>>> Solution for HW #6 for Capacity Planning (Fall 2001) <<<

For this assignment you will compare a simulation of an M/M/1 queue with analytical
results. You will also compare M/M/1 against M/D/1.

1) Simulate utilization values ranging from 10% to 98% (say, 10% to 90% in steps of 10%
and then 90% to 98% in steps of 1%) for a mean service rate of 1.0 customers per second.
Plot the utilization versus mean customer delay (response time). Plot also analytical
results for response time (i.e., as computed using the M/M/1 formulas). How close are
the simulation versus analytical results? What 1is the cause of the difference? How
might the difference be reduced?

2) Change mml smpl.c to have deterministic service times (this is now a model of an M/D/1
queue, call it mdl smpl.c). Rerun part (1) above and plot the results on the same graph
as the M/M/1 results. Is the response time of an M/D/1 less or greater than that of an
M/D/1? Why? Determine a "formula" for the difference in response time between M/M/1 and
M/D/1.

Figure 1 shows a plot of response time (W) for M/M/1 simulation and M/D/1 simulation for 10% to 90% offered load and Figure 2 for
90% to 98% offered load. All plotted points result from a simulation run of 10 million seconds (for ¢ = 1.0 second). The analytical
results for M/M/1 are visually “on top” of the simulation results. The analytical W for M/M/1 with £ =1.0issmply W =1/ (1- A).
Figure 3isaplot of the percentage error for simulation versus analytical (for the full range of 10% to 98% offered load). Appendix A
containsthe M/M/1 simulation model and Appendix B the M/D/1 model.

12~ 55 -
—~ 11 1 M/M/1 simulation _ 50 1 M/M/1 simulation
5191 ™~ 3 %] i
E 7 E
d— 6 i +—
= :
g 31 g
X 21 x
1 .
O T T T T T T T 1 O T T T T T T T T 1
10 20 30 40 50 60 70 80 90 90 91 92 93 94 95 96 97 98 99
Offered load (%) Offered load (%)
Figure 1- M/M/1 and M/D/1 simulation (10% to 90%) Figure 2 - M/M/1 and M/D/1 simulation (90% to 98%)
2 1 The simulation and analytical results for the M/M1 case are
within +/- 0.50% for offered load up to 80% and then increase
14 upto about +/- 4.0% for higher offered loads. This error is due
P to the statistical nature of a smulation “sample” which can never
§ produce the exact true population mean (i.e, the analytical
5 -1 result) without having an infinite run time. Greater run times
I.ItJ will reduce the errors. For higher offered loads, the variability
"2 7 of response time is greater (than at low offered loads) hence the
-3 - greater error.
-4 T T T T T T T T M/D/1 response time is lower than that of M/M/1 due to the
0O 10 20 30 40 50 60 70 80 90 100 lower variance in service time. For high offered loads, the
0 difference between M/M/1 and M/D/1 is approximately a factor
Offered |oad (%) of 2. The exact difference can be gleaned from the P-K solution
to M/D/1 which isa (1 - p/2) factor (or smply (1 - A/2) for the
Figure 3- M/M/1 and M/D/1 simulation (10% to 90%) case of 4 = 1.0 between W for M/M/1 and M/D/1.

KJC (as9_6s0l .doc - 10/21/01)

Appendix A - M/M/1 ssimulation model source code

//===================z=z====z=========z=z====z=========z==z========= file = mMmMl.C =====
//= A simple M/M/1 queue simulation using SMPL =
f e mm e e e e e e
//----- Include files --------- - oo
#include <stdio.h> // Needed for printf ()

#include "smpl.h" // Needed for SMPL

//===== Main program ==

void main (void)

{

real Ta; // Mean interarrival time (seconds)

real Ts = 1; // Mean service time (seconds)

real te = 1.0e7; // Total simulation time

int customer = 1; // Customer id (always ‘1’ for this simulation)

int event; // Event (1 = arrival, 2 = request, 3 = completion)
int server; // Handle for server facility

int 1i; // Loop counter

for (i=0; i<17; i++)

{

// Set Ta value

if (1 == 0) Ta = 1.0 / 0.10;
if (1 == 1) Ta = 1.0 / 0.20;
if (1 == 2) Ta = 1.0 / 0.30;
if (1 == 3) Ta = 1.0 / 0.40;
if (1 == 4) Ta = 1.0 / 0.50;
if (i == 5) Ta = 1.0 / 0.60;
if (1 == 6) Ta = 1.0 / 0.70;
if (1 == 7) Ta = 1.0 / 0.80;
if (i == 8) Ta = 1.0 / 0.90;
if (1 == 9) Ta = 1.0 / 0.91;
if (14 == 10) Ta = 1.0 / 0.92;
if (14 == 11) Ta = 1.0 / 0.93;
if (1 == 12) Ta = 1.0 / 0.94;
if (i == 13) Ta = 1.0 / 0.95;
if (1 == 14) Ta = 1.0 / 0.96;
if (i == 15) Ta = 1.0 / 0.97;
if (i == 16) Ta = 1.0 / 0.98;

// Initialize SMPL subsystem
smpl (0, "M/M/1 Queue") ;

// Initialize server facility (single server)
server=facility("server", 1);

// Schedule arrival event at time 0 to kick-off simulation
schedule (1, 0.0, customer) ;

// Loop while simulation time is less than te
while (time() < te)

// "Cause" the next event on the event list
cause (&event, &customer) ;

// Process the event

switch (event)

{

case 1: // *** Arrival
schedule (2, 0.0, customer) ;
schedule (1, expntl (Ta), customer) ;
break;

case 2: // *** Request Server

if (request (server, customer, 0) == 0)
schedule (3, expntl (Ts), customer) ;
break;

KJC (as9_6s0l .doc - 10/21/01)

case 3: [/ *** Release server
release (server, customer) ;
break;

}
}

// Output mean length and response time

printf ("===== M/M/1l ==\n") ;
printf ("= Lambda = %f cust/sec \n", 1.0 / Ta);
printf ("= Mu = %f cust/sec \n", 1.0 / Ts);
printf ("= Utilization = %f %% \n", 100.0 * U(server));
printf ("= Mean number in system = %f \n",
(Lg(server) + U(server)));
printf ("= Mean response time = %$f sec \n",
(Lg(server) + U(server)) / U(server));
printf ("==\n") ;

KJC (as9_6s0l .doc - 10/21/01)

Appendix B - M/D/1 ssimulation model sour ce code

//===s=s==s=s=s=s=s=s=s=s===s=s=====s==s==s==s==s==s===s==s=s==s====== file = mdl.¢ =====
//= A simple M/D/1 queue simulation using SMPL =
f e mmmm e e e e e
//----- Include files --------- - oo
#include <stdio.h> // Needed for printf ()

#include "smpl.h" // Needed for SMPL

//===== Main program ==

void main (void)

{

real Ta; // Mean interarrival time (seconds)

real Ts = 1; // Mean service time (seconds)

real te = 1.0e7; // Total simulation time

int customer = 1; // Customer id (always ‘1’ for this simulation)

int event; // Event (1 = arrival, 2 = request, 3 = completion)
int server; // Handle for server facility

int 1i; // Loop counter

for (i=0; 1i<17; 1i+4+)

{

// Set Ta value

if (1 == 0) Ta = 1.0 / 0.10;
if (1 == 1) Ta = 1.0 / 0.20;
if (1 == 2) Ta = 1.0 / 0.30;
if (1 == 3) Ta = 1.0 / 0.40;
if (1 == 4) Ta = 1.0 / 0.50;
if (i == 5) Ta = 1.0 / 0.60;
if (1 == 6) Ta = 1.0 / 0.70;
if (1 == 7) Ta = 1.0 / 0.80;
if (i == 8) Ta = 1.0 / 0.90;
if (1 == 9) Ta = 1.0 / 0.91;
if (1 == 10) Ta = 1.0 / 0.92;
if (14 == 11) Ta = 1.0 / 0.93;
if (1 == 12) Ta = 1.0 / 0.94;
if (i == 13) Ta = 1.0 / 0.95;
if (1 == 14) Ta = 1.0 / 0.96;
if (i == 15) Ta = 1.0 / 0.97;
if (i == 16) Ta = 1.0 / 0.98;

// Initialize SMPL subsystem
smpl (0, "M/M/1 Queue") ;

// Initialize server facility (single server)
server=facility("server", 1);

// Schedule arrival event at time 0 to kick-off simulation
schedule (1, 0.0, customer) ;

// Loop while simulation time is less than te
while (time() < te)

// "Cause" the next event on the event list
cause (&event, &customer) ;

// Process the event
switch (event)

case 1: // *** Arrival
schedule (2, 0.0, customer) ;
schedule (1, expntl(Ta), customer) ;
break;

case 2: // *** Request Server

if (request (server, customer, 0) == 0)
schedule (3, Ts, customer) ;
break;

KJC (as9_6s0l .doc - 10/21/01)

case 3: [/ *** Release server
release (server, customer) ;
break;

}
}

// Output mean length and response time

printf ("===== M/D/1l ==\n") ;
printf ("= Lambda = %f cust/sec \n", 1.0 / Ta);
printf ("= Mu = %f cust/sec \n", 1.0 / Ts);
printf ("= Utilization = %f %% \n", 100.0 * U(server));
printf ("= Mean number in system = %f \n",
(Lg(server) + U(server)));
printf ("= Mean response time = %$f sec \n",
(Lg(server) + U(server)) / U(server));
printf ("==\n") ;

KJC (as9_6s0l .doc - 10/21/01)

