
 
  

Abstract— The aggregate power consumption of the 
Internet is increasing at an alarming rate, due in part to 
the rapid increase in the number of connected edge 
devices such as desktop PCs. Despite being left idle 75% 
of the time, 90% of PCs have their power management 
features disabled. Consequently, much recent research 
has focused on reducing power consumption of Internet 
edge devices. One such method for reducing PC power 
consumption is by augmenting the Network Interface 
Card (NIC) with enhanced processing capabilities. These 
capabilities pave the way for green computing by 
allowing the PC to transition to a low-power sleep state 
while the NIC responds to network traffic on behalf of 
the PC – a technique known as power proxying. 
However, such a Smart-NIC (SNIC) requires specialized 
low-power, resource-constrained processing, and 
architectural features in order to realize such 
capabilities. In this paper, we present a NIC-based 
packet content inspection system for power proxying and 
network intrusion detection. We use a novel partitioned 
TCAM technique that results in 87% energy savings and 
a 62% lower energy-delay product than existing 
non-partitioned router-based techniques, thus making 
our technique highly suitable for SNIC-based 
deployment. 

I. INTRODUCTION 
Network Interface Cards (NICs) constitute an increasingly 
important element in modern computer design. Next 
generation NICs, or smart NICs (SNICs), will be delegated 
more network responsibility in order to reduce the 
processing burden on a computer system’s CPU 
[3][14][17][20]. This enables new opportunities for reduced 
power consumption and increased network security. 

One example of a power saving opportunity made 
possible by increased SNIC network responsibility is power 
proxying [8][19]. Research shows that 90% of network edge 
devices (PCs) have their power management systems 
disabled in order to maintain network connectivity [19], 
even though these PCs are otherwise idle 75% of the time 
[19]. Power proxying is a technique that maintains network 
connectivity while the PC is in a low power sleep state by 
delegating responsibility to the SNIC. The SNIC responds to 
incoming network traffic in one of three ways: (1) responds 
with an automated response (PC remains asleep); (2) ignores 
packets that are not destined for the PC (PC remains asleep); 
or (3) wakes up the PC if no automated response exists. 
Research shows that power proxying can increase sleep time 
by as much as 85% [19]. 

One method for increased security made possible by 
increased network responsibility is a Distributed Network 

Intrusion Detection System (DNIDS). In a DNIDS, the 
SNIC’s network responsibility includes scanning both 
inbound and outbound packets for malicious content. The 
DNIDS delivers increased network security as it can 
effectively isolate compromised nodes, even those internal 
to the network, as opposed to router-based centralized NIDS. 
DNIDS can also increase the overall effectiveness of 
network security because DNIDS can identify malicious 
packets based on operating system specifics. 

 To enable both power proxying and DNIDS, SNICs 
require packet processing capabilities in the form of content 
inspection. During content inspection, the SNIC extracts 
packet payloads and performs pattern matching in order to 
identify packets and respond accordingly. For example, the 
SNIC can identify a malicious packet if the payload contains 
any predefined malicious signature patterns.  

Modern routers include both software and/or 
hardware-based content inspection functionalities. However, 
since routers have much larger computing resources than 
NICs, these techniques are not immediately suitable for 
SNIC implementation. Whereas routers utilize processors in 
the GHz range, NICs include 66 MHz to 400 MHz 
processors [21], making software-based content inspection 
infeasible as these processors fail to meet the throughput 
requirements for 1 Gbps and future 10 Gbps link speeds 
[21]. Thus hardware based techniques are required. 

However, current hardware-based router content 
inspection techniques are also unfavorable for SNIC 
implementation. FPGAs [2] allow for fast reprogrammable 
content inspection, but are too costly and consume more 
energy than is suitable for wide-scale, low-power SNIC 
deployment. TCAMs [10][25] provide extremely fast 
content inspection, but are too power hungry and incur 
additional resource overhead. Bloom filters [9] provide a 
low-power alternative solution for content inspection, but 
suffer from scalability due to the large number of parallel 
structures required and the overhead of false-positive 
resolution. 

Thus, for feasible wide-scale low-cost SNIC-based 
content inspection, an energy, power, and area efficient 
technique is required. While the SNIC constitutes a small 
percentage of total PC power consumption, even a small 
reduction in power per PC will aggregate to tremendous total 
power savings, as the number of PCs is expected to reach 1.3 
billion worldwide by 2010 [24]. 

In this paper, we develop an energy efficient content 
inspection system for SNICs. The proposed architecture uses 
a partitioned TCAM-based methodology and achieves up to 
87% energy savings and a 62% reduction in the energy delay 
product compared to existing non-partitioned TCAM 
techniques. The introduction of a small cache further 
improves the average energy savings by 64% while reducing 
the throughput by at most 5.5%.  
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II. BACKGROUND AND RELATED WORK 
In this section, we present related work on next generation 
SNICs and NIC-based DNIDS, comparing the advantages of 
NIC-based DNIDS to router-based NIDS. Additionally, we 
review relevant work on content inspection and evaluate the 
suitability of these techniques for SNICs. 

A. Next Generation SNICs 
Next generation SNICs will be delegated more network 
responsibility in order to reduce CPU processing burdens. 
Much research has focused on techniques such as offloading 
TCP protocol processing (TOEs) [10], power-proxying 
[8][19], and NIC-based data caching [14]. Such reduced 
CPU processing burden will enable extended CPU sleep 
opportunities, reduced operating system overhead, increased 
network throughput and speed, and thus lower overall 
system power consumption.  

Additionally, next generation SNICs offer attractive 
solutions for DNIDS, providing potentially greater network 
security than router-based NIDS [7][17][20]. Router-based 
NIDS are rendered ineffective when nodes inside their local 
network are compromised, such as the case of internal 
attacks. However, SNIC-based DNIDS can scan both 
inbound and outbound packets, thereby effectively isolating 
malicious nodes. Furthermore, SNIC-based DNIDS can 
exploit node characteristics such as operating system 
specifics, resulting in more effective, highly optimized 
malicious packet detection rules.  

Due to these large potential benefits, NIC-based DNIDS 
have been the focus of recent research. Otey et al. [17] 
analyzed the feasibility of NIC-based DNIDS and verified 
that such a system would offer increased coverage, 
reliability, and performance. However, the authors also 
recognize that realization of such systems would be 
challenging given limited NIC processing resources 
[17][21]. Schuff et al. [20] proposed a NIC-based intrusion 
detection architecture harnessing the processing resources 
available in future multi-core RISC processors coupled with 
specialized content inspection hardware [25]. However, 
since this technique was based on router content inspection 
techniques, this technique was too power and resource 
hungry for SNICs.  

B. Content Inspection  
Content inspection is a pattern matching technique wherein a 
packet’s payload is matched against a set of pre-defined 
signatures (signature set) to identify malicious packets (for 
NIDS) or packets of interest (for power proxying). Whereas 
popular signature sets include the SNORT [23] and ClamAV 
[6] virus databases for NIDS, to the best of our knowledge 
there exists no power proxying signature set, and is thus an 
ongoing research topic.  

A content inspection system that can efficiently process 
packets fast enough to keep up with high link speeds is 
essential to enable intrusion detection and power proxying in 
next generation SNICs. This is a well researched topic in the 
context of routers [9][10][25]. Router-based content 
inspection can be implemented using either software- or 
hardware-based techniques. Software techniques employ 
string matching algorithms such as Boyer-Moore, Aho 
Corasick, Wu Manber [22], etc. However, due to inherent 
software inefficiencies when processing large signature sets, 
software techniques cannot support high link speeds [9].  

To increase data processing throughput, specialized 
hardware-based techniques exploit parallelism using FPGAs 
[2], TCAMs [10][25], and specialized data structures such as 
Bloom Filters [9]. Whereas these techniques are highly 
suitable for high-end routers with sufficient processing 
resources, they are not practical enough in terms of price, 
power consumption, or area for wide-scale deployment in 
SNICs [25]. However, key processing techniques may be 
gleaned from router-based content inspection and adapted 
for SNIC-based techniques. 

TCAMs are one of the critical hardware structures that 
enable fast content inspection, as recognized by Lakshman et 
al. [25]. Due to the fully associative search ability, TCAMs 
are populated with signature sets and are capable of 
performing pattern matching on the order of constant time 
O(1). For details on TCAM-based pattern matching, we refer 
the reader to [25]. 

However, when using TCAMs for content inspection, 
careful system design considerations must be made. Since 
signatures are of variable length l (in bytes), the TCAM 
width w (in bytes) must be equal to the largest signature 
length L. Thus, all signatures 

! 

l < w  must be padded with 

! 

w " l( )*8  “don’t care” bits in order to fill the entire TCAM 
entry. This method leads to extremely inefficient resource 
utilization since signature lengths tend to be highly variable 
[25]. 

To improve resource utilization, TCAM widths are 
chosen such that 

! 

w << L , and all signatures 

! 

l > w  are 
partitioned across multiple TCAM entries (signature 
partitioning). Choosing an appropriate TCAM width w is 
very important, as it affects not only the resource utilization, 
but the total number of TCAM entries (depth d) as well. 
Short patterns are signatures of length 

! 

l " w  bytes and these 
patterns must be padded with 

! 

w " l( )*8  “don’t care” bits. 
Thus, the effective TCAM resource utilization is reduced for 
short patterns. Long patterns are signatures of length 

! 

l > w  
bytes and these patterns must be partitioned into 

! 

l w  short 
patterns. The first 

! 

l w( ) "1  patterns provide full resource 
utilization, as only the final partition requires ( ) 8* mod wlw !  
“don’t care” bits.  

Since every TCAM entry is unique, choosing a smaller 
width TCAM provides area reduction opportunity in the 
form of natural compression of repetitive patterns. Smaller 
TCAMs provide more opportunity for pattern repetition in 
that the probability of repeated patterns increases. However, 
smaller TCAM widths increases complexity of pattern 
matching, as additional data structures are required to 
decode shared entries. 

When partitioning long patterns, the first partition is 
denoted as the prefix pattern and the remaining partitions are 
denoted as suffix patterns. Fig 1 shows the prefix and suffix 
patterns for a sample long pattern signature given a TCAM 
width 

! 

w = 4  (each character represents an arbitrary byte).  
The long and short patterns are stored in a single TCAM 

and the TCAM entries are compared to incoming payloads. 

 
 
 
 
 
 
 

Fig 1: Prefix and suffix patterns for a sample signature for a TCAM 
width
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Payload examination occurs by streaming the payload 
contents through a w-byte inspection window. Initially this 
inspection window contains the first w bytes of the payload. 
For each subsequent clock cycle, the payload contents are 
left-shifted by one byte in order to inspect the next w-byte 
inspection window. Thus a payload of X-bytes contains X 
inspection windows, and the TCAM is searched for each of 
these windows. Furthermore, since a signature is scattered 
across 

! 

l
w" # TCAM locations, a TCAM match implies that 

the payload only matches with a portion of a signature. A 
final signature matching step is required to ensure that a 
payload matches with a complete signature. To assist in final 
signature matching, an auxiliary SRAM data structure 
aggregates TCAM hit address information during payload 
examination [25].  

Whereas this router-based content inspection technique is 
attractive in terms of high throughput and complete 
independence from further payload inspection (bloom filter 
based methods suffer from false positives [9]), this technique 
suffers from several drawbacks for SNIC-based content 
inspection. First, TCAMs have large resource requirements, 
such as power (approximately 10x as compared to a similar 
speed SRAM [18]) and cost (4x that of SRAM [18]). 
Secondly, due to necessary signature partitioning, large 
auxiliary SRAM data structures, on the order of O(N2), 
where N is the number of TCAM entries, are necessary for 
final signature matching. Whereas larger TCAM widths 
reduce the auxiliary data structure storage requirements, 
larger widths result in increased “don’t care” bit padding, 
and thus reduced TCAM resource utilization and increased 
TCAM area and power consumption. 

Several techniques have been developed to optimize final 
signature matching. In order to reduce auxiliary data 
structure storage requirements without reducing TCAM 
resource utilization, Gao et al. [10] proposed an alternative 
architecture, which reduced the auxiliary data structure 
space complexity to O(N log N). The auxiliary data structure 
consisted of a secondary TCAM (in addition to the primary 
TCAM storing the prefix and suffix signatures) populated 
with valid signature address permutations. Valid signature 
address permutations are the concatenation of the prefix and 
suffix addresses for each signature in the primary TCAM. 
Thus, as a payload is searched in the primary TCAM, the hit 
addresses are concatenated together to form a candidate 
signature address permutation. Final signature matching 
extracts candidate signature address permutations from the 
aggregated TCAM hit addresses and compares those with 
the valid signature address permutations in the secondary 
TCAM.  

Even though this optimization reduces the area 
requirement of the auxiliary data structure, the secondary 
TCAM structure is still very power hungry. An alternative 
technique [16] implemented a variable width TCAM to 
improve resource utilization over a fixed width TCAM. 
However, this approach suffered from reduced scalability 
and could only be implemented using FPGAs, which may 
not provide throughput to sustain high link rates or enough 
storage capacity for large signature sets. 

Dharmapurikar et al. [9] proposed a low power bloom 
filter-based technique as an alternative to the TCAM-based 
final signature matching. This method used a separate bloom 
filter for each unique signature length. While being very 
energy efficient, this method was able to achieve a 
throughput of 2.4 Gbps. However, this technique suffered 
from limited parallelism in the presence of fixed length 

patterns. Furthermore, inherent false positives placed an 
additional burden on the already limited processing 
resources available on NICs.  

In this paper, we architect a content inspection technique 
that is more amenable to limited resource SNICs by 
extending TCAM-based techniques [10][25], reducing both 
energy consumption and the energy delay product. We 
propose a method by which the single TCAM is partitioned 
into a prefix TCAM and a suffix TCAM. This partitioned 
technique reduces TCAM switching activity, without 
increasing area, and thereby reduces system energy 
consumption. Finally, we also introduce a caching technique 
to further reduce energy consumption, motivated by a NIC 
packet caching technique that exploits network traffic 
locality [14]. Our technique assumes the NIC architecture 
proposed in [20], which includes low resource mechanisms 
for packet reassembly and check summing.  

III. SNIC-BASED CONTENT INSPECTION SYSTEM 
In this section, we present an energy efficient content 
inspection architecture for SNIC-based systems to aid in 
power-proxying and DNIDS.  

A. Definitions 
The distinguishing features of our proposed architecture 
include: (1) the segregation of the prefix and suffix patterns 
into two separate TCAMs, the Prefix TCAM (P_TCAM) and 
the Suffix TCAM (S_TCAM), respectively; and (2) the 
introduction of a suffix cache, which stores a subset of the 
S_TCAM entries. Previous methods used one large TCAM 
to store both prefix and suffix patterns. Storing all patterns in 
a single TCAM has the disadvantage of triggering 
unnecessary TCAM switching activity. For long patterns 
( lw < ), suffixes are of interest only after a prefix match. 
Thus prefix and suffix segregation isolates prefix pattern 
matching to a smaller P_TCAM, and the larger S_TCAM is 
selectively enabled after an associated P_TCAM match. 
Additionally, we define identical prefix and suffix patterns 
as alias addresses.  

Every signature is expressed as a valid signature address 
permutation representing the addresses at which each 
signature’s partitions are stored. This permutation may be 
the concatenation of a P_TCAM address and several 
S_TCAM addresses (in the case of a long pattern with no 
alias addresses), an arbitrary number of P_TCAM and 
S_TCAM addresses (in the case of a long pattern with alias 
addresses, wherein the first address will always be a 
P_TCAM address), or just a single P_TCAM address (in the 
case of a short pattern).  

Given a signature partitioned in ! "wl  patterns, we define a 
concluding pattern as the final partition ! "wl  (which may be 
a prefix pattern for a short pattern or an alias address or a 
suffix pattern for a long pattern). This pattern marks the final 
address of a valid signature address permutation. 
Accordingly, we define all partitions ! "wlp <#1  as 
intermediate patterns. 

B. Architecture 
Fig 2 depicts our proposed content inspection architecture, 
consisting of three signature storage units: the P_TCAM, 
suffix cache, and the S_TCAM. We assume the inspection 
window size is 4 bytes and the signature storage units are 
populated using the sample signature from Fig 1. The suffix 
cache is a small TCAM that stores the most recently used 



subset of the S_TCAM entries. Since valid signature address 
permutations only contain P_TCAM and S_TCAM 
addresses, each suffix cache entry also stores the 
corresponding S_TCAM address. From Fig 1 we can see 
that a match of EFG* implies a match of EFGH but the 
converse does not hold true. This property is defined as 
mutual inclusion [10] and must be considered during 
caching. To avoid inconsistencies due to mutual inclusion, 
we only cache S_TCAM entries that are exactly w bytes 
(entries without any “don’t care” padding bits).  

We assume that payload reconstruction (not shown in Fig 
2) aggregates incoming network packets to reconstruct 
complete payloads, and this complete payload is provided to 
the content inspection architecture. On each clock cycle, the 
payload is byte-wise left-shifted through a w-byte inspection 
window. The current w-byte inspection window contents are 
provided as input to the signature storage units. However, 
whereas the P_TCAM is searched each cycle by default, the 
suffix cache and the S_TCAM are selectively searched. The 
suffix cache is enabled after an intermediate P_TCAM hit 
and the S_TCAM is enabled after a suffix cache miss. 

Since the payload is byte-shifted, but the addresses in the 
valid signature address permutations represent w-byte 
windows, the suffix cache and S_TCAM only need to be 
activated w clock cycles after an intermediate pattern hit (in 
any signature storage unit). The activator monitors all 
signature storage units and upon an intermediate pattern hit, 
sets the 0th bit of the enable buffer to ‘1’, otherwise ‘0’. The 
enable buffer is a w-bit wide structure and is right-shifted 
each clock cycle. The shifted out bit serves as input to the 
enabler, thus signaling a suffix search w clock cycles after 
an intermediate pattern hit.  

When the enabler receives a ‘1’ bit input from the enable 
buffer, the suffix cache is enabled. Upon a suffix cache hit, 
the payload stream is left-shifted, and the next w-byte 
inspection window is processed. However, on a suffix cache 
miss, the S_TCAM must be searched on the next clock cycle 
for the same w-byte window. In order to reprocess the 
current inspection window, the enabler asserts a pause signal 
which effectively halts payload window and enable buffer 
shifting so that the same window can be reexamined. During 
this time, the cache controller ($ Ctr) orchestrates the suffix 
cache replacement policy. Since the least recently used 
(LRU) replacement policy overhead can be prohibitive for 
large associativities, we use a random replacement policy, 
which is shown to have similar performance as LRU for 
large associativities [11].  It should be noted that the 
introduction of caching stalls the system by a cycle during 
the cache miss and thus leads to reduced throughput. In 
section V.E, we show that this overhead is minimal. 

The retirement buffer stores candidate signature address 
permutations, and serves as input to the final signature 
matching step (we extend the technique proposed by [10] to 
address partitioning specifics). Each of the entries record 
information about TCAM hit status for each clock cycle, in 
the form of a TCAM hit address and associated descriptor 
bits. The descriptor bit designates if the entry is a P_TCAM 
(“11”) address, an S_TCAM (“01”) address, or if there was 
no hit (“00”).  

On each clock cycle, the retirement buffer is left-shifted 
and the contention resolution module pushes a new entry 
onto the right side of the buffer. If there is no hit in any 
TCAM, the new entries hit address is set to NULL (Ø) and 
the descriptor bits to “00”. If there is a concluding P_TCAM 
hit (and a suffix miss), the prefix represents a short pattern, 

and thus this single hit indicates a complete signature match 
and there is no final signature match checking required, thus 
Ø is pushed onto the retirement buffer. In the case of an 
intermediate prefix or suffix hit, the associated hit address is 
pushed onto the retirement buffer, and the descriptor bits are 
set to “11” or “01”, respectively. If there is both a prefix and 
a suffix hit (in the case of alias addresses) and both hits are 
intermediate patterns, the contention resolution module 
ensures that the P_TCAM address is pushed on to the 
retirement buffer, and the descriptor bits are set to “11”. This 
alias address resolution technique is necessary since the 
intermediate pattern may indicate the beginning of a 
signature match.  

Since the retirement buffer space is bounded, retirement 
logic (not shown in Fig 2) monitors the left most retirement 
buffer entry, the sentry position. When the sentry position’s 
descriptor bits are ‘11’ (indicating the start of a potential 
signature match), the retirement logic extracts all candidate 
signature match permutations (all the entries that are 
separated w bytes from each other), terminating on an Ø 
position. The candidate signature match permutations are 
dispatched to the final signature matching unit (not shown in 
Fig 2). The final signature matching unit can use hashing 
structures such as bloom filters [4] or software methods to 
compare candidate and valid signature match permutations. 
Elaborations of such techniques are beyond the scope of this 
paper, and optimization of this step is the focus of our future 
work. 

IV. MATHEMATICAL MODEL 
In this section, we analyze the resource requirements for our 
proposed architecture and develop a model for energy 
expenditure analysis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig 2: Partitioned TCAM system for SNIC-based content inspection. 
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To describe the total TCAM (both prefix and suffix) and 
retirement buffer resource requirements, we define w as the 
width of the TCAMs in bytes, P as the depth of the 
P_TCAM, S as the depth of the S_TCAM, and L as the 
maximum signature length. Both P and S are highly 
dependent on the natural compression present in a signature 
set, but in the worst case (no natural compression): 

 

! 

P = T; S =
l
i

w

" 

# # 
$ 

% % 
i=1

T

&  

 
where T is the signature set size. The total TCAM resource 
requirements is 

! 

w *N  bytes where 

! 

N = P + S . Additionally, 
two bits are required to identify each TCAM entry as either a 
concluding or intermediate pattern or both, requiring 
additional 

! 

2*N  bits.  
The retirement buffer resource requirements are similar to 

[10]: 
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We assume the size of the cache C contributes very little 

to the total resource requirements as 

! 

C << N . Since a random 
replacement policy is used, there is no additional area 
overhead.  

All TCAM expenditures can be aggregated into the total 
energy expended: 

 
Total_Energy = Num_P_TCAM_Accesses * P_TCAM_EPA 

+ Num_Intermediate_Accesses * Cache_EPA 
+ Num_Cache_Misses * S_TCAM_EPA 
+ Num_Cache_Misses * Cache_Write_EPA 

 + Num_S_TCAM_Accesses * S_TCAM_EPA 
 

Thus, average energy per access (EPA) is defined as the 
energy expended for a single w-byte window search: 
 

EPA = Total_Energy / Total_Accesses 

! 

Total_ Accesses = P
i

i=1

X

"  

where X is the total number of packets processed and Pi is 
the payload length of packet i. 

It should also be noted that best case energy consumption 
occurs when all lookups miss in the P_TCAM (no inspection 
windows match any signatures) and the worst case energy 
consumption occurs when there is a hit in the P_TCAM and 
a subsequent cache miss.  

V. ANALYSIS AND EXPERIMENTAL RESULTS 
In this section, we provide experimental analysis of our 
proposed intrusion detection system. We first analyze 
signature length distribution of two popular signature sets. 
We then analyze the impact of TCAM partitioning (without 
suffix caching) with respect to area, energy consumption, 
and the energy-delay product (EDP) [12]. Next, we simulate 
popular NIDS trace benchmarks to determine average 
energy savings and compare this to the unpartitioned TCAM 
approach modeled using the same environment. Finally, we 
introduce the suffix cache into our system and analyze its 
effects. 

A. Experimental Setup 
For our experiments, we modeled our intrusion detection 
system using a custom C-based simulator. For a given 
TCAM width w, the SNORT [23] and ClamAV [6] signature 
sets are populated in the TCAM structures accordingly. We 
use popular NIDS benchmark traces from the MIT Lincoln 
Laboratory (MIT-LL) [15] and the “capture-the-flag” contest 
for the DEFCON festival [5].  

During a trace pre-analysis step, incoming fragmented 
packets are reassembled and the payload of the reassembled 
packets are extracted and passed to our intrusion detection 
simulator. The simulator behaviorally simulates our 
proposed architecture, recording several statistics such as 
total number of accesses to each TCAM and total number of 
intermediate and concluding prefix and suffix hits for 
postmortem analysis. To analyze the effects of the suffix 
cache, the S_TCAM access trace is saved to a trace file for 
future analysis by a cache simulator.  

We obtain TCAM energy consumption using the TCAM 
modeling tool developed by Agarwal et al. [1]. This tool 
provides search time and energy per access verses width, 
number of entries, and the fabrication technology, which is 
assumed to be 130 nm. We combine this with the our 
mathematical models (section IV) to obtain the resource 
usage and energy consumption.  

B. Signature Length Distribution Analysis 
To assist in appropriate TCAM width w determination and 
avoid reduced resource utilization due to excessive “don’t 
care” bit padding, we first analyze signature length 
distribution. Fig 3 shows the cumulative signature length 
distribution for SNORT v2.4 and v2.8, and the ClamAV 
signature sets. Primarily, SNORT signatures are short 
patterns, with 70% of the signatures less than 4 bytes long, 
and 99.8% of the signatures less than 100 bytes long. 
ClamAV shows a different distribution, with 72% of the 
signatures between 30 bytes and 100 bytes long. This 
suggests that smaller TCAM widths are more suitable for 
SNORT signature patterns compared to ClamAV patterns. 
Our graphs conform to the findings in [25] showing that 
future SNORT pattern lengths are becoming increasingly 
smaller and are more complex as these smaller patterns are 
distributed across the packet. 

Since SNORT v2.4 and v2.8 show similar trends (and we 
observed these same trends for all experimental results), we 
only present experimental results for SNORT v2.8. 

C. Effects of TCAM Partitioning on Size, Energy, and the 
Energy Delay Product  

Partitioning circumvents natural compression and results in 
an increase in the cumulative TCAM space. For example, 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3: Cumulative number of rules (distribution) for increasing signature 
lengths for Snort and ClamAV signature sets. 
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given

! 

w = 4,  the signature “ABCDEFGHABCD” can be 
represented in a single TCAM using only two entries: 
ABCD and EFGH. However, partitioning the signature 
across a P_TCAM and an S_TCAM requires three total 
entries: ABCD in the P_TCAM and EFGH and ABCD in the 
S_TCAM. Thus, we first analyze the impact on total area 
due to TCAM partitioning. 

Fig 4 depicts partitioning effects on TCAM size in 
KBytes for the SNORT v2.8 (a) and ClamAV (b) signature 
sets verses varying TCAM widths. These figures show 
P_TCAM and S_TCAM sizes, as well as the total combined 
size of these two TCAMs (combined TCAMs) compared to 
the non-partitioned TCAM system. The results show 
negligible natural compression loss, with the largest area 
overhead increase due to partitioning being only 4% for the 
smallest width. 

Fig 5 depicts energy per access normalized to the 
non-partitioned TCAM system for the P_TCAM and 
S_TCAM individually and both TCAMs combined 
(combined TCAMs) for the SNORT v2.8 (a) and ClamAV 
(b) signature sets. For SNORT, Fig 5 (a) shows that that for 
the best case scenario (all P_TCAM accesses miss), energy 
consumption can be reduced by 74% to 40% compared to a 
non-partitioned TCAM system for TCAM widths ranging 
from 4 to 16 bytes, respectively. For ClamAV, Fig 5 (b) 
shows that for the best case scenario, energy consumption 
can be reduced by 93% to 78% compared to a 
non-partitioned TCAM system for TCAM widths ranging 
from 4 to 16 bytes, respectively. In the worst case scenario 
(full activity in both the P_TCAM and S_TCAM), the 
energy consumption per access is nearly identical to the 
non-partitioned TCAM system, except for a TCAM width of 
4 bytes, where energy is increased by 5% and 1% for 
SNORT and ClamAV, respectively. However, our 

simulations using popular benchmark traces in section V.D 
shows that the worst case scenario rarely occurs. 

Even though our partitioned TCAM system performs 
similar to that of a non-partitioned TCAM system in terms 
of total size and worst case energy per access, the largest 
advantage of the partitioned system is the reduction in the 
EDP. Fig 6 shows the percentage reduction in the EDP 
verses TCAM width for the SNORT v2.8 and ClamAV 
signature sets. The results reveal EDP reduction as high as 
62% for both signature sets. This reinforces the fact that our 
partitioned TCAM system is both energy and throughput 
aware compared to a non-partitioned TCAM system, which 
is predominantly throughput aware. 

D. Energy Savings from Partitioning with Real-Time 
Network Traces 

Fig 7 depicts the energy reduction for a partitioned TCAM 
system compared to a non-partitioned TCAM system for two 
MIT-LL and DEFCON traces for both signature sets. Energy 
savings range from 6% to 69% and 6% to 87% for SNORT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: TCAM size variation verses TCAM width for the (a) SNORT v2.8 and (b) ClamAV signature sets for the P_TCAM and S_TCAM individually, the 
P_TCAM and S_TCAM combined (Combined TCAMs), and the non-partitioned TCAM system. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 5: Energy per access normalized to a non-partitioned TCAM system verses TCAM width for the (a) Snort v2.8 and (b) ClamAV signature sets for the 
P_TCAM and S_TCAM individually as well as the P_TCAM and S_TCAM combined (Combined TCAMs). 

 
 
 
 
 
 
 
 
 
 
 

 
Fig 6: Percentage reduction in the energy-delay product (EDP) for a 

partitioned TCAM system compared to a non-partitioned TCAM system 
verses TCAM width. 

 

  
(a) (b) 

(a) (b) 

(a) (b) 

  
(a) (b) 

 



and ClamAV, respectively. Both signature sets reveal similar 
energy reduction trends with smaller TCAM widths 
revealing larger energy reductions compared to larger 
TCAMs widths, as larger widths result in much more 
expensive TCAM accesses and an increase in “don’t care” 
bits. Furthermore, ClamAV patterns exhibit more energy 
savings for a TCAM width 8 due to a drastic reduction in 
S_TCAM accesses, suggesting that the traces contain 
predominantly short patterns. 

E. Network Trace Locality and Caching 
First, we analyze network trace locality in order to motivate 
caching benefits. Fig 8 is a plot of the matching SNORT 
signature identification (ID) number verses ordered 
incoming malicious packets for the MIT-LL traces. As the 
figure shows, only a very few unique signatures match, and 
those matched exhibit significant temporal locality. 

Next, we analyze the distribution of TCAM accesses 
between the P_TCAM and the S_TCAM to reveal further 
caching potential. Fig 9 shows the percentage of S_TCAM 
accesses for the partitioned TCAM system verses varying 
TCAM widths for SNORT and ClamAV signature sets using 
the MIT-LL and DEFCON traces. The figure shows that 
smaller TCAM widths generate more suffix accesses and 
hence provide better opportunity for caching. This is 
promising given that Fig 7 shows the greatest energy 
reduction for small TCAM widths. For all cases except 
SNORT v2.8 with the DEFCON input trace, S_TCAM 
access percentage drops below 2% for widths greater than 8 
bytes. We point out that the percentage is largely dependent 
on the nature of traces and the signature sets used. 

We analyze caching impacts for a TCAM width of 4 

bytes, as this width provides the greatest number of 
S_TCAM accesses. Fig 10 depicts the variations in cache hit 
rate verses cache size in number of entries. Hit rates range 
from 28% to 88% with a cache size of only 40 to 60 entries, 
with very little increased benefit for larger cache sizes. A 
cache containing 40 to 60 entries represents only 0.002% to 
0.004%, respectively, of the S_TCAM entries.  

Fig 11 shows energy reduction for a partitioned TCAM 
system with a suffix cache compared to a partitioned TCAM 
system with no suffix cache. The inclusion of a small cache 
revealed 13% to 64% additional energy savings compared to 
a partitioned TCAM system with no suffix cache.  

Fig 12 analyzes the throughput reduction due to cache 
misses. Whereas in the worst case (all P_TCAM accesses hit 
and all suffix cache accesses miss) throughput would be 
reduced by 100%, Fig 12 shows that actual throughput 
reduction is minimal and ranges from 0.001% to 5.5%. 

VI. CONCLUSION 
In this paper, we architected an energy efficient partitioned 
TCAM-based content inspection system suitable for 
deployment in next generation SNICs. The proposed system 
is both energy and throughput aware, with energy delay 
product improvements of up to 62% compared to previous 
non-partitioned TCAM systems. Evaluation of our 
partitioned TCAM system using popular NIDS benchmarks 
revealed up to 87% energy savings on average compared to 
a non-partitioned TCAM system. We further enhanced our 
system by adding a small suffix cache to leverage the 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 7: Energy reduction for a partitioned system compared to a 
non-partitioned system verses TCAM width for real-time traffic 

traces. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8: Signature access locality (SNORT rule ID verses time represented by 
the malicious packet ID) as observed by an edge node under attack 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 9: Percentage of S_TCAM accesses for various TCAM widths 

populated by SNORT v2.8 and ClamAV signature sets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 10: Cache hit rates for varying number of cache entries for a TCAM 
width of 4 bytes. 
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signature access locality present in network traces. A simple 
cache with a random replacement policy provided hit rates 
ranging from 28% to 88%, further reducing the energy 
consumption of the partitioned TCAM system by 64% 
compared to a partitioned TCAM system with no cache with 
at most a 5.5% throughput reduction.  

Future work includes studying improved caching 
techniques with respect to energy consumption and 
development of a pipelined architecture to circumvent the 
impact of cache misses on throughput. We also plan to 
address the attack robustness of our system by developing a 
methodology to overcome maliciously engineered packets to 
purposefully defeat energy savings by exploiting system 
behavior. Finally, we will develop improved auxiliary data 
structures and final signature matching techniques using 
hashing, bloom filters and other software methods in order 
to further enhance content inspection for wide scale SNIC 
deployment.  
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Fig 11: Energy savings for a partitioned TCAM system (w=4) with a suffix 

cache compared to a partitioned TCAM system with no suffix cache for 
varying number of cache entries. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig 12:  Percentage reduction in throughput verses number of cache 

entries for SNORT and ClamAV signature sets. 
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