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Performance Evaluation of URL Routing for Content Distribution Networks 

Zornitza Genova Prodanoff 

 

Abstract 

 

As the World Wide Web continues to grow in size, content is being co-located 

throughout the world in Content Distribution Networks (CDNs).  These CDNs need 

entirely new methods of distributing client requests.  The idea of a URL router has been 

introduced and in this dissertation the performance of URL routing is addressed.  A URL 

router that uses HTTP redirection to automatically forward requests is architected.  

Significant open problems are finding effective ways to 1) reduce the size of the routing 

table, and 2) perform fast routing look-ups.  These two problems must be solved in order 

for CDNs to become fully viable and thus are of significant interest. 

The first problem is solved by proposing the use of CRC32 as a means of reducing 

the length of a URL (typically 50 bytes) to a four-byte signature.  The CRC32 method is  

shown to require less CPU resources, generate equal or smaller size digests, achieve 

equal collision rates, and simplify switching when compared to existing MD5-Bloom and 

CRC19 methods. 

The second open problem is solved by a new “Aggressive” hashing algorithm.  The 

average look-up time performance of Aggressive hashing is compared to that of simple 
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chain hashing and self-adjusting H1 hashing.  Aggressive hashing outperforms in look-up 

time simple chain hashing by a factor of 16 and H1 by a factor of about two.   

A major contribution of this dissertation is studying the queueing behavior of hashing 

algorithms.  A simulation model was designed as a single server queueing system where 

the arrival rate is determined by an HTTP trace and the service time by hash table look 

up.  For a constant throughput, the new Aggressive hashing method exhibits 27 times 

shorter mean queue length than simple chain hashing and about two times shorter than 

H1 hashing.  For constant utilization, the results were surprising in that H1 and 

Aggressive result in several magnitudes difference in mean queue length.  The isolated 

cause for this counter-intuitive result is the high level of autocorrelation in the H1 

hashing look-up time.  In conclusion, the CRC32 URL signature method and Aggressive 

hashing algorithm investigated in this dissertation are better than existing methods for 

designing the next generation of URL routers to enable future growth of the Internet.   
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Chapter One 

Introduction 

 

1.1 Background 

The distribution of content throughout the Internet via large-scale Content Distribution 

Networks (CDNs) is becoming more and more prevalent.  A CDN is an invisible overlay 

of hardware and software components on the Internet.  In a CDN, a single origin server 

site contains the “original” content.  This content is then partially co- located throughout 

the Internet in content sources, such as distributed servers and caches.  For example, 

content originating in California, but accessed frequently in Florida, can be automatically 

mirrored in a content server owned by the CDN service provider in Florida.  This content 

mirroring 1) reduces the load on the origin server, 2) reduces traffic on the Internet, and 

3) improves response time to the users.  For CDNs to be feasible, methods of routing  

HTTP requests originating from users, or clients, are needed.  URL routers are one way 

of routing – or redirecting – HTTP requests from an origin server to some other content 

source in the CDN.  A large overhead is required to maintain state information about the 

distributed content and to determine to which content source a client should be directed.  

Akamai [1] is an example of a commercial CDN. Akamai is the world's largest 

distributed network, consisting of more than 15,000 servers in over 60 countries forming 

more than 1,100 networks. Akamai directs requests to geographically distributed and co-

located content as follows.  An incoming HTTP request to an origin server is replied to 
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with the HTML main page.  A typical HTML page contains embedded links for images 

and other document components.  These embedded links are modified by the Akamai 

service running at the origin site to point to temporary servers nearer to the client than is 

the origin server.  Thus, the origin server always sends the HTML main page, and the 

distributed servers send the embedded images.  The embedded links are said to be 

“Akamaized”. The Internet uses the IP protocol to transfer data in the form of packets 

between server and clients. An HTTP request contains a URL string, and the HTTP 

response contains the requested object (HTML or image file). A CDN contains 

mechanisms and policies for content serving, distribution, and request routing.  CDNs are 

usually commercial enterprises [33], [31], [62] that host content for content providers. 

For example, Yahoo [78] and CNN [10] use Akamai CDN services. Content is created at 

one or more central sites and located on the origin server. Distribution from the origin 

server into content sources owned by the CDN provider occurs automatically by either 

“pushing” (that is to distributed servers) or “pulling” (that is into reverse, transparent, and 

proxy caches, described later in this section). In this dissertation, the distribution of 

content into CDN owned content sources is not addressed.   

 

1.2 Motivation 

In his speech at the Telecom 1999 conference, John Roth, chief executive of Nortel 

Networks said that 2.5 billion hours were spent waiting on the Web in 1998 [55].  This 

extreme delay in the Internet is caused by the inability to efficiently distribute and access 

content in the Web. To solve the problem, it is necessary to coordinate between the 

content sources within a single CDN to ensure that the state of content is known. The key 
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function of a CDN overlaid on top of the Web is to force each client request to be 

serviced by the most appropriate content source. This entails knowledge of location and 

state of content sources, location of the client sending a request, and available paths 

between the client and all content sources.  

This dissertation addresses the problems of reducing the size of shared routing tables 

and performing fast look-ups in routing tables. Solving these problems will help reduce 

the load on the CDN origin server, reduce traffic on the Internet, and ultimately reduce 

response time to users and wait time on the Web. 

 

1.3 Contributions of this dissertation 

This dissertation investigates new methods related to CDNs, in particular to their 

implementation of application layer routing. It also provides empirical evaluation of 

routing table look-up (hashing) methods. The main contributions of this work are:  

• Architected a new URL router that uses HTTP redirection 

• Investigated new use of CRC32 for reducing the size of routing tables 

• Investigated a new self-adjusting hashing method for faster URL routing look-up 

• Performed the first queuing evaluation of hashing where the effects of correlation 

were discovered for the first time 

 

1.4 Organization of this dissertation 

The remainder of this dissertation is organized as follows: 

• Chapter Two reviews basic concepts in packet switching, routing, HTTP, server 

clusters, and mechanisms used in CDNs. This chapter also reviews current 
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literature in caching, server load balancing, application- layer routing, hashing 

algorithms as applicable to the research in this dissertation. 

• Chapter Three describes how server selection methods in a CDN differ from those 

in local server clusters due to bandwidth and delay constraints in the Internet.  

This chapter describes several server selection criteria and outlines how caching 

information can be used in server selection.  

• Chapter Four architects a URL router for a CDN. The system design of a URL 

router is presented. 

• In Chapter Five CRC32 signature generation methods are described and their 

application to signature-based digesting for URL routers is presented.  A new 

Aggressive hashing algorithm is also presented that can be used for fast look-up 

in URL routing tables. 

• Chapter Six evaluates and compares the URL routing look-up performance of 

CRC32 digests to MD5-Bloom digests and other digesting methods from the 

literature.  The evaluation uses trace workloads. 

• Chapter Seven evaluates and compares the performance of three hashing methods 

− including the new Aggressive hashing − for URL routing. This evaluation 

measures the hashing table look-up time and the behavior of a single server 

queue, where the service center is the hashing table look-up.  The evaluation uses 

trace workloads. 

• Chapter Eight summarizes this work and describes possible directions for future 

research. 
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Chapter Two 

Literature Review 

 

This chapter reviews basic concepts in packet switching, routing, HTTP, server 

clusters, and mechanisms used in CDNs. It also reviews current literature in caching, 

digesting methods used in caching infrastructures, load balancing in server clusters, and 

application layer routing.  In addition, this chapter provides an overview of existing work 

in hashing algorithms as applicable to this research. 

 

2.1  Basic model of computer network communications  

Communication on the Web is achieved by way of the general principles of computer 

networks.  By enforcing a reference communication model, and associated standards, any 

two computers are enabled to connect, or be ready to exchange information. Computer 

communication is subdivided into functional layers. A complete set of rules, known as a 

protocol, governs information exchange between same-level layers. Each layer performs 

unique and specific tasks, and uses the services of the layer below it,  while at the same 

time providing services to the layer above it.  Layers can be viewed as “black boxes” or 

independent units.  Providing a thorough introduction to some specific layered models, 

such as the Open Systems Interconnect (OSI) model [11], is beyond the scope of this 

work. In this dissertation, the focus is on the TCP/IP [17][74] and HTTP [21] protocols 



 

 6 

(introduced later in this chapter) and their corresponding layers, since TCP/IP is the 

underlying protocol of the Internet and TCP/IP and HTTP are both protocols of the Web.  

Figure 2.1 shows how application data is transferred between two computers that are 

connected to a network. Software, called a “protocol stack”, is running on both 

computers. Data format is changed at each layer at the sender “down the stack” and some 

information (overhead) is appended to the data to form a unit of transfer. After being 

processed by the lowest layer, the data are sent on what is known as the transmission 

medium. At the other end, the data undergo the reverse procedure of “climbing up the 

stack” while finally being converted back into the format suitable to applications. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Functional layers of communication 

The layer mode of Figure 2.1 is based on the concept of interfacing.  An interface is a 

complete set of rules for information exchange between consecutive layers at the same 
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site (or computer location). Interfaces eliminate the need for upper layers to include 

provisions about lower layer protocol details.   

Networks are often represented as graphs, with computers being nodes in the graphs, 

and edges being communication links. Figure 2.2 depicts a network with alternate paths, 

called routes, between nodes 1 and 5. This graph shows how packets can be forwarded to 

the destination host through several alternate paths.  

 

 

 

 

 

 

 

 

 

Figure 2.2 – A packet switch network with alternate routes 

 

A network host is a computer with CPU, memory, and I/O devices that are  

interconnected by a back plane bus as shown in Figure 2.3.  Network adapters are one 

example of an interface implementation.  Adapters are sometimes called Network 

Interface Cards (NIC). These are I/O devices responsible for transferring data from a 

channel (or medium) to the computer and vice versa, that is, convert the data between 
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two formats: signal on bus and signal on network medium. A workstation with an 

Ethernet (IEEE 802.3) [54] adapter is one example of a host. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – The basic implementation of a communication network 

 

2.2 Packet switching 

The Internet is a packet switching type of network.  In a packet switching network, 

transmitted messages are segmented into units, called packets.  A packet can be viewed 

as a string of bits that is transmitted serially over a wired or wireless network medium, 

known as a link, that connects two computers.  Figure 2.4 depicts the basic structure of a 

packet.  Application bits are encapsulated by header and trailer sub-strings.  Each 

protocol layer [70] appends a corresponding sequence of header and/or trailer bits at 

packet creation.  The link layer (also called the data link layer) is responsible for 

interfacing with the medium. The network layer is responsible for moving the packets 
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across a single network or multiple networks, and specifies the protocol for hop-to-hop 

delivery. All gateways require an implementation of the network layer. The transport and 

application layers provide for end-to-end communication, and only hosts must implement 

those layers.   

 

 

 

 

 

 

 

 

Figure 2.4 – TCP/IP layered model and packet structure 

 

Individual packets are sent one by one over the network links. When all message 

packets arrive at their destination, they are reassembled into the original message and 

made available to applications.  To take advantage of resource sharing, packets share link 

and node resources.  Each node, whether a host or a gateway, has one or more memory 

buffers, called outgoing queues, that are modeled as queues with a single server facility. 

Each queue-server facility pair can be viewed as being designated to one of the network 

links going into the node.  Packets are created at a node and placed in a corresponding 

queue.  At this time, they are given an end destination by including a destination IP 

address (a 32 bit value for IPv4 [17]) in the packet IP header.  When a link resource 
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(associated with some queue) becomes available, the head packet is forwarded, and is 

thus removed from the queue, and the next packet “in line” moves to the head of the 

queue. 

Gateways act as bridges or routers.  Bridges operate at the link layer and make 

multiple (same-type) networks appear as a single net for upper layers. Bridges can detect 

and discard corrupted packets; they do not modify packet bits. Routers are computers that 

connect two or more (dissimilar) networks together.  They are capable of receiving a 

packet on one of the networks and then transmitting it across another network.  Routers 

must modify lower layer packet header bits in order to route a packet from router to 

router, and finally to the destination computer.  Routers operate at the network layer;  

they have an adapter for each network to which they are attached and they can connect 

networks of different types.  TCP/IP networks are built by using routers rather than 

bridges.   

Routing on the Internet at the IP- layer is currently done with IPv4 addresses.  The 

Routing Information Protocol (RIP) [28] sends routing-update messages at regular 

intervals and when the network topology changes.  Thus, RIP is a distance-vector 

protocol.  The Open Shortest Path First (OSPF) protocol [45] uses a routing algorithm 

that keeps track of link state, where each router maintains the state description of its local 

links to networks.  There are no existent routing protocols for application- level routing 

(e.g., for URL routers) since application-level routing is very new.  Thus, there are no 

defined mechanisms or policies for building routing tables in URL routers.  There is 

ongoing work to define the mechanisms needed for URL routing protocols [22].  The 

Internet Content Application Protocol (ICAP) [18] is a protocol for lightweight vectoring 
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of HTTP services.  ICAP servers transform URLs for purposes including routing of 

HTTP requests.  ICAP is a mechanism for modifying HTTP requests.  ICAP does not 

address the routing protocols that determine how a request should be modified.  As 

described in Section 2.6, caching infrastructures have defined protocols (e.g., ICP [76]) to 

exchange information on cached content.  Such protocols may apply to URL routers  this 

is future work that is beyond the scope of this dissertation.   

 

2.3 The Internet and the Web 

The Internet is currently the largest network and application of packet switching. It 

creates the illusion of a single network, but is actually a network of interconnected 

networks of the same or a different type.  At the user level, the Web appears as a “web” 

of computer files residing at different physical locations and interconnected by 

hyperlinks, or pointers. These hyperlinks are contained within a Web site (a set of files 

made available for public access) and can be traversed to reach other Web sites.   

The Hypertext Transfer Protocol (HTTP) is the application- layer protocol of the Web. 

It is used to deliver files, or resources. Some examples of resources delivered via HTTP 

would be ASCII text files, binary executables, HTML files, and image files. HTTP is a 

“request/response” protocol that operates at the application layer.  

In general, a resource is a file(s) that can be identified by a Universal Resource 

Locator (URL). Resources are considered as either static or dynamic. For example, an 

image or a text file is considered a static resource, whereas the output of a Common 

Gateway Interface (CGI) script would be a dynamic document (CGI scripts are programs 
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that return a dynamic query result to the client only when the result data conforms to a 

standard of transfer between the server and the script).  

HTTP supports a client server model of communication. A Web browser, like 

Netscape [48] or Internet Explorer [42], is an example of an HTTP client. It sends 

requests to a Web server, which then sends responses back to the client. The standard 

port for HTTP servers to listen on is 80, though they can use any port.  An HTTP client 

opens a connection and sends a request message to an HTTP server; the server then 

returns a response message, which usually contains the requested resource. After 

delivering the response, the server closes the connection. Once the connection is closed, 

all information about the state of the remote machine is lost. HTTP is thus a stateless 

protocol. Once the client-server connection is dropped, the server retains no history of the 

communication that took place. Cookies, or <attribute, value> pairs, are stored at the 

client computer and are used to record transaction history that is later used on consecutive 

connections to the same server. HTTP provides support for client side caching. Caching 

refers to the retention of local copies of previously retrieved content.   

HTTP transactions are called methods. Methods are specified in the header of the 

HTTP request message, which is the first message that gets sent to the server after a TCP 

connection is established. There are a number of request methods supported by HTTP: 

GET, HEAD, PUT, POST, DELETE, and TRACE. GET allows the access of a remote 

resource and is the most commonly used HTTP method. The required fields are shown in 

line one of Figure 2.5: “GET [URL] HTTP/[version]”. All other fields are optional.  The 

HTTP response format is “HTTP/[version] code”. All other fields, such as date, server 

type, date last modified, and E-tag (a unique number for each response) are optional.  
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An example of a GET (client) request header is shown in  Figure 2.5 . Web server 

operation consists of the following steps: wait for a connection, make the connection, 

receive command and parse it, respond with requested data, and drop the connection. The 

above steps need to be performed in parallel for simultaneous requests.   

 

 

 

 

 

Figure 2.5 – A sample HTTP GET request header 

2.4 Capability of servers  

A server cluster is a group of independent computers working together as a single system 

to ensure that resources remain available to clients.  A cluster appears to its clients as a 

single server, but is actually a group of servers acting as one.  A cluster provides better 

scalability and availability than a single server.  New servers (or hardware) can be added 

to a cluster to increase its capacity: when the load at the server increases, an incremental 

and linear increase in hardware can make the load increase transparent to the client.   

A cluster uses the redundancy of multiple servers to overcome failures. Fault-

tolerance is handled in software. Multiple servers in the cluster can provide the same 

service. Server clusters are built as interconnected workstations, that is, high speed 

storage area networks (SANs), that enable direct connections between heterogeneous 

storage servers or Gigabit Ethernet can also be used for workstation interconnection. 

Server clusters allow for load balancing: content requests or incoming client connections 

GET/ index.htm HTTP/1.1 
Accept: image/gif, image/x-xbitmap, image.jpeg, image/pjpeg, 
application/vnd.ms-powerpoint, application/vnd.ms-excel, 
application/msword, */* 
Acccept-Language: en-us 
Accept-Encoding: gzip, deflate 
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0) 
Host: 131.247.3.42 
Connection: Keep-Alive 
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and content delivery (known as server load) can be distributed within the cluster. A front-

end computer is part of a server cluster site and handles commonly requested objects 

without having to burden the server hosts with additional connections. Several well-

known techniques for server side HTTP request redirection are described next. 

Server-side Domain Name Service (DNS) [44] is used when each server in the cluster 

is assigned a different valid IP address.  Incoming content requests are then redirected in 

a round robin, thus distributing the load among all servers in the cluster. 

NAT, Network Address Translation [57], is a technique used to forward packets 

between a public and private network via a single device (front end).  An example is 

shown in Figure 2.6.  The private network (a server cluster) has IP address range 

131.247.3.x of IP addresses.  These addresses are only accessible through the front end 

that has a single valid public IP address, 158.102.1.11.  The front end will then have the 

addresses 131.247.3.1 (private) and 158.102.1.11 (public) and will forward packets 

between the two networks by rewriting the corresponding IP addresses.  

 

 

 

 

 

 

 

Figure 2.6 – NAT translation  
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IP aliasing is used when several IP addresses are assigned to a single front end, in 

which case different Web documents can be served according to the IP addresses (host 

names) used in the HTTP request message.  Figure 2.7 depicts such a case. 

 

 

 

 

 

 

 

 
Figure 2.7 – IP aliasing 

 
 
2.5 Mechanisms used within a CDN  
 
The mechanisms within a CDN work on top of IP routing. These mechanisms are 

specialized routing capabilities within the Internet and at content sources.  Policies are 

needed at these mechanisms to determine the “best” content source and to employ the 

appropriate mechanisms for directing requests to this source.  The best content source can 

be defined socially (in terms of reducing traffic on the Internet) or greedily (in terms of 

reducing the response time as seen by the client). A socially defined content source will 

result in the least Internet resources consumed per response.  Thus, a socially defined 

content source will likely be the closest source to a client.  A greedily defined content 

source will result in the smallest response time for the client.  This may entail consuming 

more Internet resources than a request serviced by a socially defined source.  
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Figure 2.8 shows a CDN overlaid on the Internet and a request being directed to a 

content source other than the origin server; it also shows the origin server as multiple 

servers at a single site, along with temporary servers, proxy caches, and  transparent 

caches. Proxy caches are gateways where Web clients are configured to ask the cache for 

all documents; proxy caches are supported by HTTP, while transparent caches intercept 

HTTP requests on their way from client to server and generate a response as if the 

response came from the server, when in fact it came from the cache.  Even though the 

proxy cache is geographically closer to the client than it is to the distributed server, the 

distributed server will satisfy this request better. This may be the case when the proxy 

cache is heavily loaded, while the distributed server is experiencing less traffic, or if the 

network conditions between the client and the proxy are unfavorable due to link failure or 

traffic delays.    

CDNs are implemented by using devices that forward or route at layers higher than 

the IP layer. Such routers can be used to forward or redirect a client HTTP request to the 

best content source.    

 

 

 

 

 

 

 

Figure 2.8 – A CDN overlay directing an HTTP request to the best content source 
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2.6 Caching on the Web 

To facilitate faster browser access to globally available content, static Web documents 

are disseminated, or cached, throughout the Internet. In addition, caching can reduce both 

Internet traffic and server load. Web caching can occur at the client site in a proxy cache, 

at the origin server site in a reverse cache, or in transparent caching infrastructures within 

the Internet.  When caching is implemented local to the client, it is done in the browser 

application or via proxy servers in the client LAN.  Another caching strategy, transparent 

caching, would position hierarchies or meshes of caches in the Internet, such as in the 

case of geographical push-caching [27]. Placing the nodes at the server site refers to 

reverse caching and is part of a local server site. Reverse caches handle commonly 

requested objects without having to burden the server hosts with additional connections.  

Caching structures use compressed cache directory information, called digests, to 

coordinate cooperation between caches (that is SQUID – a free Web Proxy software part 

of some Linux distributions [77]). Caching is largely limited to static content and the use 

of digests may present performance-scaling problems.  An HTTP request sent to a cache 

may result in a miss, in which case the cache device obtains the requested content from 

another cache or the origin server (and then responds to the original request).  Distributed 

caching infrastructures share knowledge of cache contents (that is, the currently stored 

objects in the form of a list of URLs).  In this manner, a cache device that does not 

contain the document being requested, can request that document from another cache 

device that is known to contain the object.    
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2.6.1 Sharing of cache directories 

Sharing of caches can be implemented by distributing lists of URLs called cache digests 

between caches.  A miss at a given cache site can then be forwarded, using the URL lists 

as a forwarding table, to another cache that contains the requested document.  Occasiona l 

false hits, or routing collisions, will occur when the URL lists are incorrect because of 

changes in cache contents that occur between sharing updates for the URL lists. A false 

hit occurs when either 1) two or more URLs reduce into the same bit pattern, or 

signature, which can result in forwarding a request to the wrong cache device; or 2) the 

requested object has expired out of the cache to which the request was forwarded, and an 

update message has not yet been sent by this cache.  False hits are handled in the same 

manner as misses.  Signature collisions are expected to be negligible as compared to 

cache aging rates.  A typical cache miss rate is about 5% from the total number of 

requests [69], while signature collisions are of smaller scale, as shown later in chapter 6. 

In Summary Cache [19], each URL in a URL list is hashed into a 128-bit value using 

an MD5 signature [58],[73].  The 128-bit signatures are then partitioned into four 32-bit 

quantities and further reduced (by modulo division) to become indexes into a Bloom 

filter [9] digest. The use of Bloom filters reduces the size of the digests as compared to 

sending URL lists between caches, the tradeoff being that false hits are introduced as a 

result of Bloom filter collisions. 

The Bloom Filter is implemented as a one dimensional array. Figure 2.9 shows a 

Bloom filter that stores the key K.  The array is first initialized to zero. When the key K is 

inserted into the filter a set of k hash functions are calculated over it and k individual 

Bloom filter bits are then set to true (a value of true is denoted as “1” on Figure 2.9). 



 

 19 

Individual bit positions are selected to be set based on the indexes obtained from the 

computation of the set of hash functions. 

Similar to other hash table structures, the Bloom filter is probabilistic.  Two or more 

keys can hash to the same set of index locations. The major benefit of using a set of 

function computations to produce an index, versus a single function is a reduction in the 

number of collisions.   

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 2.9 – A Bloom filter 
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any function from the set.  A dense Bloom filter will have many of its bits set to true, and 

hence collision probability in a dense filter will be higher than  that of a sparsely 

populated one. The Summary Cache implementation of Bloom filters further reduces the 

size of the filter before forming a digest by using a number – 8, 16, or 32, called the load 

factor.  The total number of bits in the Bloom filter are 8, 16, and 32 times the average 

number of unique URLs (or documents) in the cache.  This results in introducing 

additional collisions.  For analysis of the performance of Bloom filters refer to [9]. The 

major trade off is that key deletions are not supported. To remove a key from a single 

hash function table it is merely needed to unset the bit in the corresponding index 

position. In a Bloom filter this cannot be done, since the same index position(s) may have 

been set when more than one key was stored.  

To allow for key deletions, the Summary Cache implementation uses a one-

dimensional array to build the filter; but instead of setting individual bits, when a key is 

stored in the array, a four bit counter is incremented. The counter for each position in the 

corresponding set is incremented when a URL entry is added. This allows for keys to be 

deleted by decrementing the set counters.  

A Bloom filter collision can result in redirecting an HTTP request to the wrong server 

(content source).  A routing collision results in the (mis)selected document source (cache) 

retrieving the requested document from the origin server.  The document will then be 

available for subsequent requests.  Thus a collision in a cache is not a serious problem.  

The Summary Cache [19]digesting protocol is overlaid on top of the Internet Cache 

Protocol ICP [76] and is implemented as a modification of Squid 1.1.4 [77]. The digest 

contains the local Bloom filter, while an additional array is added to it for each neighbor.     
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The Adaptive Web Caching (AWC) digesting method [79] is another application-

layer cache routing protocol for content dissemination and access.  AWC maintains a data 

structure at each site to keep track of currently available content. In order to maximize 

cache sharing with nearby positioned cache proxies, AWC distinguishes between proxy 

and server content.  

 

 

 

 

 

 

 

 

 
 
 

 
Figure 2.10 – Tree-like structure of URL lists 
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sequence comprised of 19 bit codes for each component, that are coupled together with 

tree position information. Collisions can still occur for non-unique CRCs.   

The size of a URL hash chain is a function of the number of components in a URL.  It 

can be shown that this model does not perform well for wide-base trees, where there is a 

little overlap between URL components for different URLs.  

If the content is not available locally, the requested URL will be forwarded to a 

cache, which contains a cached copy of the requested document. Figures 2.11 and 2.12 

depict a false hit handled by Summary Cache and AWC.  When a request arrives at node 

A for a document x, which is not locally available, Summary Cache checks all local bit 

arrays to determine what sibling caches keep a copy of x. A query is sent to cache B due 

to a false hit in the bit array of B kept at cache A (the only hit for this group).  After a 

timeout, A determines that x is not available locally, and forwards the request to the 

parent node C, which has a copy of x.  In the same situation, AWC will not send out a 

query message, but will, rather, forward the request to the sibling node B, which in turn 

forwards it to the parent node directly, thus avoiding a time out. (Note that AWC 

implements a mechanism to avoid forwarding loops.) 

The Cache Array Routing Protocol (CARP) [75] uses hash-based routing to provide a 

deterministic "request resolution path" through an array of proxies. The request resolution 

path means that for any given URL request, the browser, or a nearby proxy server, will 

know exactly where in the proxy array the information will be stored, whether already 

cached from a previous request, or making a first Internet hit for delivery and caching. 
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Figure 2.11 –  Summary Cache: a false hit is redirected after time out 

 

 

 

 

 

 

 

 

 

Figure 2.12 –  Adaptive Web Caching: a false hit is redirected twice 
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greater the number of servers), as there is with conventional ICP networks. CARP 

eliminates the duplication of contents that otherwise occurs on an array of proxy servers. 

With an ICP network, an array of five proxy servers can rapidly evolve into essentially 

duplicate caches of the most frequently requested URLs. The result is a faster response to 

queries and a more efficient use of server resources.  It is not clear how well the approach 

performs for wide-area cache sharing, where proxies are distributed within a network.  

Cache Digests [60] is a cache routing table compression technique that enables caches 

to make information about their local cache content available to peers.   Instead of posing 

queries to peers and waiting for replies, digests are used to identify co-operating caches 

that are likely to have a given web object.  Digests are similar to routing tables.  They are 

compressed URL lists where each URL is associated with a set of caches that 

accommodate the content it presents.  Table 2.1 presents a comparison between routing 

table compression and exchange done in Summary Cache versus Cache Digests. 

 

2.7 Application layer routing  

Application layer routers are intended to reduce the load on content sources allowing 

them to serve content only and not to handle routing at the same time.  Such routers 

operate at the application layer and require additional handling of TCP connection 

semantics and lower layer processing.  

 

2.7.1 Redirection at the IP layer 

Anycasting and centralized approaches, such as Global IP-Aanycast [35], attempt to 

solve server location problems at the IP level. Anycast IP addressing [20], [47] provides a 
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mechanism for routers or specialized servers to determine the “best” of an available set of 

servers.   Unfortunately, at the IP layer, no information about the state of the selected 

“best” server can be communicated between the routers and specialized servers; and a 

request may be forwarded to a server, which is unavailable or has a high response time. 

Hence, anycast methods are high in overhead or require infrastructure changes. 

 

Table 2.1 – A comparison of Summary Cache and Cache Digests 
 

 
Summary Cache Cache Digests  

Extends ICP Yes No 

Vertical hierarchy of caching proxies  Yes Yes 

Push/pull strategy Push Pull 

Bloom filters Yes Yes 

Supports deletion when object is purged from cache Yes No 

Maintains state of children proxies Yes No 

Piggybacking of update messages  No Yes 

 

 

2.7.2 Domain name redirection      

A “hosts.txt” file that listed all hosts in the Internet, supplied the original Internet 

directory service. As the Internet grew, this approach was replaced by DNS [44] in 1985. 

Some DNS servers measure round-trip times to known name servers in order to choose 

the lowest- latency server, especially at the root level. Although this can improve the 

performance of name lookups by lowering the mean lookup latency, it only helps at one 

level of a cache miss.  
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2.7.3 Redirection at the server side   

Current wide-area content routing depends on HTTP or DNS-level redirection; and is 

generally handled on the “server side”. Cisco's Distributed Director (DD) [13] redirects a 

name lookup from the main site to a replica site closer to the requesting client’s address, 

based on responses from a set of participating routers running an age nt protocol 

supporting DD. Proprietary schemes by Akamai, Sightpath, Arrowpoint and others 

appear to work similarly. These proprietary CDNs can be centrally monitored and 

managed, unlike name-based routing. This may lead to a better understanding of network 

performance; however, CDNs rely upon the existing IP routing framework for content 

delivery, so the amount of benefit to be gained from a proprietary overlay network is 

limited.  

 

2.7.4 Redirection at the client side   

Client-based methods [14] use a ping type approach to find the fastest responding server 

for a given request.  These methods generate excessive and redundant overhead traffic.  

Smart server selection [72] is one approach to content routing, where, upon a request, a 

central name server for some Web site provides to the client browser all available 

addresses for replicas of the content.  The client (or the client's DNS server) then probes a 

nearby router and chooses the nearest (that is, in number of hops) server. This method 

can only be implemented by making changes in the infrastructure, that is implement a 

protocol to guide the communication between clients and nearby routers.  
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2.8 Hashing algorithms  

Hashing is an efficient type of searching.  A hash table is an array used to store data and 

make them available for fast access. A key field called the hash key uniquely identifies 

each record, or a row, in the hash table. This key is mapped to a hash index by a hash 

function, that is key x  (from the set of all possible keys) is mapped to an index (from the 

smaller set of finite number positions in the array) by a hash function h(x). Hash 

functions are not one-to-one; two or more keys could map to the same index. Such  

incidents are called collisions. To guarantee access to data, collisions need to be resolved. 

A mechanism is needed to make two or more records accessible from within the same 

hash table location.  

 

2.8.1 Handling of hashing collisions   

Let x be a key, such that )1,...,1( −∈ mx , that is there are m positions in the hash table. 

Figure 2.13 shows a hash table with collision. The hash indices for k and kn-1 are the 

same, that is )()( 12 −= nkhkh . In such a case, both records r2 and rn-1 have to be stored at 

the same location in the table, which is not possible. This is called a collision. Collisions 

need to be resolved.  

 

2.8.2 Uniform hashes 

If the probability that a key x is in the set of keys is P(x), then if there are m slots in the 

hash table, a uniform hashing function h(x) would ensure: 

∑ ∑∑
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Figure 2.13 – Hashing collision of records r2 and rn-1 

 

When the keys ( ]rx ,0∈  are randomly distributed in interval ( ]r,0 , then it is easy to 

choose a hash function h(x), such that it provides for uniform hashing, that is a function 

that maps the keys to a sub-string of the key bits can be used and results in less collisions 

than non-uniform hashing.  

 

2.8.3 Open hash table methods  

When resolving collisions, a decision has to be made whether to keep the size of the table 

fixed, or, if not restricted by space, to extend the hash table, when needed. In the first 

case two methods are used to resolve collisions: nonlinear rehashing (that is generate 

another hash key) or linear rehashing (step through the table until an available slot is 
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table such that the original array contains a pointer in each location or slot that points to a 

linked list structure of hash keys that hash to the same slot in the table.  

As shown in Figure 2.14, when records r2 and rn-1 collide, that is when both need to 

be stored at location 0 in the hash table, one implementation of a chained hashing 

algorithm will place the first colliding record at the head of a linked list, and later append 

the second colliding record to the end of the list.   

Hash functions should have low collision rates; that is, it should be difficult to make 

strings that produce the same key.  For this reason, such functions must be tailored to the 

set of keys to be hashed.  A common hash function is mxxh mod)( = , which returns the 

remainder of key x after division by m. It has been shown that the widest dispersal of the 

index values will occur when the number of hash keys and the size of the table are prime 

numbers.  Hash functions are one way in that a key can be converted into an index, but 

not the other way around.  Hashing methods are evaluated in Chapter Seven. 

 
 

 

 

 
 
 
 
 
 

 

Figure 2.14 – Chained hashing resolution of collision in Figure 2.13 
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Collisions can be handled inside or outside of the hash table. One method of outside 

handling is Simple chain hashing.  A hash table can be implemented as a one dimensional 

array of pointers to linked lists, and thus overcome the limitation of the fixed size of the 

hash table, while consuming storage space as needed.  When trying to insert a key into a 

position that already holds another key (collision), the new key can be added to the linked 

list of keys. Colliding keys are placed in a linked list pointing out from the index location 

where the keys collided. When a (colliding) key is accessed, the nodes in the list are 

traversed, starting with the head and advancing towards the tail of the list. Look up time 

is then proportional to the number of nodes traversed until the search for key is found.  

 

2.8.4 Self-organizing hashing methods  

Self-organizing methods are open hash table methods with chained collision resolution 

that aim to reduce the average key access time by reordering the keys in each resolution 

chain. If a self-organizing method is used a key is repositioned after it is accessed so that 

prior knowledge of key accesses is used to reposition most frequently accessed keys 

closer to the list head. There are several known methods for reorganizing such colliding 

hash keys. In this dissertation the queueing performance of hash methods is evaluated 

employing two of them: the move-to-front and transposition rules [37].    

 

2.8.4.1 H1 hashing 

H1 hashing [51] is a method that rearranges the hash table based on the transposition rule. 

When a key is requested its address in the hash table is found and swapped with the 

address of the nearby key located next to it, one position closer to the head of the chain. 
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As a result the chain gets rearranged, but the same hash function could be used to 

produce addresses on future accesses. If a single entry chain is accessed, no swap is done. 

H1 hashing is described in more detail in Chapter Five, where its corresponding 

algorithm is presented together with a new self-adjusting hashing method, called 

Aggressive hashing. 

 

2.8.4.2 The performance of self-organizing hashes 

Colliding keys are placed in a linked list pointing out from the index location where the 

keys collided. When a (colliding) key is accessed the nodes in the list are traversed one at 

a time, starting with the head and advancing towards the tail of the list. It is easy to see 

that look up time is then proportional to the number of nodes traversed until the searched 

for key is found.  

It has been shown that a static hashing scheme yields longer average key access times 

than a self-organizing scheme [37]. Let keys k1, k2,..., kN  are located N,...,2,1  positions 

away from the list head and N is the cardinality on the set of keys. Then the optimal 

average time to do successful search for the static scheme will be  

NN NpppC +++= ...21 21 ,     (2.2) 

where key accesses are independent, with the probability of accesses for key ki being pi. 

If a self-organizing scheme based on the move-to-front rule is used, the average number 

of comparisons needed to find an item will be 

=NC
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It has been shown that NC
~

 is less than 
2
π

 times the optimal value for NC  [12].  

It has been shown that given any probability distribution (on the set of key access 

probabilities) and independent key accesses, an optimal reorganization scheme should 

employ the transposition rule [56].  In this same study chain reorganization instances are 

viewed as permutations on the link list nodes.  Given an optimal set of such permutations 

exist, it is shown that the transposition rule provides the optimal number of comparisons. 

It is not shown however that an optimal set of request sequences (seen as permutations) 

exists.   

Two other studies evaluated the performance of transposition and move-to-front 

based on amortization heuristics rather than a probabilistic proof [7],[68]. An 

amortization heuristic takes into consideration the worst case access times for any key 

access sequence rather than looking at the probabilities of accesses to keys. Rather than 

looking at worst case number of comparisons for a single access (which is order of list 

length) the worst case is considered over a sequence of accesses to several keys in turn, 

where the assumption that key accesses are independent is dropped.  The obtained results 

show that when the independence assumption is dropped, move-to-front performs better 

than transposition even though probabilistic analyses imposing this assumption lead to 

concluding that move-to-front has better average search time performance. Some 

empirical studies have been performed to compare reorganization methods. To the best 

knowledge no studies have been found which examine uniformly distributed keys.   

Empirical evaluation has already been done on keys extracted from natural language text 

files, which have been noted to have Zipf’s distribution [37].  In this dissertation, the 
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performance of keys that are uniformly distributed – CRC32 codes – is evaluated. In 

addition, hash chaining methods that use CRC32 codes as keys to build routing tables for 

CDNs are studied. 
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Chapter Three 

Scaling from Local Clusters to Distributed CDNs 

Building distributed content is different from implementing local server clusters.  

Scaling URL switching from a local cluster to a distributed cluster adds several new 

complexities.  Server selection methods in the implementation of globally distributed web 

sites offers difficulties not present in local server clusters due to bandwidth and delay 

constraints in the Internet.  This chapter describes local server clusters and problems with 

scaling up existing clustering methods for geographically distributed servers.  

 

3.1 Geographically distributed server clusters  

The use of globally distributed Web sites for mirroring of popular content is commonly 

done. For example, apache.org maintains over 180 mirror sites around the world [2]. 

Such globally dis tributed server systems can reduce user response times and decrease 

Internet traffic load. URL routers can be used to automatically redirect requests to 

individual servers or server sites. URL routing makes it possible for a single site to 

consist of locally or globally distributed servers. URL routers should send requests to the 

“best” server. The best server is the one that can give a satisfactory response time to the 

user and minimize network traffic. Server selection criteria need to include server load, 

server contents, and network path characteristics. 
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Web caching is beneficial in improving response time to client and reducing network 

traffic. To take advantage of caching when selecting the best server, content knowledge 

has to be available. URL routers need information about both server load and content.   

In geographically distributed server clusters, maintaining current load information is 

difficult given the constraints of the Internet connectivity between individual servers or 

sites. In local server clusters, the least loaded server is often selected, because load 

information can be kept current.  When selecting the least loaded server in distributed 

server clusters server performance could be very poor, because they rely on delayed load 

information. This poor performance is due to the so-called “herd effect” (which has been 

studied in [15] and [43]) where requests rush to the currently advertised least- loaded 

server and cause unbalanced and oscillating loads. Dealing effectively with delayed load 

information is an open challenge. This dissertation does not address the herd effect 

problem.  This dissertation addresses the effects of delay and bandwidth constraints of 

Internet connections between distributed sites.  

 

3.2 Building distributed content 

Web content is “globalized” via distributed server and caching infrastructures. In a 

globally distributed web site, comprised of multiple local sites, the local sites partially or 

fully mirror their contents. Each local site contains one or more servers (of possibly 

different capabilities) and a reverse cache. At any given time the load and reverse cache 

contents vary between the sites. Each local site is front-ended by an application level 

switch, called a URL switch. URL switches are described in detail in Chapter Four. 
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These switches have knowledge of state information such as site load and contents and 

use this information to make routing decisions.  

 

3.2.1 Implementing local server clusters   

The servers and caches that form a local server cluster site are connected within a high-

speed switched LAN.  Such local server clusters can be implemented with a front-end 

application layer switch.  The simplest and most common policy for server selection is 

for the switch to direct a request to the least loaded server in the local site. The high-

speed LAN enables state information to be frequently shared and least- loaded server 

selection to be effective. If the URL servers “spoofs” for the multiple servers of the local 

site, Network Address Translation (NAT) methods can be used to switch requests to 

servers. TCP connection handoff and splicing are other methods. Content-based server 

selection in the context of a local server cluster has been investigated [50]. The front end 

switch distributes requests to servers in a local cluster based on a Locality Aware Request 

Distribution (LARD) technique which combines load balancing and content knowledge 

to achieve both load balancing and increased cache hits at back-end servers.  LARD is a 

technique that assigns documents to servers. Incoming requests are dispatched based on 

knowledge of the content at each server. Each incoming request is satisfied by some 

server that contains the requested document. This server is also selected to be less loaded 

at the time of the request.  The  data structures used in this study for identifying servers 

with cached objects are unclear. A load factor is used to determine when to favor an 

“uncached” server over a server with the requested object in cache. Local clusters can be 

implemented without front-end switches. In Distributed Packet Rewriting  (DPR)  [6]  the 



 

 37 

individual  servers  in  a  cluster  are  let  to route   connections  to less loaded servers. 

Thus, DPR implements routing functions within a server cluster. The most effective 

metric for server load was found to be number of TCP connections [6].  

 

3.2.2 Implementing distributed server clusters  

Scaling URL switching from a local cluster to a distributed cluster adds several new 

complexities:  

1. Internet connections that connect two different local sites have less bandwidth and 

greater delay than a the connections within the local LAN.  Thus, state 

information must be shared with less frequency and be smaller in size.  

2. Network path characteristics between a client and a server site must be considered 

if a request is switched to a distant site.  

3. Switching techniques that work in a local site would result in a “dog leg” routing 

between two distant sites (that is, DPR and NAT). Thus, redirection techniques 

need to be explored.  

In addition, the different embedded components of a single web page – text, image, etc. 

may be downloaded from two or more remote sources.  Hyperlinks that appear on  some 

web page are not a part of the that page, that is, they are not embedded into the HTML 

document and are not considered embedded components.  It has been shown through 

experiments that downloading the different components of a single web page from 

multiple servers results in worse than optimal performance [34]. Client delay is reduced 

by 30% when servers are switched for the download of document components, as 

compared to 90% reduction when a nearby-distributed server satisfies the request. Hence, 
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throughout this dissertation is assumed that all components are downloaded from the 

same source.  

 

3.3 Adding content knowledge to server selection 

URL switches must be able to exploit knowledge of both server load and content. 

Content information should be shared between URL switches. The information consists 

of a data structure that contains <server, content> tuples.  A key issue is cache validity 

time – how long a previously requested object will remain in a site cache. The digests 

will need to be updated on a frequency approximating cache validity times. Thus, an 

updated digest guess can be used to adjust the known load of the server. Both the server 

load value and partial knowledge of cache contents are estimates – the load due to its 

delay in reporting and the cache contents due to both the probabilistic nature of digests 

and the possibility that an object previously known to be in cache has been since removed 

from cache. 

A combined load and content metric has been suggested for use for selecting the best 

server in a globally distributed site [23]:  

total

jjtotal
j L

aLL
X

))(( −−
=     (3.1) 

The related method for server selection is based on load information (Lj) that uses content 

knowledge to adjust the calculation of the server selection (Xj) term. totalL  is the sum of 

the queue lengths of uniformly randomly chosen K number of servers, and aj is an 

adjustment factor that is positive when it is assumed that server j may contain the 

requested object in its cache. The aj value is updated periodically. The value of aj is a 
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function of how much serving a cached object requires less server load than serving a 

disk- resident object. For example, aj can be the number of connections that a cache can 

independently handle (and thus relieving the server of this load). 
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Chapter Four 

System Design of a URL Router 

 This chapter describes an application- layer router that is capable of intercepting 

HTTP requests and redirecting them to the best source from which to be satisfied. Such a 

router is known as a URL router [66]. A URL router makes forwarding decisions based 

on the URL contained in an HTTP request.  URL routers are application layer routers [3] 

(also called layer-7 switches based on the ISO layered model).  A URL router can front-

end an origin site that contains either one server, or a cluster of servers; a caching 

infrastructure; or it can serve as a proxy device on the client side.  Figure 4.1 shows the 

possible locations of a URL router relative to caches and servers.  In this dissertation, the 

focus is on HTTP redirection, but the methods developed apply equally to DNS 

redirection and TCP connection spoofing/splicing.  A server sending an HTTP redirection 

response message to a client can directly use the HTTP 302 response.  The HTTP 302 

redirection message instructs the client browser to automatically re-request the object at 

another host ID.  HTTP redirection requires a double network round-trip delay, which is 

significant for small requested objects but not for larger objects. HTTP redirection also 

requires significant server resources, since the request must be processed through all 

layers of the protocol stack and handled directly in software. Generating an HTTP 

redirection response requires the same workload (on a possibly overloaded server) as 

serving the requested content. This further motivates the need for URL routers to front-

end content sources. 
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Figure 4.1 – Placement of URL routers in the Internet 
 

  

4.1 Operation of a URL Router 

The semantics of an HTTP request require that a TCP connection first be established 

before the request is sent.  A URL router must have an IP address that is either the proxy 

address, or that represents the content source.  Following connection establishment, the 

URL router can return an HTTP redirection message to the client and terminate the 

connection.  HTTP redirection automatically forces the client to resend a request to a new 

content source specified in the HTTP redirection message. 

The first generation URL routers [35] were used to front-end content sources and 

forward incoming client requests to the best server in a local server cluster.  The best 

server could be determined by dynamic metrics such as server load or static metrics such 

as matching the server type to the requested content type (that is, forwarding requests for 
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streaming video to a specialized video server).  TCP connection spoofing or splicing was 

used to maintain the client connection established to the URL router.  The second 

generation URL routers added the ability to redirect requests to geographically distant 

content sources using HTTP redirection mechanisms.  If all servers in a cluster were 

above a threshold in number of connections, the URL router would send an HTTP 

redirection message to the requesting client.  This HTTP redirection forces the client to 

re-request the content from a predefined “overflow” server.  Figure 4.2 shows the flow of 

a request being forwarded or redirected (DNS redirection is not shown here).  A request 

is forwarded locally, within the origin server cluster (1), or an HTTP 30X response code 

is sent back to the client, forcing the client to automatically re-request the content from a 

distributed server (2). 

 

Figure 4.2 – URL router forwarding or redirecting a request 

 

A URL router does the following: 

1. Establishes a TCP connection with a client (initiated by the client). 

2. Receives and parses an HTTP request from a client. 
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3. Looks-up the requested URL in a routing table and determines the IP address of 

the best content source. 

4. Spoofs or splices the connection with the content source if the content source is 

local to the URL router. 

5. Sends the client a redirection message containing the new URL of the content 

source if the content source is remote to the URL router. 

The URL router must maintain a URL routing table from updates received from other 

URL routers or directly from content sources.  The URL routing table is built from URL 

lists where a URL list contains the URL and the host IP addresses which contain the 

URL.  URL routing tables are described later in this paper. 

 

4.2 Architecture of a URL Router 

A URL router can be implemented with a general purpose computer attached to a layer-3 

switch (that is, as a “one armed” router as shown in Figure 4.3), or with specialized 

hardware within a layer 3 switch.  In the latter case, the URL router is its own specialized 

device.  A specialized URL router is similar in design to an IP router.  The URL router 

consists of a switch core with attached line cards.  The URL routing table can be 

maintained in a global memory and transferred fully or partially to local memory on the 

line cards.  Switching decisions are made by the line cards whenever possible.  For a 

URL router implemented within a PC as a one armed router, the layer 3 switch forwards 

to the URL router TCP connection requests (that is, SYN packets) designated for the IP 

address of the represented content source.   
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Figure 4.3 – A one-armed URL router 
 

4.3 Structure of a URL routing table 

A URL routing table is used to determine where to redirect a request.  The table contains 

URLs and the locations of content sources.  Associated with every content source can be 

the load and distance state.  This state information, along with knowledge of the client’s 

location, is used to select the best content source.  Figure 4.4 shows the structure of a 

routing table with N  URLs and iM  ( Ni ,,2,1 K= ) locations per URL.  The content 

stored at a source varies over time and thus updates must regularly be shared between 

distributed URL routers.  It is desirable to reduce the overhead required to send the URL 

lists and to reduce the processing complexity (and thus the time) needed to perform look-

ups.   

 

4.4 Performance bottlenecks for a URL router 

For a one armed URL router based on a standard PC or workstation, a single CPU 

handles all the tasks.  Thus, a single CPU needs to handle both TCP connections and 

URL look-ups (as well as routing table updates).  Memory is a constraint if the URL 
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routing table cannot fit entirely into main memory.  If the routing table must be swapped 

out of disk storage, look-up times will be greatly increased.  For a specialized URL 

router, a single- line card will likely contain two CPUs (or one CPU and one special-

purpose hardware circuit).  One CPU is for handling TCP connections, and the second 

CPU (or ASIC) is for URL look-up.  Memory is a significant constraint on a line card.  

Thus, performance issues exist with swapping between a centrally stored main URL 

routing table and the partial tables on the line cards.  In the following chapters of this 

dissertation, the memory constraints and CPU bottlenecks for URL look-up are addressed 

by using signatures to reduce the length of URLs and enable efficient hashing-based 

look-up.   

 

 

 

 

 

Figure 4.4 – The structure of a URL routing table 
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… … 
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IPaddr1(state), IPaddr2(state), …  M1(state) 
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Chapter Five 

Using Signatures for URL Routing 

 This dissertation proposes the use of signatures to reduce variable length URL strings 

into fixed- length integer signature values to be used as keys in the URL routing table.  In 

existing methods [3], the entire URL is stored as the key value. In this chapter, CRC32 

signature generation methods are described and their application to signature based 

digesting for URL routers is presented. 

 

5.1 Using CRC32 for URL signatures and digesting   

CRC32 codes are generated for each URL string (obtained in turn from an HTTP trace 

file) in the routing table.  The CRC32 signatures of the original URL strings are used as 

keys to build the hash table, since CRC32 codes are well distributed, unlike URL strings 

that contain natural language constructs and words and hence are not uniformly 

distributed.  Then, a subset of the 32 bits representing each signature are used to produce 

a hash index.  If the 24 most significant bits are taken to produce hash indexes, the key (h 

is hexademical and b is binary) 87654321h, will hash to h(x) = h(87654321h) = 

h(10000111011001010100001100100001b) = 100001110110010101000011b. 

Table 5.1 shows some widely used CRC polynomials, including the polynomial for 

CRC32 used in this dissertation to generate signatures of URL strings. The CRC-12 is 

used for transmission of streams of 6-bit characters and generates 12-bit frame check 

sequence.  Both CRC16 and CCRCCCITT are used for 8-bit transmission streams and 
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both result in 16-bit frame check sequences. The last two are widely used in the USA and 

Europe respectively and give adequate protection for most applications. Applications that 

need extra protection can make use of the CRC32 which generates a 32-bit frame check 

sequence. The use of CRC32 is part of the IEEE 802 standard. 

 

Table 5.1 – Commonly used CRC polynomials 

 
CRC12 01231112

12 xxxxxxP +++++=  

CRC16 021516
16 xxxxP +++=  

CRCCCITT 051216 xxxxPCCITT +++=     

CRC32 
01245781011

121622232632
32

xxxxxxxxx

xxxxxxP

+++++++++

++++++=
 

  

 

 A good signature algorithm will generate unique signatures for different URLs.  A 

URL list is reduced – one signature generated for each URL – using software or hardware 

generation of signatures at the content source, and is then sent to the URL routers 

responsible for routing requests for the stored content.  The routing table is built using 

hash table methods with signatures (and not full- length URLs) as the keys.  Thus, the 

structure of the routing table is that of a hash table.  The CRC codes are generated on-the-

fly when an HTTP request is received, and are then used in the URL routing table look-

up.  A hash code for a URL is the first H bits of its CRC32 (for 321 ≤≤ H ) for a hash 

table of H2  entries. CRC codes can be generated on the fly with very simple hardware 

circuits when a packet is received.  A CRC32 results in 232 possible signatures.  The 
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hardware required to generate a CRC is a serial shift register and XOR circuit; the 

hardware is an integral part of all network adapters.  At the URL router, the URLs of all 

incoming HTTP requests are serially encoded into a CRC.   

In the case of a one-armed URL router, the network adapter can generate the CRC (or 

the CRC can be generated by software).  Existing network adapters cannot be 

programmed to generate CRCs on subfields within a received packet; however, it is 

possible to use the single CRC circuit of a network adapter to simultaneously generate the 

packet CRC and CRCs on any subfields of the packet if partial CRC values can be 

accessed. A single CRC32 circuit can be used to simultaneously generate an overall 

packet CRC32 and a CRC32 code for a subfield (on byte boundaries) of the packet will 

be described.  It is assumed that the current value of the CRC32 shift register can be 

sampled at byte boundaries.   

The CRC properties described in [59] and proved in [32] are used.  Let P be a CRC 

generator polynomial.  For any polynomials (bit sequences) Ai, i = 1, …, m there are the 

following properties: 
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where, 
 

                  
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Rem .                                 (5.3) 

 
Let 0A  be the bit sequence from the beginning of the packet to the last byte before the 

beginning of the subfield, 1A  be the bit sequence from the beginning of the packet to the 

last byte of the subfield, and 2A  be the bit sequence of the subfield.  Let the subfield 2A  

be of length M bits. The remainders corresponding to all possible lengths of 2A , that is, 

( )PR M
M 2Rem= , are stored in a look-up table. ( )PARA 0Rem

0
=  and 

( )PARA 1Rem
1

=  are returned from the CRC32 circuit (that is, from the network 

adapter).  ( )PARA 2Rem
2

=  must be found to have the CRC32 for the subfield 2A .  

2AR is solved for as follows:  Let 3A  be the bit sequence A0 shifted left M bits (that is, 

multiplied by M2 ). Getting MR  from a look-up table, from (5.2) the following is 

obtained:  
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Now a subtraction can finally be performed, since 3A is of same length as 1A .  From 

Equation (5.1) the following is obtained: 
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Equation (5.5) follows from modulo-2, addition and subtraction being the same (that is, 

an XOR operation). Solving for Equation (5.4) requires a 32-bit multiplication. A 32-bit 

multiplication can be implemented in software on a 32-bit processor using the algorithm 

of Figure 5.1. 

 
; Inputs are m1 and n1, output is r2:r1 = m1 * n1 
; where r2 is the high-order 32-bits of the 
; product.  All integers are assumed to be 32-bit 
; and unsigned. 
PROCEDURE MULT64(m1, n1, r2, r1) 
BEGIN 
  INTEGER m1, n2, n1, r2, r1 
  INTEGER count 
  ; Initialize to zero 
  n2 = r2 = r1 = 0 
  ; Multiply loop 
  LOOP count = 1 TO 32 
    IF (m1 AND 1) THEN 
      r2 = r2 XOR n2 
      r1 = r1 XOR n1 
    SHIFTLEFT(n2) 
    IF (n1 AND 80000000H) THEN 
      n2 = n2 OR 1 
    SHIFTLEFT(n1) 
    SHIFTRIGHT(m1) 
END 

 
Figure 5.1 – 32-bit multiply algorithm for 64-bit product (from [59]) 

 

5.1.1 Handling of Collisions  

A false hit or “collision” will occur when the CRC signatures of different URLs are the 

same.  This may result in an HTTP request being redirected (mis-routed) to a content 

source that does not contain the requested object.  In the case of redirection to a cache, 

the cache will request the object (often from the origin site) and store it for future 

redirections.  In the case of redirection to a distributed server, the mis-routing is handled 

one of two ways.  One method is to prevent collisions by checking CRCs during file 

generating and forcing a file renaming if a collision occurs.  The second method is to use 
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HTTP redirection to force another redirection to the origin site; this double re-direction 

will occur only very rarely.  

For 2K unique hashes (K = 32 for CRC32) and N URLs, 
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For a given URL in a list of N URLs,  
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The expected (mean) number of collisions in a set of N URLs is then, 
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5.2 Self-adjusting hashing method for fast routing table look-ups 

Hash functions should have low collision rates.  That is, it should be difficult to make 

strings that produce the same key.  A hash table can be implemented as an array of 

pointers to linked lists, and thus the limitation about the fixed size of the hash table can 

be eliminated, while consuming storage space as needed.  When trying to insert a key 

into a position that already holds another key (this is a collision), the new key can be 

simply added to the linked list of keys.  When a (colliding) key is accessed the nodes in 

the list are traversed one at a time, starting with the head and advancing towards the tail 

of the list.  Look up time is proportional to the number of nodes traversed until the search 

for key is found.  The routing table of a URL router can be a hash table of URL strings as 



 

 52 

keys and IP addresses (of content servers) as records.  By using URL signatures instead 

of full URLs as keys, the size of the routing table is reduced.  This dissertation 

investigates the use of URL signatures for both building reduced-size routing tables and 

as hash indexes.  It is expected that requests for web content will have very high temporal 

locality.  This suggests that self-organizing hashes that can put popularly requested URLs 

at the head of a hash chain may be well suited for improving look-up time.   

A second key contribution of this dissertation is a new self-organizing hashing 

method called Aggressive hashing based on the move-to-front rule used for self-

organizing a chained hash table.  In Aggressive hashing, the currently accessed record is 

moved to the head of its chain. The average worst case look-up time for the entire table is 

KNindexeshashN 2_ =  (or the mean chain length), where N is the number of keys.   

 Figure 5.2 shows the Simple chained hashing (presented in Chapter Two) search and 

insertion algorithm based on the hashing algorithm from [37]. Each resolution chain is 

denoted by a one-dimensional array LISTi, where i is the hash table index.  A key to be 

looked-up or inserted is denoted by KEY and TEMP is a temporary value holder used to 

perform a swap operation. Step C4 from the Simple chain hashing algorithm is modified 

to step C4B for Aggressive hashing.  Note that the H1 algorithm, described in Chapter 

Two is based on a similar replacement of step C4 with C4A algorithm. The chain shift 

described by the for loop in step C4B can be implemented by two simple pointer 

reassignment statements; this has negligible time complexity.  
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Figure 5.2 – Hashing algorithms (based on [37])  
 

C1.  [Create lists.] For i ← 0 to m-1 set LISTi ← NULL. 
C2.  [Hash.] Set i ← h(KEY), j ← 0 (Now 0 ≤ i ≤ m-1.) 
C3.  [Is there a list?] If LISTi = NULL, go to C6. (Otherwise LISTi  is occupied; 

will look at the list of occupied nodes that starts here.) 
C4.  [Compare.] If K = LISTi[j], the algorithm terminates successfully. 
C5.  [Advance to next .] If LISTi[j] ≠ NULL, set j ← j+1 and go to step C4. 
C6.  [Insert new key.] Set LIST i[j] ← KEY. 
 
 
C4A: [Compare and transpose – H1 hashing] 

If K = LISTi[j] and j ≠ 0, swap LISTi[j] with LIST i[j-1] and terminate 
algorithm with success. 
Else terminate algorithm with success. 

 
C4B: [Compare and move-to-front – Aggressive hashing] 

If K = LISTi[j] and j ≠ 0 LISTi[j]←TEMP, for k = 0 to j LISTi[k]← LIST i[k-
1]. Terminate algorithm with success. 
Else terminate algorithm with success. 
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Chapter Six 

Evaluation of URL Signatures for Digesting 

In this chapter, the use of CRC32 for building URL digests is evaluated.  The 

evaluation measures CPU time and memory size of CRC32 and other digesting methods 

from the literature.  Methods of reducing the size of URL lists, resulting in reduction of 

network bandwidth to share the URL lists, are of interest.  These reduced URL lists are 

called digests, and the methods for sharing digests among routers are called digesting.   

 

6.1 Access lists used in the evaluation 

Representative URL access logs were used to evaluate the performance of digesting 

methods.  A URL list was generated by taking the unique values from the access list.  A 

digest was generated for each URL list using CRC32 signatures for each URL.  The 

process of generating a digest is as follows.  Figure 6.1 shows a snippet from a raw HTTP 

access log (due to line length limits, the lines are cut and marked with a “...”).  This 

snippet contains duplicate URLs and one URL for dynamic content.  The relevant field of 

interest in the raw HTTP access log is the URL.  The URL access list, created from the 

HTTP access log is a list of URLs as shown in Figure 6.2.  The URLs in the HTTP access 

log associated with dynamic content were discarded.  URLs with the “cgi” substring were 

removed.  This is because dynamic content must always be obtained from an origin 

server (dynamic content cannot be cached).  From the URL access list, a URL list is 

generated.  A URL list is the unique set of URLs from a URL access list.  The Unix 
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uniq command was used to extract the unique set of URLs.  Figure 6.3 shows a URL 

list.  Thus, a URL list is a key-value list and an URL access list is a look-up list.  The 

URL lists were used in two formats.  The first format is with URL strings as keys as in 

Figure 6.3.  The second format is with URL strings reduced to CRC32 signatures, shown 

in Figure 6.4.   

 
 
30633 73.139.209.145 TCP_MISS/200 74052 GET http://gigex1.com/M0016 ... 
14104 227.229.152.199 TCP_MISS/200 17048 GET http://fourohfour.xoom ... 
13549 73.139.209.145 TCP_CLIENT_REFRESH_MISS/200 368 GET http://www ... 
704 148.97.138.187 TCP_REFRESH_MISS/504 1339 GET http://www.rocksho ... 
706 112.211.98.27 TCP_DENIED/403 1149 GET http://store2.yimg.com/I/ ... 
707 244.60.215.3 TCP_MISS/503 1265 GET http://www.linkexchange.ru/c ... 
33990 227.229.152.199 TCP_MISS/200 4192 GET http://fourohfour.xoom. ... 
30461 227.229.152.199 TCP_MISS/200 5652 GET http://fourohfour.xoom. ... 
768 112.211.98.27 TCP_DENIED/403 1133 GET http://www.body-n-mind.co ... 
176 112.211.98.27 TCP_DENIED/403 1149 GET http://store2.yimg.com/I/ ... 
151 112.211.98.27 TCP_DENIED/403 1133 GET http://www.body-n-mind.co ... 
119622 163.197.198.77 TCP_MISS/200 21880 GET http://detik.com/peris ... 
79 112.211.98.27 TCP_DENIED/403 1133 GET http://www.body-n-mind.com ... 
239 186.19.182.251 TCP_MISS/200 265 POST http://srv01.lingocom.com/ ... 

 
Figure 6.1 – Snippet of a “raw” HTTP access log 

 
 
 
 

http://gigex1.com/M0016500027/00000/MDK2.exe 
http://fourohfour.xoom.com/Members404Error.xihtml 
http://www.americangreetings.lycos.com/images/sidedoor/space.gif 
http://www.rockshox.com/media/images/images02/001_r08_c37.gif 
http://store2.yimg.com/I/greatsword_1565_161175 
http://fourohfour.xoom.com/Members404Error.xihtml 
http://fourohfour.xoom.com/Members404Error.xihtml 
http://www.body-n-mind.com/haunted3.jpg 
http://store2.yimg.com/I/greatsword_1565_301888 
http://www.body-n-mind.com/haunted3.jpg 
http://detik.com/peristiwa/2000/08/01/200081 
http://www.body-n-mind.com/italian4.jpg 
http://srv01.lingocom.com/scripts/engine 

 
Figure 6.2 – Snippet of an URL access list created from the log snippet of Figure 6.1 
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http://gigex1.com/M0016500027/00000/MDK2.exe 
http://fourohfour.xoom.com/Members404Error.xihtml 
http://www.americangreetings.lycos.com/images/sidedoor/space.gif 
http://www.rockshox.com/media/images/images02/001_r08_c37.gif 
http://store2.yimg.com/I/greatsword_1565_161175 
http://www.body-n-mind.com/haunted3.jpg 
http://store2.yimg.com/I/greatsword_1565_301888 
http://detik.com/peristiwa/2000/08/01/200081 
http://www.body-n-mind.com/italian4.jpg 
http://srv01.lingocom.com/scripts/engine 
 
Figure 6.3 – Snippet of an URL list from an HTTP access list showing full URLs 

 
 

3B39227Eh 
2064CE70h 
AF724180h 
89B96C0Ah 
8BD5FCB1h 
EA6898CCh 
7CB781B4h 
DFA3E708h 
4E56EC0Eh 
10EB737Bh 
 

Figure 6.4 – The URL list of Figure 6.3 with CRC32 URL signatures 
 

6.2 Evaluation of CRC32 digesting 

The use of URL signatures for URL routing was evaluated in terms of three criteria.  The 

three criteria, and thus also the response variables for the experiments, were: 

1. Probability of false hits due to signature collisions 

2. Processing (CPU) resources required to generate URL signatures at the content 

sources 

3. Reduction in processing and memory resources for URL look-up by signature 

versus full URL 

From each access list, a URL list was generated by taking the unique values from the 

access list.  The URL list is the list of objects stored in a cache or server.  For each URL 
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list, a compressed form was generated using CRC32 signatures for each URL.  For look-

up performance measurements, the URL list was stored as a Simple chained hash table 

with either: 

• Full URL as the key 

• Signature (CRC32) of the URL as the key   

For each key, a four-byte value was stored representing an IP address of a content source 

in a URL routing table.  The URL list hash table is of length H2  entries (H = number of 

bits in the hash value taken as the first H bits of the URL CRC32).  For the hash table 

with full URLs as keys, the hash values were taken as the first H bits of the URL CRC32.  

The value of H was a control variable in the performance measurement.  A larger H 

results in greater memory usage, but smaller hash chains will give faster look-ups.  Table 

6.1 summarizes the access logs used in this evaluation.  Table 6.1 shows the mean URL 

length in each access list and the size of the URL list with full URLs and with CRC32 

signatures.  The CRC32 digested URL list size is smaller than the full URL list size by a 

factor of the mean URL length divided by four (for four bytes in a CRC32).   

 

Experiment #1: Evaluation of the number of false hits or CRC collisions in the access and 

URL lists was measured.  A CRC32 was generated for each URL and the number of non-

unique CRC32s counted.   

 

Experiment #2: Evaluation of the CPU time required to generate the compressed URL list 

based on CRC32 with software CRC generation.  An 8-bit look-up method of generating 

CRCs was implemented in C language (using the methods described in [65]).   
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Table 6.1 – Summary statistics for access logs used in this evaluation 
 
 

Access list name 
Number of 
accesses  

Number of 
URLs  

Mean 
URL len 
(bytes) 

Full URL list 
size (bytes) 

CRC32 list 
size (bytes) 

www.peak.org [52] 16,374 70 23.93 1,675   280 

SDMA [61] 41,941 153 33.76 5,165 612 

UVA [71] 318,899 45,816 44.91 2,057,625 183,264 

NLANR [49] 944,028 504,967 58.44 29,510,135 2,019,868 

UC Berkeley [46] 1,791,349 149,344 41.87 6,253,716 597,376 

mcs.net [40] 1,862,070 75,361 29.87 2,250,829 301,444 

Hyperreal.org [5] 4,080,590 86,338 89.17 7,698,337 345,352 

CA*netII [63] 4,642,861 2,552,045 57.83 147,573,556 10,208,184 

USF CSEE [16] 8,819,454 49,029 51.84 2,541,483 196,116 

 
 

Experiment #3: Evaluation of the CPU time required to look-up all the entries from an 

access list in the associated URL list was measured.  The URL list was stored as a Simple 

chained hash table with either a full URL as the key or a CRC32 URL signature as the 

key.  To study the effect of hash table size, the number of entries was varied from 1024 

(H=10) to 4,194,304 (H=22). 

 

6.2.1 Experiment results 

Table 6.2 shows the results for experiment #1 in terms of collisions for the access and 

URL lists.  The percentage of collisions grows with the size of the URL list.  There is no 

noticeable pattern in terms of access list collisions.  Table 6.2  shows  URL  list  collision  

probabilities and the expected number of collisions from Equation 5.8. CRC32 signatures 
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Table 6.2 – CRC32 URL list collision probability 
 

Access list name 
Collisions 
Measured 

Calculated 
value 

Pr[collision] 
measured 

www.peak.org 0 0 0.0000000 

SDMA 0 0 0.0000000 

UVA 0 1 0.0000000 

NLANR 68 59 0.0001347 

UC Berkeley 2 5 0.0000134 

mcs.net 0 1 0.0000000 

hyperreal.org 2 2 0.0000463 

CA*netII 1558 1516 0.0006105 

USF CSEE 2 1 0.0000408 
 

 

of URLs appear to be uniformly random with the measured and expected number of 

collisions close to the same. 

Table 6.3 shows the results for experiment #2 with CPU measurements accurate to a 

precision of 10 milliseconds.  Time to generate the list and average time to generate a 

URL signature  is  shown.  These  results  show  that  the  compression  time  is  usually a 

 

Table 6.3 – CPU time to generate a compressed URL list 
 

Access list name Time for URL list Time for URL 

www.peak.org   <10 millisec -- 

SDMA <10 -- 

UVA 40        0.8730 microsec 

NLANR 460 0.9109 

UC Berkeley 100 0.6695 

mcs.net 40 0.5307 

hyperreal.org 120 1.3897 

CA*netII 2390 0.9368 

USF CSEE 40 0.8158 
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fraction of a second, with each URL requiring about 1 microsecond to be compressed to a 

CRC32 signature.  

Figure 6.5 shows the results for experiment #3 as the total time to look-up 50,000 

entries from a URL list based on the NLANR log [49].  As H decreases, the mean chain 

length in the hash table increases causing a greater number of memory references to be 

required to match a key.  For H=12, using URL signatures results in 6 times reduction in 

look-up time.  Beyond about H=14, increasing the hash table size has little additional 

benefit to reducing look-up time.  At H=14, the rate of look-ups is about 2.9 million per 

second for compressed URLs and about 440 thousand per second for full URLs (with 

100% CPU utilization in both cases).   

 

 

 

 

 

 

 

 

 

 

Figure 6.5 – The effects of hash table size on look-up time 
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6.3 Comparing CRC32 to MD5-Bloom filter digesting 

CRC32 digesting was compared to existing Bloom filter digesting.  Trace-driven 

simulation was used to evaluate URL digesting methods.  The input was the URL list that 

was to be compressed into a digest.  Four URL access logs were used to derive the URL 

lists.  The access logs were: CA*net squid proxy log (CA *net list) [63], a log from the 

USF Computer Science and Engineering server (CSE list), an NLANR proxy log 

(NLANR list) [49], and a server log from Virginia Tech (VTech list) [71].  URL lists #3 

and #4 are the same as used in Summary Cache [19].  Table 6.4 summarizes the URL 

lists.  The last column is the mean number of parts in a URL, which is used in experiment 

#4 (URL parts are substrings of the URL divided by each of the forward slashes “/” in it. 

For example http://www.some.com/folder1/file.name has the string “folder1” as one of 

its parts). 

 

Table 6.4 – Summary statistics for the URL lists used in this evaluation 
 

# URLs  Size URL len URL parts 

CA*net list 2,552,045   140.75 MB              56.8 B 6 

CSE list 49,029 1.54 28.8 7 

NLANR list 483,631 16.30 56.0 6 

VTech list 45,817 1.96 43.9 6 

 

 

Experiment #1: Evaluation of digest size and CPU time.  For the MD5-Bloom filter, 

CRC32, 32-bit checksum, and Lempel-Ziv (LZ) compression (pkzip25 [53] was used for 

LZ compression).  For the MD5-Bloom filter digests, a load factor of 8 was used.   
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Experiment #2: Evaluation of MD5-Bloom by varying load factor.  Again, digest size and 

CPU time are measured. 

 

Experiment #3: Evaluation of the effects of URL length on collisions.  A comparison of 

MD5-Bloom and CRC32 for collision rate as a function of URL length.  Only URLs of 

greater than 25, 30, …, 80 bytes and load factor 8 were used.   

 

Experiment #4: Evaluation of digest size of the hash chain method [41].  The digest size 

is based on the number of components in a URL and a shared tree structure with 32 bits 

to represent a <depth, hash code> pair. 

 

6.3.1 Experiment results 

Tables 6.5 and 6.6 show the results for experiments #1 and #2 for the four URL lists.  

The last three rows show the results for MD5-Bloom digesting with varying load factor 

(experiment #2).  The CRC32 digest requires about 6 times less CPU time and with no 

increase in collisions!  LZ compression requires less CPU time than Bloom filter and 

slightly more time than the CRC32 method, but results in larger digest sizes.  The 32-bit 

checksum yields only slightly better CPU time results than CRC32 at an expense of 

higher collision rates. 

For experiment #4, the digests of the four URL lists were larger than all other 

methods from experiment #1 with the exceptions of MD5-Bloom filter with load factor 

32 for all URL lists and LZ and MD5-Bloom with load factor 16 for URL CSE list.  Hash 

chaining produces an average of 212% larger digests than CRC32.  CRC computation in 
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software is linear with the CRC length, hence the hash chain method will require greater 

CPU time than the CRC32 method. 

 

Table 6.5 – Results for experiment #1 and #2 for CA*net and CSE lists  
 
 

CA*net list CSE list 

Method (L. Factor) CPU time 
(sec) 

Size 
(Mbytes) 

Collisions 
(%) 

CPU time 
(sec) 

Size 
(Mbytes) 

Collisions 
(%) 

MD5-Bloom (8) 89.13 9.74 0.03 1.63 0.19 0.00 

CRC32 16.22 9.74 0.03 0.27 0.19 0.00 

32-bit checksum 14.85 9.74 0.71 0.24 0.19 0.22 

LZ compression 17.35 16.43 0.00 0.23 0.25 0.00 

MD5-Bloom (8) 89.13 9.74 0.03 1.63 0.19 0.00 

MD5-Bloom (16) 92.37 19.47 0.00 1.71 0.37 0.00 

MD5-Bloom (32) 97.40 38.94 0.00 1.84 0.75 0.00 

 
 

Table 6.6 – Results for experiment #1 and #2 for NLANR and VTech lists 
 
 

NLANR list VTech list 

Method (L. Factor) CPU time 
(sec) 

Size 
(Mbytes) 

Collisions 
(%) 

CPU time 
(sec) 

Size 
(Mbytes) 

Collisions 
(%) 

MD5-Bloom (8) 16.25 1.84 0.01 1.52 0.17 0.00 

CRC32   2.51 1.84 0.01 0.20 0.17 0.00 

32-bit checksum   2.29 1.84 0.30 0.20 0.17 0.08 

LZ compression   3.32 4.00 0.00 0.27 0.31 0.00 

MD5-Bloom (8) 16.25 1.84 0.01 1.52 0.17 0.00 

MD5-Bloom (16) 16.99 3.69 0.00 1.59 0.35 0.00 

MD5-Bloom (32) 18.20 7.38 0.00 1.70 0.70 0.00 
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Figure 6.6 shows experiment #3 results for CA*net list, the other URL lists 

exhibit a similar trend.  As the URL length increases, the collision rate decreases. 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 – Results from experiment #3 

 

6.4 Discussion of results 

URL signatures can be used to improve URL routing.  URL signatures based on CRC32 

can reduce by a factor of 15 the size of URL lists. URL signatures can also speed-up the 

look-up of URLs in a hash table by a factor of 7.  A reduced URL list requires less 

network bandwidth to transfer and less memory for storage in the URL router.  For 

CRC32,  the percentage of collisions grows with the size of the URL list, as expected, 

however the number of collisions in a typical access list was found to be slightly better 

than the number of collisions resulting from using existing methods (0.74% smaller).  

Compared to existing URL digesting implementations, the CRC32 digest was shown to 
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require less CPU resources to generate the digest at a content source and produce 

equivalent collision rates.  Non-unique hashes, and the rate of change of content in caches 

and servers, can lead to false hits or “collisions”.  Having a collision-free hashing 

method, however, is not sufficient enough to prevent false hits.  False hits can be the 

result of hashing collision in the routing table, but they can as well be the result of 

content aging. As previously mentioned in Section 2.6.1, a typical low cache miss rate is 

of the magnitude of 5% from the total number of requests [69]. Hence, it is important to 

note that the number of content aging misses is by magnitudes greater than the number of 

CRC32 collisions. A collision free signature method can guarantee no collisions in the 

routing table, however content aging misroutes can never be avoided completely, since 

digest updates will always delayed due to (at least) digest communication delay. 

Storing multiple Bloom filters and implementing parallel “look-ups” into these filters 

is memory and CPU (hardware) intensive.  The CRC32 digests are amenable to a direct 

hash-based look-up.  Multiple routing tables can be merged into one look-up table.  This 

is needed, because a single digest will contain a routing table for each distributed content 

source. For example, an implementation of a CRC32 signature based digest can be a hash 

table using a subset of the CRC32 codes directly.  CRC32 is already well randomized and 

taking a subset of the 32-bits can be used instead of a hash function computation when 

each key is accessed. Hence, insertion of entries can be of the same complexity as a 

switching look-up. 
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Chapter Seven 

Evaluation of Hashing Algorithms for URL Routing 

In this chapter the Simple, H1, and Aggressive hashing algorithms are evaluated for 

their application to URL routing.  This evaluation measures the hashing table look-up 

time and the behavior of a single server queue where the service center is the hashing 

table look-up.  The application of the three hashing algorithms to URL routing is new and 

thus this evaluation chapter presents new insights on the relative performance of these 

algorithms.  The evaluation of the queueing behavior of a hashing algorithm is an entirely 

new way of characterizing these types of algorithms.  The criteria of interest in this 

evaluation are look-up and queueing delay. 

 
7.1 Access lists used in this evaluation 

For the evaluation of the simple, H1, and Aggressive hashing algorithms, two 

representative access logs that contained time-stamps (of access interarrival times) were 

used.  The NASA [30] and Clark [29] access logs, were chosen due to their large size and 

use in other studies (that is, [4]).  Tables 7.1 and 7.2 summarize the two access logs.  In 

Table 7.1 the list size (1) is for the full URL string and list size (2) is for CRC32 

signatures.  The size of the CRC32 signature table is the number of URLs multiplied by 

four bytes.  The NASA access list represented one month of activity and the Clark list 

one week of activity.  These access logs are representative of requests in a CDN where 

content can be distributed to both servers and caches.  The large size of the logs (many 

millions of accesses) and time of collection are significant. 



 

 67 

Table 7.1 – Characterization of HTTP access lists for size 
 

Access list name # of accesses # of URLS Mean URL length List size (1) List size (2) 

Clark 1,673,750 37,266 35.06 bytes 1,306,546 bytes 149,064 bytes 

NASA 1,569,898 15,700 35.58  558,606 62,800 
 

 

Table 7.2 – Characterization of HTTP access lists for time 
 
 

Access list name Duration Mean interarrival time Stddev interarrival time 

Clark  605,776 sec   0.36 sec  5.62 sec 

NASA 2,592,007 1.65 39.79 

 

 

7.2 Description of evaluation method – look-up time 

In Simple chain hashing an input key is hashed into a hash index.  The hash index points 

to a chain of key-value pairs in the hash table.  The input key is then compared to the 

stored keys in the hash chain and when a matching stored key is found, the value stored 

in association with that key is returned.  For a hashing algorithm, the response variable of 

interest is the look-up time to find a value for a given input key.  This look-up time is the 

product of the number of memory accesses and memory access time (the “speed” of the 

memory).  In this evaluation, memory access time was normalized to 1.0.  In a hash list a 

single look-up requires one or more memory accesses to find the value associated with a 

key.  For example, if the value associated with a 32-bit key is the second entry in a 

Simple hash chain then two memory accesses are required: one access (and comparison) 

to determine that the head of the chain is not the key; and a second access (and 

comparison) to determine that the second entry is a match to the key.  The value 
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associated with the second entry in the table is then read.  The size of the key, its hash 

index, and associated value also affect the number of memory accesses.  In this 

evaluation, a 32-bit wide memory was assumed.  Thus, if a key was of size 32-bits only 

one memory access was needed to compare it to stored keys, and two memory accesses 

are needed to traverse and compare a single chain node.  A larger key would require 

multiple memory accesses for comparison with the stored keys.  A URL list that uses 32-

bit signatures to represent the URL strings (the keys) reduces memory accesses when 

comparing keys for a match.  Hash table size is measured in number of chains (in )2K .   

The three algorithms were implemented in the C programming language with a single 

main program and three called functions – each function a different hashing algorithm.  

Appendix A shows the data structure for a chain entry (key and value) and the look-up 

portion of the three hashing algorithms.  The hash table was always stored in main 

memory using dynamically allocated memory (that is, from a C code malloc() 

statement).  The main program took as input: 

• Hash table size (K) 

• File name of a URL list to populate the hash table 

• File name of an URL access list of keys to look-up in the hash table 

The URL lists existed in both URL string and signature formats.  The URL access lists 

contained either a URL string or URL signature for the key.  The program used the URL 

access lists to look-up values in the created hash tables where the number of memory 

accesses was counted for each key looked-up. The simulation ensures that all look ups 

were successful.  That is, all looked up keys are known in advance and they are keys 

already stored in the hash.  For a given hash table size, URL list, and URL access list the 
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minimum, maximum, mean, and standard deviation of the number of memory accesses 

were determined and reported.   

 

7.3 Description of evaluation method – queueing behavior 

A URL router can be modeled as a single server queue where the look-up is the service.  

Where hashing is used as the look-up method, the hashing algorithm defines the service 

center for the queue.  Figure 7.1 shows a single-server queue where the service center is 

the hash table look-up (based on the number of accesses in the hash table) and the 

arriving customers are keys.  The departing customers are the values resulting from the 

hash table look-up.  The input to the queueing model are interarrival times (from the 

access list or exponentially distributed as described below) and number of memory 

accesses for a given URL associated with the interarrival time.  The number of memory 

accesses was generated from the experiments in the previous section.  This models a 

URL router where the hash table look-up is the service time for a request to be re-

directed.  The goal of the queueing study is to evaluate the performance of the hashing 

algorithms with respect to application in a queueing system – such as a URL router.  This 

is a new way of studying the behavior of a hashing algorithm.  The source code for this 

evaluation is using the CSIM18 simulation model.  CSIM18 is a process-oriented 

simulation engine that is a C function library [67].  Thus, CSIM18 models are written in 

C.  This source code models a trace-driven single-server queue.  The generate() 

process reads the tuples from the trace file, holds for an interarrival time, and then queues 

the service demand (service time is proportional to the number of accesses) to the 

queue1() process.  The queue1() process reserves, holds, and releases a server 
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facility.  CSIM18 maintains statistics counters internally and the final statistics results are 

output at the end of the main program (named sim() in CSIM18 programs). 

 

 

 

 

 

Figure 7.1 – Single-server queueing model for hashing algorithm evaluation 

 

For a single server queue, the response variable of interest is queue length.  Given a 

queue length and a known arrival rate, the queueing delay can be directly computed using 

Little’s Law  

λ
L

W =          (7.1) 

where L is mean queue length, λ is mean arrival rate, and W is mean wait or delay).  The 

utilization of a queue, ρ (also U), is the arrival rate divided by service rate, µ,  

µ
λ

ρ == U          (7.2) 

Queue length is affected by the mean, variance, and correlation properties of the 

customer interarrival times and service times.  Buffer size was infinite in all simulation 

models. The control variables for the hashing algorithms evaluated for queueing behavior 

are the same as for the look-up time evaluation with the addition of the following: 

 

Queued URLs 

Server is a hash table look - up 
Arrivals are URLs to be looked - up 

Queued URLs 

Server is a hash table look - up 
Arrivals are URLs to be looked - up 
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• Utilization (U) of the server 

• Request interarrival time distributed as such: 

o Exponentially distributed 

o Truncated maximum interarrival time ( maxT ) from the URL access list  

• Ordering of requests (unshuffled or shuffled) 

The utilization of a server is controlled by the modeled time for a memory access.  For a 

desired target utilization, U, the modeled memory access time, mT , is determined as 

follows.  For a given access list the total time for all accesses to arrive, allT , is known 

( allT  is the sum of the interarrival times in the URL access list).  The total number of 

look-ups, totalN , required to look-up all the keys in the access list is known from the 

previous look-up time evaluation.  Then, 

total

all
m N

TU
T

⋅
=      (7.3) 

where mT  is set as a control variable in the simulation model to achieve a desired server 

utilization, U.  A method of truncating interarrival times was used to control the degree of 

burstiness of the interarrival times (measured by the coefficient of variation) in the URL 

access lists.  By controlling the degree of burstiness, the queueing evaluation could be run 

for greater utilization levels.  This method entailed setting a maximum interarrival time, 

maxT .  All interarrival times greater than maxT  were truncated to maxT .  This resulted in 

reducing the burstiness of the interarrival times as measured by the coefficient of 

variation.  Shuffling is used as a means of breaking long range dependence (LRD) in the 

order of accesses.  Shuffling is implemented by selecting each entry in an URL access list 
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and swapping it with a randomly chosen entry in the list.  This shuffling is repeated for 

several passes through the URL access list.  LRD is well-known to affect queueing delay 

[39].  Autocorrelation is a measure of LRD.  A slowly declining autocorrelation signifies 

the existence of LRD. 

 

7.4 Evaluation of look-up time 

The three hashing algorithms were compared for look-up time.  The worst case in terms 

of hash look-up time will occur when the keys are accessed so that only the keys at the 

tail of the chain are accessed all the time. Most studies will not address this case, since its 

theoretical evaluation is trivial. The mean look up time will be examined next (again, in 

terms of the number of nodes traversed in a chain) to do a look-up. The NASA and Clark 

URL access lists (and associated URL lists), as summarized in Section 7.1 were used as 

input.  The HTTP access and URL list was used in two formats – keys as URL strings 

and keys as 32-bit CRC32 URL signatures.  The key control variable for the four 

algorithms was hash table size.  The hash table size was varied as K=8, 9, ... 13.  For each 

hash table created, the key properties of the hash table itself were measured.  Tables 7.3 

and 7.4 show the memory size and chain lengths statistics for K=8 (this value of K 

represents a dense table) for the NASA and Clark access lists. 

 

Experiment #1: Evaluation of the effect of K on look-up time.  Comparison of the three 

algorithms for K=8 to 13 for the NASA access list. 
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Experiment #2: Evaluation of the effect of K on look-up time.  Comparison of the three 

algorithms for K=8 to 13 for the Clark access list. 

 

Table 7.3 – CRC32 URL signatures populated hash table for NASA (K=8) 

 

 
Table 7.4 – CRC32 URL signatures populated hash table for Clark (K=8) 

 

 

7.4.1 Experiment results 

The outcome from the experiments #1 and #2 are shown in Figures 7.2 and 7.3.  For 

smaller hash table sizes (K=8 and K=10) resulting in densely populated hash tables 

Aggressive hashing outperforms Simple chain hashing by a factor of 16 and H1 by a 

factor of 1.7.  For sparse hash tables (K>10) H1 and Aggressive hashing exhibit 

comparable look-up times.  When the hash table size approaches the cardinality of the 

CRC32 space, 322 , and the mean chain length is one, the performance of all hashing 

methods is expected to converge.  Since the average worst case look-up time for the 

entire table equals the mean chain length (as explained in Section 5.3), when the mean 

chain length is one, the average number of look-ups will be one and the same for all 

Algorithm Memory size Chain mean Chain std dev Chain min Chain max 

Simple  5.26 Mbytes 43.92 24.60 1.00 132.00 

H1 4.53 3.25 12.32 1.00 132.00 

Aggressive 2.69 1.74 7.46 1.00 132.00 

Algorithm Memory size Chain mean Chain std dev Chain min Chain max 

Simple 16.70 Mbytes 58.69 39.75 1.00 239.00 

H1 0.39 15.94 31.30 1.00 239.00 

Aggressive 0.21 9.45 20.26 1.00 239.00 
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methods.  Both Figure 7.2 and Figure 7.3 (each plotting a different input trace – Clark 

and NASA) show this trend for increasing values of K. 

 

 

 

 

 

 
 

 

 

 

Figure 7.2 – Hash table look-up time for experiment #1 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 – Hash table look-up time for experiment #2 
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7.5 Evaluation of queueing behavior 

The three hashing algorithms were compared for queueing delay.  The HTTP access and 

URL lists were used only in signature format.  For the queueing evaluation, only the 

NASA access list was used since the results in the previous section for the two lists were 

very similar.  For the experiments, the control variables were hash table size (K), 

utilization of the queue (U), distribution of requests interarrival times, and ordering of 

requests.  For distribution of interarrival times a maximum interarrival time ( maxT ) is 

used in some experiments.  In other experiments, the interarrival times are synthetically 

generated from an exponential distribution.  The synthetically generated interarrival times 

replace the interarrival times taken from the access list in the trace file.  The order of 

requests is used in two ways: 

• As taken from the access list (unshuffled) 

• Shuffled from the access list to break any long range dependence in request order 

Figure 7.4 shows the autocorrelation for the NASA access list for the number of accesses 

for the three algorithms.  The autocorrelation was computed as r(k) for a lag k. 

2
)])([(

)(
σ

µµ −− −kii xxE
kr ,    (7.4) 

where xi  is the value that the random variable x takes at time i, µ  is the mean number of 

look-ups for the evaluated time series, and σ2 is the variance of the number of look-ups.  

The results in Figure 7.4 show that Simple chain hashing and H1 hashing have a much 

higher autocorrelation than does Aggressive hashing.   
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Experiment #1: Evaluation of the effect of K on queue length for a fixed service rate such 

that Simple chain hashing is U = 80% and exponentially distributed interarrival times of 

requests.  Mean queue length is measured. 

 

Experiment #2: Evaluation of the effect of maxT  on queue length for a fixed service rate 

such that Simple chain hashing is U = 80% and K = 8.  Mean queue length and the 

utilization of H1 and Aggressive are measured.     

 

Experiment #3: Evaluation of the effect of maxT  on queue length for a fixed U = 80% and 

K = 8.  Mean queue length is measured.    

 

 

 

 

 

 

 

 

 

 

Figure 7.4 – Autocorrelation for 100 lags for number of accesses 
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Experiment #4: Evaluation of the effect of autocorrelation (unshuffled and shuffled 

ordering of requests) on queue length L for a fixed U = 80% and fixed hash table size K = 

8.  Mean queue length is measured. 

 

Experiment #5: Evaluation of the effect of autocorrelation (unshuffled and shuffled 

ordering of requests) on queue length for a fixed service rate such that simple is U=80% 

and fixed hash table size K=8.  Mean queue length is measured.  

 

7.5.1 Experiment results 

Results from Experiment #1 are shown in Figure 7.5. For smaller hash table sizes (K=8 

and K=10), resulting in dense hash tables, Aggressive hashing outperforms the other 

methods:  Simple  chain  hashing  by  a  factor of 27  and  H1 by a factor of about  2.   H1 

 

 

 

 

 

 

 

 

 

 
Figure 7.5 – The effect of hash table size (2K) on mean queue length (L) 
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performs 13 times better than Simple chain hashing.  When  the mean chain length for  all 

hash index positions gets closer to 2 the performance of all methods is close.  With 

increase in K all methods converge as expected.   

Results for experiment #2 are shown in Figure 7.6. Increase in burstiness levels for all 

methods resulted in increase in mean queue length. The mean queue length for Simple 

was magnitudes greater that that of H1 and Aggressive, ranging from 5500 to 34,000 

requests. The observed utilization levels for H1 were about 22%, while Aggressive 

resulted in a drop down to 18%.  

 
 

 

 

 

 

 

 

 

 

Figure 7.6 – The effect of burstiness ( maxT ) on L for K=8 
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performance of Aggressive is much better than that of H1. This outcome indicates that 

there are other factors than mean number of look-ups that determine mean queueing 

delay and motivates the next two experiments.  

 

 

 

 

 

 

 

 

 

 

Figure 7.7 – The effect of  maxT  on L for K=8 and U=80% 
 

Table 7.5 shows the results for experiment #4.  The results include a theoretical 

M/G/1 queueing result for L using the Pollaczek-Khinchin formula [36]: 
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where µλρ == U  and sC  is the coefficient of variation of the service time.  As seen in 

Figure 7.6 the M/G/1 results agree very closely with the shuffled results showing that the 

shuffling of the ordering resulted in an independent series. 
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Table 7.6 shows the results for experiment #5.  The greater efficiency of H1 and 

Aggressive results in a much lower utilization than Simple chain hashing.  H1 is about 

four times more efficient than Simple chain hashing (that is, four times less look-ups are 

needed to find a value) and Aggressive is a factor of 1.7 as efficient as H1.  At the lower 

utilizations, mean queue lengths are very small as would be expected. 

 
Table 7.5 – Mean queue length results for experiment #4 

 

Algorithm unshuffled shuffled M/G/1 

Simple 5.20 3.15 3.13 

H1 29102.01 8.58 8.57 

Aggressive 294.09 9.93 9.76 

 

 
Table 7.6 – Mean queue length results for experiment #5 

 

Algorithm U unshuffled Shuffled 

Simple     80.0% 5.20 3.15 

H1 21.7 0.43 0.36 

Aggressive 12.9 0.19 0.18 

 

 

7.6 Discussion of results 

Aggressive hashing improves upon H1 hashing.  The improvement in look-up time was 

modest, a factor of about two for both the evaluated traces. As expected with an increase 

in the hash table size, the mean hash chain length for all methods decreases. This result is 

intuitive, since a larger index space will result in decrease in mean number of collisions.   

The queuing performance of H1 and Aggressive hashing for sparse hash tables is also 
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similar. When the number of hash index locations is sufficiently large to prevent 

collisions of more than two keys at an index, both self-adjusting methods will have the 

same mean chain length and exactly the same look-up performance.  A trend of merging 

the performance of these two methods with increase in table size was an expected 

observation since chain node rearrangement for chains shorter than two nodes in length is 

the same. Simple chain hashing will have the same performance as the other two methods 

if there are no collisions in the hash table. This will occur when the size of the index 

space matches the cardinality of the CRC32 space. Hence, a trend of merging the 

performance of all methods with increase in table size was an expected result, as well, 

since chain node rearrangement for chains shorter than two nodes in length is the same.   

In the second set of queuieng evaluation experiments, where table size is fixed to 

match a densely populated table, and traffic burstiness varies, it was shown that using 

queueing as a means of evaluating hashing algorithms can be very insightful.  This 

simulation–determined difference in mean look-up time between H1 and Aggressive 

hashing was 1.7 times for a fixed utilization of 80%.  The difference in mean queueing 

delay was 6 times.  When the requests were shuffled, all the hashing algorithms resulted 

in M/G/1 predicted queueing delay.  This demonstrates that autocorrelation plays the role 

in queueing delay in excess of that predicted by the M/G/1 model and, very significantly, 

makes H1 hashing very unsuitable for use in routing tables.  It is a remarkable result that 

only a very slight difference in mean look-up time can “hide” such a considerable 

difference in mean queueing delay.  For any hashing implementation that is part of a 

queueing system, it is very important to evaluate queueing behavior.  This dissertation 

has shown this for the first time.  
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Chapter Eight 

Summary and Directions for Future Research 

Content Distribution Networks (CDNs) are a rapidly growing service on the Internet.  

CDNs distribute and co- locate content to be geographically close to the users (of the 

content).  This content mirroring 1) reduces the load on the origin server, 2) reduces 

traffic on the Internet, and 3) improves response time to the users.  For CDNs to be 

feasible, methods of routing of HTTP requests originating from users are needed.  URL 

routers need routing tables similar to IP routing tables in IP routers.  However, the 

methods used for IP routing cannot scale to URL routing.  In URL routing the number of 

destination addresses (URLs) greatly exceeds the number of IP addresses.  In addition, 

URLs are not stable – new ones are constantly created and old ones disappear.  The large 

size of URLs, their very large number, and their dynamic nature makes URL routing a 

difficult problem.  This is the problem that is addressed in this dissertation. 

In this dissertation, the problem of reducing the size and improving look-up 

performance of URL routing tables in URL routers is addressed.  A URL router that uses 

HTTP redirection is architected in Chapter Four.  The URL router front-ends a content 

server including the origin server site.  As the front end, the URL router receives client 

HTTP requests by establishing a TCP connection with a requesting client.  The HTTP 

request is either satisfied at the local site or re-directed with an HTTP redirection 

message to a better-to-the-user content source.  This re-direction entails a routing look-

up.  Routing tables or other knowledge of location of content must be shared.  The 
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location knowledge is the URL and its associated content source IP address(es).  In 

Chapter Five methods of reducing the size of URL routing tables are investigated.  Good 

methods will both reduce the size of the routing table and enable fast routing look-ups.   

Cyclic Redundancy Check (CRC) codes are investigated as a means of reducing a 

URL string to a 32-bit integer signature.  CRC32 can be computed reasonably efficiently 

in software and very efficiently in hardware.  Properties of CRCs – that are used in this 

dissertation – make it possible for a single CRC hardware circuit to compute CRCs over 

multiple fields in a packet.  Experiments show that CRC32 URL signatures result in 

collision rates comparable or equal to existing Bloom filter methods.  Bloom filters 

cannot be updated in the same manner as can CRC32-based URL routing tables and are 

thus not applicable to URL routing.  MD-5 signatures are guaranteed (with very high 

probability) to be unique at an expense of high computational complexity.  This 

uniqueness property is lost when a Bloom filter is used.  Thus, using CRC32 (with less 

computational complexity and “free” availability in existing network hardware) is 

motivated.  

The CRC32 URL signatures lead naturally to the use of hash tables for 

implementing a URL routing look-up.  CRCs are uniformly distributed random values 

where any sub-sequence of bits from a CRC is also uniformly random and thus can be 

used as “pre-computed” hash function value.  The look-up delay and queueing behavior 

of the simple, H1, and new Aggressive hashing algorithms as applied to URL routing are 

investigated.  It is shown that the Aggressive hashing algorithm has the best performance.  

The main trade-off in implementing a URL router based on the CRC32 algorithm is 

that a device needs to be added to front end content sources in the CDN resulting in an 
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increase in initial investment cost to implement a CDN.  CDNs also require maintenance.  

The analysis of cost-effectiveness is beyond the scope of this dissertation, but existing 

CDN services such as Akamai argue for their cost effectiveness. 

 

8.1 Specific contributions from this research 

This research has addressed an important and emerging problem in the Internet – how to 

route at an application or user layer.  The four key contributions from this research as 

presented in this dissertation are: 

1) A comprehensive examination of existing work in application layer routing and 

related areas (namely distributed caching structures).  From this examination, a 

URL router was proposed and architected. 

2) A new method of using CRC32 to reduce the size of URL tables was investigated 

and evaluated.   

3) A new hashing method called Aggressive hashing was developed and evaluated.  

For dense hash tables this method has almost 2 times faster mean look-up times 

than the existing H1 hashing algorithm. 

4) A new way to study the performance of hashing algorithms by evaluating their 

queueing behavior was pioneered.  Surprising results were found in how the 

existing H1 hashing algorithm has very high autocorrelation in look-up times 

resulting in mean queue lengths two to three magnitudes greater than that of 

Aggressive hashing. 
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In summary, the evaluations performed in this dissertation show that CRC32 URL 

signatures and Aggressive hashing are significantly better methods for designing the next 

generation of URL routers to enable future growth of the Internet.   

 

8.2 Directions for future research 

This research has addressed how to build compact and efficient (in look-up) URL routing 

tables.  What has not been addressed is how to associate a client request with the best 

content source.  A look-up in a URL routing table can result in the IP addresses of 

multiple content sources that can satisfy the request.  The geographic location of the 

client must be considered – how this is done is not addressed in this research – to 

determine the best content source to redirect the client to.  Another issue not addressed in 

this research is the relationship between connection establishment and routing table look-

up time in a URL router.  One way to address this performance bottleneck may be to 

parallelize connection establishment and look-up.  That is, have separate connection and 

look-up engines within a URL router.  These are two areas for future research. 

This research has shown that signatures can be used in place of URL strings to reduce 

the size of URL lists and enable fast hashing-based look-up of URL strings.  This use of 

signatures to substitute for strings can have many applications beyond URL routing.  For 

example, Napster- like peer-to-peer applications [64] that use a centralized directory for 

locating distributed content are in need of methods to reduce directory size and look-up 

time.  Large directory size resulting in long look-up times caused a performance 

bottleneck at the centralized Napster server in 2000 [38].  Peer-to-peer networks without 

centralized directories that share directories are limited in scalability by the amount of 
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traffic they generate.  Here again signature methods need to be investigated.  A future 

direction of research is thus investigating the application of signatures to open problems 

in improving the scalability of peer-to-peer networks.  
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Appendix A 

Source Code for Hashing Algorithms  

This appendix contains the source code for the simple, H1, and Aggressive hashing 

algorithms as described in Chapters Two and Five of this dissertation.  The data 

structures for each algorithm are presented first and then the main loop for look-up in the 

hash table is presented. 

 
A.1 Data structure for Simple chain hashing 
 
struct entry                  // Hash table entry structure 
{ 
  unsigned int key;           // ** key 
  unsigned int value;         // ** associated value for key 
  struct entry *next_ptr;     // ** pointer to next entry in chain 
}; 
 
A.2 Data structure for H1 and Aggressive hashing  
 
struct entry                 // Hash table entry structure 
{ 
   unsigned int key;         // key 
   unsigned int value;       // associated value for key 
   struct entry *next_ptr;   // pointer to next entry in chain 
   struct entry *prev_ptr;   // pointer to previous entry in chain 
}; 
 
A.3 Main loop for Simple chain hashing look-up 
 
// Get CRC32 values from stdin, clip CRC32s, and then do a look-up 
hit_count = miss_count = 0; 
while(1) 
{ 
  // Read the CRC32 
  scanf("%08X \n", &crc32); 
 
  // Initialize chain length 
  c=0; 
 
  // Clip the CRC32 to get a hash index 
  hash_index = mask & crc32; 
 
  // Do the look-up (and increment hit or miss counter appropriately) 
  temp = &table[hash_index].key; 
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Appendix A:  (Continued) 
 
 
  while(1) 
  { 
      if (temp->key == crc32) 
      { 
        hit_count++; 
        break; 
      } 
 
      if (temp->next_ptr == NULL) 
      { 
        miss_count++; 
        break; 
      } 
      temp = temp->next_ptr; 
      c++; 
  } 
 
  // Bail-out if EOF 
  if (feof(stdin)) break; 
} 
 
 
A.4 Main loop for H1 hashing look-up  
 
// Get CRC32 values from stdin, clip CRC32s, then do a look-up 
hit_count = miss_count = 0; 
while(1) 
{ 
  // Read the CRC32 
  scanf("%08X \n", &crc32); 
 
  // Initialize chain length 
  c=0; 
 
  // Clip the CRC32 to get a hash index 
  hash_index = mask & crc32; 
 
  // Do the look-up (and increment hit or miss counter) 
  temp = &table[hash_index].key; 
  while(1) 
  { 
    if (temp->key == crc32) 
    { 
      hit_count++; 
      if (temp->prev_ptr != NULL) 
      { 
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Appendix A:  (Continued) 
 
 
        // Swap entry for bubble up 
        swap_key = temp->key; 
        swap_val = temp->value; 
        temp->key = temp->prev_ptr->key; 
        temp->value = temp->prev_ptr->value; 
        temp->prev_ptr->key = swap_key; 
        temp->prev_ptr->value = swap_val; 
      }   
      break; 
    } 
 
    if (temp->next_ptr == NULL) 
    { 
      miss_count++; 
      break; 
    } 
     temp = temp->next_ptr; 
     c++; 
  } 
 
  // Bail-out if EOF 
  if (feof(stdin)) break; 
} 
 
A.5 Main loop for Aggressive hashing look-up 
 
// Get CRC32 values from stdin, clip CRC32s, and then do a look-up 
hit_count = miss_count = 0; 
while(1) 
{ 
  // Read the CRC32 
  scanf("%08X \n", &crc32); 
 
  // Initialize chain length 
  c=0; 
 
  // Clip the CRC32 to get a hash index 
  hash_index = mask & crc32; 
 
  // Do the look-up (and increment hit or miss counter appropriately) 
  head = temp = &table[hash_index].key; 
 
  while(1) 
  {  
    if (temp->key == crc32) 
    { 
      hit_count++; 
      if (temp->prev_ptr != NULL) 
      { 
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Appendix A:  (Continued) 
 
         // Move entry to head 
         if (temp->next_ptr != NULL) 
         { 
            temp->next_ptr->prev_ptr = temp->prev_ptr; 
            temp->prev_ptr->next_ptr = temp->next_ptr; 
         } // not end of chain 
         else // end of chain 
         {  
            if (table[hash_index].next_ptr != temp) 
               temp->prev_ptr->next_ptr=NULL; 
            else 
            { 
               key=table[hash_index].key; 
               val=table[hash_index].value; 
               table[hash_index].key=temp->key; 
               table[hash_index].value=temp->value; 
               temp->key=key; 
               temp->value=val; 
               break; 
            } 
         } // end not head   
 
         key=table[hash_index].key; 
         val=table[hash_index].value; 
       table[hash_index].key=temp->key; 
       table[hash_index].value=temp->value; 
       temp->key=key; 
       temp->value=val; 
      temp->prev_ptr = &table[hash_index]; 
      temp->next_ptr = table[hash_index].next_ptr; 
      table[hash_index].next_ptr->prev_ptr=temp; 
      table[hash_index].next_ptr=temp; 
      }   
       break;  
    }  // end hit case  
    if (temp->next_ptr == NULL) 
    { 
      miss_count++; 
      break; 
    } 
    temp = temp->next_ptr; 
    c++; 
  } 
 
  // Bail-out if EOF 
  if (feof(stdin)) break; 
} 
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