20, no. 1 (1988): 5-28.

[110] Y. Tamir and G. Frazier, “High Performance Multi-Queue Buffers for VLSI

Communications Switches,” Proceedings of Computer Architecture, June 1988,
pp. 343-354.

[111] Y. Tamir and H. Chi, “Symmetric Crossbar Arbiters for VLSI Communication

Switches,” IEEE Transactions on Parallel and Distributed System 4, no. 1
(January 1993): 13-27.

 151

[112] F. Tobagi, “Fast Packet Switch Architectures for Broadband Integrated Services
Digital Networks,” Proceedings of IEEE 78, no.1 (January 1990): 133-167.

[113] F. Tobajas, R. Esper-Chain, V. Armas, J. Lopez, and R. Sarmiento,” Round-

Trip Delay Effect on Iterative Request-Grant-Accept Scheduling Algorithms for
Virtual Output Queued Switches,” Proceedings of IEEE GLOBECOM 2
(November 2002): 1889-1893.

[114] R. van der Mei, “Waiting-Time Distributions in Polling Systems with

Simultaneous Batch Arrivals,” Annals of Operations Research 47, no. 113
(2002): 157-173.

[115] J. Walrand and P. Varaiya, High Performance Communication Networks,

Morgan Kaufmann, 1996.

[116] Xilinx Inc., “Xilinx Vertex II Pro Platform FPGA Data Sheet DS083-1 (v2.1)”,

September 3, 2002. URL:
http://www.Xilinx.com/publications/products/v2pro/ds_pdf/ds083.htm.

[117] Xilinx Inc., “10-Gigabit Ethernet MAC with XGMII or XAUI v2.1 DS201

(v2.1),” June 24, 2002. URL:
http://www.xilinx..com/ipcenter/catalog/logicore/docs/ten_gig_eth_mac.pdf.

[118] Xilinx Inc., “Xilinx WebPACK 4.2.” URL:

http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=ISE+WebPack.

[119] K. Yoshigoe and K. Christensen, “A Parallel-Polled Virtual Output Queued

Switch with a Buffered Crossbar,” 2001 IEEE Workshop on High Performance
Switching and Routing, May 2001, pp. 271-275.

[120] K. Yoshigoe and K. Christensen, “An Evolution to Crossbar Switches with

Virtual Output Queueing and Buffered Cross Points,” IEEE Network 17, no. 5
(September-October 2003): 48-56.

 152

[121] K. Yoshigoe and K. Christensen, “A Parallel-Polled Virtual Output Queued
Switch with a Buffered Crossbar,” Proceedings of IEEE HPSR, May 2001, pp.
271-275.

[122] K. Yoshigoe, K. Christensen, and A. Jacob, “The RR/RR CICQ Switch:

Hardware Design for 10-Gbps Link data rate,” Proceedings of IEEE
International Performance, Computing, and Communications Conference, April
2003, pp. 481-485.

[123] K. Yoshigoe, K. Christensen, and A. Roginsky, “Design of A High-Speed

Overlapped Round Robin (ORR) Arbiter,” Proceedings of the IEEE Conference
on Local Computer Networks, October 2003, pp. 638-639.

[124] S. Zheng, M. Yang, J. Blanton, P. Golla, and D. Verchere, “A Simple and Fast

Parallel Round-Robin Arbiter for High-Speed Switch Control and Scheduling,”
Proceedings of the 45th Midwest Symposium on Circuits and Systems, August
2002, pp. 671-674.

[125] B. Zhou and M. Atiquzzaman, “Performance of ATM Switch Fabrics Using

Cross-Point Buffers, Proceedings of IEEE INFOCOM, April 1995, pp. 16-23.

 153

List of Publications

1) K. Christensen, K. Yoshigoe, A. Roginsky, and N. Gunther, “Performance of
Packet-to-Cell Segmentation Schemes in Input Buffered Packet Switches,”
Proceedings of the IEEE ICC, June 2004, pp. 1097-1102.

2) K. Yoshigoe, K. Christensen, and A. Roginsky, “Performance Evaluation of New
Scheduling Methods for the RR/RR CICQ Switches,” submitted to the Computer
Communications, July 2003.

3) N. Gunther, K. Christensen, and K. Yoshigoe, “Characterization of the Burst
Stabilization Protocol for the RR/RR CICQ Switch,” Proceedings of the IEEE
Conference on Local Computer Networks, October 2003, pp. 260-269.

4) K. Yoshigoe, K. Christensen, and A. Roginsky, “Design of A High-Speed
Overlapped Round Robin (ORR) Arbiter,” Proceedings of the IEEE Conference
on Local Computer Networks, October 2003, pp. 638-639.

5) K. Yoshigoe and K. Christensen, “An Evolution to Crossbar Switches with
Virtual Output Queueing and Buffered Cross Points,” IEEE Network 17, no. 5
(September-October 2003): 48-56.

6) K. Yoshigoe, K. Christensen, and A. Jacob, “The RR/RR CICQ Switch:
Hardware Design for 10-Gbps Link Speed,” Proceedings of the IEEE 2003
International Performance, Computing, and Communications Conference, April
2003, pp. 481-485.

7) K. Yoshigoe and K. Christensen, “RATE Control for Bandwidth Allocated
Services in IEEE 802.3 Ethernet,” IEEE 26th Conference on Local Computer
Networks, November 2001, pp. 446-453.

 154

8) K. Yoshigoe and K. Christensen, “A Parallel-Polled Virtual Output Queued
Switch with a Buffered Crossbar,” Proceedings of IEEE Workshop on High
Performance Switching and Routing, May 2001, pp. 271-275.

About the Author

Kenji Yoshigoe received his Bachelor’s degree in Computer Science from the

University of South Florida. He worked as a research assistant in the field of computer

networks. His Ph.D. work was funded by the National Science Foundation under Grant

No. 9875177 through his advisor Dr. Kenneth J. Christensen. He is the author and co-

author of 8 articles on the subject of performance evaluation of computer networks. His

professional affiliations include IEEE, ACM, and ASEE.

