
 
Abstract 

 
The number of edge devices connected to the Internet is 

increasing at a rapid rate. To maintain network connectivity, 
the majority of these devices remain completely powered on 
when idle, wasting unnecessary energy. A novel idea to 
conserve energy while maintaining network connectivity is to 
place the computer in standby mode during idle periods and 
delegate the packet-handling functions to its network interface 
card (NIC). The NIC, acting as a liaison for the host, can proxy 
a variety of network protocols, increasing the standby time of 
the host without compromising its active connections. In this 
paper, we analyze the requirements of such a packet classifier 
and design a low-power hardware-based packet classification 
technique, which, compared to a software-based packet 
classification technique, consumes 59% less energy with a 9x 
speedup.  

1. Introduction 
With the rapid increase in the number of edge devices 

connected to the Internet, the aggregate power consumption of 
these devices will become a major concern in the near future 
[2]. The most prevalent of these edge devices are consumer 
desktop computer systems, consuming on average 60 – 95 watts 
of power and up to 195 watts in high-end systems [22].  

Research estimates that these systems are on average left 
idle for 75% of the time when powered on [18]. During these 
idle periods, systems could be powered down to a standby mode 
to reduce power consumption by 80% [2]. However, standby 
mode currently disrupts the system’s network connectivity. 
Popular Internet applications such as peer to peer (P2P) clients 
and instant messengers demand continuous network 
connectivity in order to respond to incoming file queries and to 
announce a user’s presence. In order to ensure this connectivity, 
users typically disable the power management features, 
inhibiting the transition to standby mode, and thereby increasing 
the energy consumption of otherwise idle systems. However, 
given existing system architectures, disabling standby mode is 
the only option to retain two-way network connectivity for user 
applications.  

A novel approach to address this problem is to augment the 
network interface card (NIC) to act as a proxy (or liaison) for 
the system during standby mode, and maintain network 
connectivity by handling a subset of certain application network 
protocol semantics [8][18]. This subset has the unique 
characteristic that responses do not require a complex decision 
process, thus the NIC can proxy automated responses, allowing 
the system to remain in standby mode – a technique known as 
power proxying. Network protocols that are amenable to 

proxying are called proxiable protocols. Purushothamom et al. 
[18] demonstrated that the NIC can successfully proxy portions 
of P2P application protocol semantics, increasing the amount of 
time a system can be in standby mode by 85%. Similarly, 
several other applications such as instant messengers, initiating 
sessions of Internet telephony, and new mail notification of e-
mail clients are suitable for power proxying.  

For a NIC to provide the capability of power proxying, 
power proxying rules are required to enable the NIC to identify 
packets that may be appropriately responded to using proxiable 
protocols. The system provides these rules to the NIC 
immediately prior to entering standby mode. Such a ‘smart’-
NIC (SNIC) would, upon receiving a packet, identify the packet 
and either respond appropriately or wake up the system. 

To provide this functionality, the SNIC must have a packet 
classifier, a method of examining incoming packets to 
determine the appropriate action. Thus, packet classification is 
the process of determining which rule an inbound packet 
satisfies. This packet classification methodology is similar to 
that performed in traditional routers. However, router 
techniques for packet classification are not directly applicable to 
a desktop NIC due to high resource requirements such as power, 
energy, and computational intensity. Even though resources to 
implement packet classification exist on modern NICs with 
built-in embedded RISC processors [3][9][14][21], these 
processors are significantly less powerful than those available 
on routers, and are unable to meet necessary classification 
speeds. Alternatively, router processors are too costly and 
demanding for implementation on consumer NICs. Thus, a low-
power, small area, and efficient packet classification scheme is 
required. 

In this paper, we present, to the best of our knowledge, the 
first hardware-based, low power packet classification scheme 
for reduced power consumption in NICs. We first analyze the 
characteristics of power proxying rules and develop a packet 
classifier that suits the proxying requirements. We initially 
prototype our packet classifier in software intended to run on 
existing NIC processors and show that these processors lack the 
ability to classify packets quickly enough to keep up with link 
speeds greater than 100 Mbps. To keep pace with rapidly 
advancing technology, we develop and analyze a hardware-
based packet classifier to achieve packet classification 
throughput nearly reaching that needed for 10 Gbps link speeds.  

2. Background and Related Work 
Power proxying on a NIC requires three key elements. First, 

a methodology is needed to control the state switching of the 
system. Second, protocol classes amenable to power proxying 
must exist. And lastly, the NIC must have the necessary 
computing resources to implement the power proxying 
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technique. In this section, we elaborate on these key 
requirements. 

2.1  Power Proxying with the SNIC 
We partition our system into the two components 

responsible for responding to network traffic at particular times: 
the operating system (OS) and the SNIC. When the system is in 
full power mode, the OS responds to network traffic, while the 
SNIC responds when the system is in standby mode. 

We define the delegation of network control between the 
SNIC and the OS. Before the system transitions to the standby 
state due to system idleness, the PC offloads power proxying 
rules to the SNIC for all active networking applications and 
delegates the network control to the SNIC. Thus, the PC enters 
the low-power state without disrupting network connectivity.  
At this time, the packet classifier on the SNIC applies the power 
proxying rules to incoming packets. If the packet classifier 
identifies a packet that can be handled by the SNIC, the proxy 
module identifies the target application using the application ID 
field within the power proxying rule (we discuss further details 
in section 3.1). The proxy module invokes a corresponding 
application handler to respond to the packet. For every 
proxiable application that runs in the system, there is a 
corresponding application handler running on an embedded 
processor inside the SNIC to handle protocol semantics. The 
application handler determines an appropriate response by 
inspecting the payload of the packet. Additionally, if the packet 
classifier recognizes the packet as network chatter that is not 
intended for the system, the packet is discarded.  

Two situations exist where the SNIC is unable to proxy a 
response to an incoming packet, requiring the PC to be woken 
up out of standby mode using a Wake on LAN (WOL) [4] 
interrupt. The first is when the SNIC receives a packet that does 
not match any power proxying rule and is not network chatter. 
The second is when certain proxied applications such as Internet 
telephony, on reception of certain types of packets, demand the 
PC to be woken up.  

2.2 Protocol Semantics and Applications 
Popular networking applications such as P2P file sharing 

programs, instant messengers, Internet telephony, and 
diagnostic applications such as ‘ping’ have proxiable features, 
making them the most promising candidates for power 
proxying. These applications are grouped under one of four 
protocol classes: Address Resolution Protocol (ARP), Internet 
Control Message Protocol (ICMP), Transmission Control 
Protocol (TCP), and User Datagram Protocol (UDP).  

ARP request packets do not require the PC to be powered 
on and can be easily delegated to the SNIC. For example, IP 
conflicts can be avoided when the PC is in a standby mode by 
allowing the SNIC to respond to gratuitous ARP packets.   

Ping, the popular network diagnostic application, uses 
ICMP to request and respond to messages to detect the presence 
of a particular system and is amenable for proxying.  

Many popular applications such as P2P file sharing 
programs and session initiations of Internet telephony 
applications use TCP for network communications. 
Additionally, several instant messaging implementations using 
the TCP class constantly send out user status packets (or 
presence packets) and are amenable to power proxying. While 

in standby mode, the SNIC can send out these packets at a 
constant time interval. 

The fourth protocol class is UDP. A fitting application 
example for this category is a new e-mail notification sent as a 
UDP packet to the corresponding e-mail client [19]. Upon 
receiving this packet, the PC can be awoken by the SNIC to 
download the new message. 

2.3 NIC-Based Computing Resources 
Modern NICs contain embedded processors that are largely 

underutilized, and much current research focuses on exploiting 
these resources. Friedman et al. [3] conceived and implemented 
a NIC-based distributed firewall system called iNIC for 
Ethernet platforms using a 100 MHz Intel i960 RISC processor 
with 128 MB of RAM. Otey et al. [16] proposed and 
empirically evaluated a novel architecture for network intrusion 
detection systems using NICs for commercial Myrinet platforms 
featuring a 66 MHz LANai with 4 processors and 1 MB of 
memory. In [20], a gigabit Ethernet adapter built on a dual RISC 
processor architecture supported TCP offload implementation. 
Broadcom’s family of Convergent-NICs (C-NIC) is another 
example of intelligent NICs. Killer NIC is a gaming NIC that 
utilized a 400 MHz Freescale RISC processor for accelerating 
game data [9]. All of these implementations function only 
during the powered-on mode of a system and none propose 
offloading processing to the NIC so that the system can be 
placed in a standby mode.  

3. Packet Classifier 
For a packet classifier to function successfully on the SNIC, 

we identify the characteristics of the power proxying rules and 
impose operating requirements. 

3.1 Characteristics of Power Proxying Rules 
Power proxying rules can uniquely identify application 

network traffic based on header fields such as port and/or source 
address. This means packet classification for power proxying is 
a 6-dimensional problem, the dimensions being the link-layer 
protocol, network-layer source and destination addresses, 
network-layer protocol, and the transport-layer source and 
destination port numbers.  For example, all TCP application 
traffic flows can be uniquely recognized using the source and 
destination address and port header fields. For UDP 
applications, only the destination address and port fields identify 
the traffic flow. In addition to the header fields, link-layer 
protocol and network-layer protocol fields are required to 
distinguish between the four classes. 

Conventional packet classifier rules are specified as 
address/mask and operator/number(s) pairs [6]. However, power 
proxy classifier rules are specified only in operator/number(s) 
format because the end points of a connection in the network are 
clearly defined. Therefore, the use of the address/mask 
representation is avoided. Since this paper primarily targets 
applications running on specific ports, we limit the scope of the 
operator to equality. If the packet classifier were to be extended 
for firewall and security applications, range operators (such as 
greater than and less than) could easily be implemented.  

Upon matching a packet with a rule, the application handler 
utilizes the information provided by the packet classifier to 
selectively respond to incoming flows. Given certain situations, 



the application handler may choose not to respond, electing to 
wake up the PC.  

3.2 SNIC Packet Classifier Characteristics and 
Requirements 

The SNIC packet classifier is similar to a router-based 
packet classifier, but the operating environments and goals 
differ. For example, the SNIC packet classifier operates only 
during periods of system inactivity and will only deal with 
packets addressed to the particular destination PC, unlike a 
router, which must deal with packets addressed to many 
destinations. 

Additionally, the SNIC packet classifier operates under 
limited processing resources. A typical NIC processor’s clock 
frequency ranges from 66 MHz to 400 MHz. In contrast, routers 
operate with dedicated network processors at GHz clock 
frequencies. However, even with limited resources, the packet 
classifier should be able to sustain link rates of 
10/100/1000/10000 Mbps and the latency of the packet 
classification should avoid any packet loss. 

Fundamentally, SNIC packet classification is similar to 
routing for delay sensitive applications. The primary difference 
is the nature and number of rules for both cases. Typically, 
router rules are more complex and are large in terms of quantity 
and size of rules. The number of rules a SNIC packet classifier 
searches is directly proportional to the number of running 
applications suitable for proxying, thus, there are significantly 
fewer rules. Additionally, SNIC rules are disjoint so that a 
packet obeys only one rule, in contrast to traditional router-
based packet classifiers that have forward or backward 
redundancy [7].  

4. Packet Classification Methods 
We designed a software-based packet classification 

methodology to quantify the packet classification capabilities 
available on existing unaugmented NICs, and to serve as a 
comparison for our hardware-based classification methodology. 
The simplest software classification algorithm utilizes a binary 
search algorithm, while the simplest hardware classification 
implementation utilizes Content Addressable Memories 
(CAMs) [6][7]. 

4.1 Software Packet Classification 
We used existing embedded processors available on 

commercial NICs to implement a software packet classifier. We 
implemented the software packet classifier using a binary search 
algorithm with a complexity of O (log N) to find a matching 
rule.  

The software packet classifier functions as follows. A 
receiver FIFO buffers incoming packets until they are 
transferred to the NIC’s memory. After the packets are moved, 
the MAC control unit notifies the embedded processor and 
packet classification begins. The software extracts the required 
header fields from each packet and passes the fields to the 
packet classifier implemented in firmware. Finally, the 
embedded processor performs a binary search on these rules and 
determines an appropriate action. The process of header 
extraction and basic classification functionality is similar to our 
hardware implementation, which we elaborate on in the next 
section. 

4.2 Hardware Packet Classification 
We implemented the hardware packet classifier using 

CAMs. Traditionally, routers use ternary CAMs (TCAMs) for 
packet classification. Since our packet classifier does not 
demand a longest prefix match, we can implement the 
classification using basic CAMs, which require less power than 
TCAMs.  

Figure 1 shows the architecture of our hardware packet 
classifier. The header processing unit acts as the primary control 
module and is responsible for extracting the necessary data from 
the header of the packets, supplying the CAMs with source IP, 
source port, and destination port. Additionally, the header 
processor maintains classifier state. The packet classifier 
receives the input packets from the MAC core. 

Figure 2 shows the placement of the packet classifier with 
respect to the MAC core. The MAC core is attached to two 
FIFOs, one for transmitting (Tx FIFO) and the other for 
receiving (Rx FIFO). When a new packet arrives, the MAC core 
buffers the packet in the Rx FIFO at the rate of one byte per 
clock cycle [25]. The packet descriptor FIFO is a data structure 
where the packet classifier writes all the information regarding 
the classification of a packet, including the packet’s class and its 
matching address, if any. The application handler running on the 
SNIC processor uses this information to determine the 
appropriate action. 

A packet’s critical path is between the MAC core and the 
receiver FIFO. Because the packet classifier lies outside this 
path, it does not increase the critical path latency of the packet.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Architecture of the CAM-based hardware packet 
classifier. 

 
 
 
 
 
 
 

Figure 2: Architectural placement of the packet classifier. 
New components are shaded. 
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We implemented the header processing unit as a finite state 
machine, which is triggered when a packet arrives from the 
MAC core. The Ethernet protocol field specifies if a packet is 
an ARP or an IP packet. An ARP packet has the quickest 
classification time, as it requires only a single comparison of the 
Ethernet protocol field. In the case of an IP packet, the header 
processor checks whether it is an ICMP, TCP, or a UDP packet. 
For each packet, the layer three destination address field is 
checked to see if it matches the PC’s address, as we are only 
interested in packets destined for the host. 

Next, the packet classifier compares TCP and UDP packets 
against the power proxying rules stored in the CAMs. We 
partitioned the source address, source port, and destination port, 
and store them in separate CAMs. For a TCP packet, the packet 
classifier extracts the layer three source address information 
from the incoming packet data and searches the source address 
CAM. Only upon a match will the packet classifier continue 
with packet classification. If the packet classifier finds no match 
in the source address CAM, the packet classifier interrupts the 
processing element on the NIC to wake up the PC. 
Alternatively, if a match in the source address CAM occurs, the 
packet classifier extracts the source port from the header and 
searches the source port CAM. If a match occurs in the source 
port CAM, the packet classifier checks the destination port 
CAM. Since the CAMs are sequentially searched, unnecessary 
switching activities are avoided if the header processing unit 
detects a mismatch in the earlier phases, saving power when 
compared to a single CAM implementation.  

A rule for TCP matches if and only if all three CAMs return 
the same matching address. In the case of UDP packets, only the 
destination port CAM needs to match and since the destination 
address is a single value, the address can be stored in a register 
and the packet classifier performs an equality comparison.  

For TCP traffic, cases arise where multiple TCP flows will 
map to a single TCP application, giving rise to multiple 
matches. The match address unit addresses this issue using the 
multiple match flags and representing the CAM addresses in bit 
vector format [26]. In such a case, the unencoded CAM address 
forms a bit vector where each bit indicates a matching address. 
A match occurs for a TCP application by intersecting the bit 
vectors of all three CAMs. 

5. Experimental Results 
We performed experiments to compare the software and 

hardware classifiers in terms of classification speed and 
dynamic power dissipation.  

5.1 Experimental Setup 
We implemented the software packet classifier using the 

embedded PowerPC 405 on the RiceNIC platform [21]. The 
RiceNIC is a programmable network interface card that 
incorporates an FPGA and two embedded PowerPCs. The 
RiceNIC implementation clocks the PowerPC at 300 MHz and 
the processor bus at 100 MHz. We also modified the PowerPC 
to operate at 100 MHz in order to observe the performance of 
the packet classifier at lower clock frequencies, representing 
low-end NICs. 

Our experimental setup for the software packet classifier 
consisted of two PCs, one emulating a network switch and the 
other equipped with the RiceNIC board. Using the packet 
generation tool NPG [13], the PC emulating the switch injected 

minimum sized packets to the RiceNIC equipped PC. We 
instrumented the RiceNIC to record packet classification time 
statistics. 

We prototyped the hardware packet classifier on the Xilinx 
Virtex-II Pro FPGA XC2VP20 and used Verilog HDL and 
Xilinx IP cores to generate the CAMs with block memory. We 
developed and simulated the system, which implemented the 
Xilinx TEMAC core [25], using Xilinx ISE 9.1 [27] and 
ModelSim XE [12]. We designed system operation supporting 
the three link rates of 10/100/1000 Mbps, with corresponding 
clock frequencies of 1.25, 12.5, and 125 MHz, respectively. 
Next, we synthesized the hardware system and performed time-
constraint based placement and routing with Xilinx XST. We 
subjected the system to heavy timing simulations (post-place 
and route timing simulation) using both the ISE simulator and 
Modelsim XE. We utilized Xilinx XPower [30] for power 
estimation [1].  

Worst case power dissipation occurs when the hardware 
prototype continuously receives minimum sized Ethernet 
packets. Hence, we generated the test benches using minimum 
sized Ethernet packets (64 bytes) and created four types of test 
benches, each corresponding to one of the four protocol classes.  

5.2 Packet Classifier Speed 
The primary goal of the packet classifier is to meet the 

standard minimum-sized Ethernet packet throughput of 1.48 
millions of packets per second (MPPS) at a 1 Gbps link rate.  
For the software packet classifier, worst-case packet 
classification time occurs when the matching rule is the last rule 
checked. For the hardware packet classifier, worst-case packet 
classification time occurs when all dimensions (CAMs) match. 
For a successful match, the worst-case classification time for the 
software classifier is O (log n) and O (1) for the hardware 
classifier.  

Figure 3 shows the worst-case packet classification time for 
successful matches for both classifiers using a power proxy rule 
set containing 100 rules. In the hardware design, TCP packets 
take slightly more processing time than the UDP packets due to 
three sequential CAM lookups for TCP compared to a single 
lookup for UDP. As expected the hardware-based classification 
is much faster than software-based classification for both 100 
MHz and 300 MHz processors.  

Figure 4 examines the variation of the worst-case packet 
classification time for the TCP/UDP packets with varying rule 
set sizes. The hardware packet classification time is constant for 
any number of rules while the software packet classification 
time increases logarithmically.  

 
 
 
 
 
 
 

 

 

Figure 3: Worst-case packet classification time for each protocol 
class with a power proxy rule set of 100 rules 

 



We define the throughput of our hardware and software 
packet classifiers in terms of number of MPPS that the system is 
able to process. This metric reveals the maximum link rate 
sustainable by each technique. Figure 5 shows the obtainable 
worst-case throughput for both packet classification techniques 
for TCP packets. The software implementation operating at 300 
MHz can only process at most 1 MPPS and fails to meet the 
gigabit Ethernet throughput requirement which may lead to 
unnecessary dropping of packets. We also estimate that the 
embedded processing element’s clock rate should be at least 500 
MHz to meet the gigabit Ethernet throughput requirement. The 
hardware implementation comfortably meets the throughput 
requirement and supports up to 2.5 MPPS operating at 125 
MHz. At this packet classification speed, the classifier can 
support one link of 1 Gbps and up to 7 links of 100 Mbps speed 
giving a total link rate of 1.7 Gbps.  

During idle times the system may not be subjected to a huge 
influx of packets, thus the software implementation may be fast 
enough to support classification. However, 1 Gpbs link rates are 
becoming commonplace and 10 Gpbs link rates will soon 
follow. Significantly more powerful embedded processors are 
required to speedup software packet classification to meet future 
link speeds, and these embedded processors are likely too power 
hungry to be included on a desktop NIC. Not only is our 
hardware classification technique much closer to meeting 10 
Gpbs link rates (and in some rule cases, does meet the 
requirements), we project that we can optimize the hardware to 
maintain a link rate of 10 Gpbs with minimal added power 
overhead.  

Figure 6 shows the speedup obtained with hardware 
classification versus software classification. We assume the 
hardware and software are continuously supplied with packets 

to classify. This figure denotes the lower bound on the 
achievable speed up. Speedup times range from 2.5x to 9x 
depending on traffic type and available NIC processing speeds.  

5.3 Power Consumption 
We estimated the power consumption of our hardware 

design using Xilinx XPower. The embedded PowerPC core in 
the Virtex-II Pro consumes 0.9mW/MHz at an ambient 
temperature of 25oC [29]. We obtained the power consumption 
of the PowerPC system operating at 100 MHz and 300 MHz 
with the bus interface clocked at 100 MHz using the online 
power estimation tool [28], and found the power consumption to 
be 100 mW and 280 mW respectively. However, [17] reveals a 
more realistic power estimation that also accounts for the bus 
power dissipation. Thus, the PowerPC consumes 259.5 mW and 
441 mW of power when clocked at 100 MHz and 300 MHz 
respectively. These numbers are in close agreement with [15], 
which also estimates the idle power of the PowerPC to be 50 
mW. We obtain all power estimations at an ambient temperature 
of 25oC.  

The highest measured power consumption of our hardware 
packet classifier is 180 mW when it processes a TCP packet 
with 100 rules. The software packet classifier consumes 
between 2.4x and 2.9x more power than the hardware packet 
classifier. We project that in order for the software classifier to 
meet the 1 Gbps throughput requirements, the processor must 
operate at 500 MHz requiring an additional 294 mW over the 
300 MHz processor – 4x more power than the hardware packet 
classifier.  

Figure 7 shows the variation of the average hardware power 
consumption for various packet classes across different link 
rates for 100 rules. We can trace an exponential increase in 
power consumption with increasing link rate speed due to the 
system clock frequency, which is a function of the exponentially 
increasing link rate. As seen in the figure, processing a TCP 
packet involves slightly more power than processing other 
packets.  This increase results from switching activity in the 
source address and source port CAMs, which only occurs in 
TCP packets.  

5.4 Hardware Operating Frequency and 
Scalability 

We obtained a maximum frequency of 177.17 MHz for an 
implementation with 20 rules and a minimum frequency of 
138.9 MHz for an implementation with 100 rules. The standard 
frequency requirement for a 10 Gbps link rate is 156.25 MHz, 

 
 
 
 
 
 
 
 
 

Figure 4: Worst-case packet classification time for TCP and 
UDP traffic vs. number of power proxying rules. (Both 

hardware classification times overlap on the bottom line.) 

 
 
 
 
 
 
 
 
 

Figure 5: Obtainable throughput in MPPS for hardware and 
software packet classifiers vs. number of rules for TCP traffic. 

 
 
 
 
 
 
 
 
 

Figure 6: Speedup obtained by using a hardware classifier 
compared to a software classifier for varying number of rules. 

 

  



which transmits data in units of 64 bits. Our prototype meets 
this requirement for 20 rules and we project that with larger 
FPGAs, our prototype can easily meet the 10 Gbps frequency 
requirement for an implementation with 100 rules.  

6. Conclusions and Future Work 
Power proxying is a key element in realizing energy savings 

in network devices and allows them to be placed in standby 
mode without losing network connectivity. In this paper, we 
analyzed power proxying rules and developed packet classifiers 
intended to operate on a NIC to enable power proxying. We 
developed a low power hardware-based packet classification 
technique and analyzed it in terms of classification speed, 
packet throughput, and power consumption compared to a 
software-based implementation. Our hardware packet classifier 
was able to meet the Gigabit link rate requirements comfortably, 
with only minor optimizations needed to satisfy 10 Gbps link 
rates. An equivalent software-based packet classifier would 
consume 4x more power than the hardware-based packet 
classifier. Additionally, the hardware packet classifier was up to 
9x faster than the software packet classifier, allowing the PC to 
be awoken sooner, thus reducing the possibility of packet loss.  

Future directions of work include development of an 
energy efficient content inspection module to extend the 
functionality of SNICs. 

7. Acknowledgements 
This work is supported by the National Science Foundation 

under Grant No. 0520081. The authors would like to thank 
Casey B. Reardon for his insightful comments and review of the 
paper.  

8. References  
[1] J. Becker, M. Huebner, and M. Ullmann, “Power estimation and 

power measurement of Xilinx Virtex FPGAs: trade-offs and 
limitations”, Proc. of 16thSymposium on Integrated Circuits and 
Systems Design (SBCCI), 2003. 

[2] K. Christensen, P. Gunaratne, B. Nordman, and A. George “The 
next frontier for communications networks: power management,” 
Computer Communications, vol. 27, no. 18, pp. 1758-1770, 
December 2004. 

[3] D. Friedman and D. Nagle, “Building Firewalls with Intelligent 
Network Interface Cards”, CMU SCS Technical Report, CMU-CS-
00-173, May 2001 

[4] J.A. Gil-Martinez-Abarca, F. Macia-Perez, D. Marcos-Jorquera,V. 
Gilart-Iglesias, "Wake on LAN over Internet as Web Service," 
IEEE Conference on Emerging Technologies and Factory 
Automation, 2006. ETFA '06, Sept. 2006 

[5] P. Gupta, S. Lin and N. McKeown, “Routing Lookups in 
Hardware at Memory Access Speeds”, Proc. Infocom, April 98, 
San Francisco. 

[6] P. Gupta and N. McKeown, “Packet Classification on Multiple 
Fields”, Proc. Sigcomm, Computer Communication Review, vol. 
29, no. 4, pp 147-60, September 1999. 

[7] P. Gupta and N. McKeown, “Algorithms for Packet 
Classification”, IEEE Network Special Issue, vol. 15, no. 2, pp 24-
32, March/April 2001. 

[8] M. Jimeno, K. Christensen, and A. Roginsky, "A Power 
Management Proxy with a New Best-of-N Bloom Filter Design to 
Reduce False Positives," Proc. of the IEEE International 
Performance Computing and Communications Conference, pp. 
125-133, April 2007 

[9] Killer Network Interface Card, http://www.killernic.com/ 
[10] H. Kim, S. Rixner, and V. Pai, “Network Interface Data Caching”, 

IEEE Transactions on Computers, Volume 54, No. 11, pp. 1394-
1408, November, 2005. 

[11] Microsoft Corporation, “Scalable Networking: Network Protocol 
Offload -Introducing TCP Chimney”, WinHEC Version, Apr. 
2004. 

[12] ModelSim, http://www.modelsim.com 
[13] Network Packet Generator, 

http://www.wikistc.org/wiki/Network_packet_generator. 
[14] NetXen 10 Gigabit Ethernet Controller, http://www.netxen.com. 
[15] J. Noguera, R.M. Badia, “Power performance trade off for 

reconfigurable computing”, Proc. of International Conference on 
Hardware/Software Codesign and System Synthesis (CODES + 
ISSS), September 2004, Stockhom.  

[16] M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula, and D. 
Panda, “Towards NIC-based intrusion detection” Proc. of the 
ACM International Conference on Knowledge Discovery and 
DataMining, 2003. 

[17] D. Petrick, “Analyzing the Xilinx Virtex-II Pro PowerPC with the 
Dhrystone Benchmark Application”, Technical report, NASA – 
Goddard Space Flight Center, August 2007. 

[18] P. Purushothaman, M. Navada, R. Subramaniyan, C. Reardon, and 
A. George, "Power-Proxying on the NIC: A Case Study with the 
Gnutella File-Sharing Protocol," Proc. of 31st IEEE Conference 
on Local Computer Networks (LCN), Nov, 2006, Tampa. 

[19] RFC 4146, Simple New Mail Notification. 
[20] RN2/RN4/RN6 Datasheet, Raptor Networks Technology Inc. 
[21] J. Shafer and S. Rixner, “A Reconfigurable and Programmable 

Gigabit Ethernet Network Interface Card”, Technical report 
TREE0611, Department of Electrical and Computer Engineering, 
Rice University, December 2006. 

[22] R. Stedman , “Reducing Desktop PC Power Consumption Idle and 
Sleep modes”, Technical presentation, Dell Computer 
Corporation, June 2005 

[23] “The Gnutella protocol specification 0.6”, 
http://rfcgnutella.sourceforge.net. 

[24] T. Mohsenin, "Design and Evaluation of FPGA-Based Gigabit-
Ethernet/PCI Network Interface Card", Masters Thesis, Rice 
University, 2003 

[25] Tri-Mode Ethernet MAC v2.1 user guide, April 2005. 
[26] Xilinx IP core – Content Addressable Memory data sheet. 
[27] Xilinx ISE, http://www.xilinx.com 
[28] Xilinx Online Power Estimator, http://www.xilinx.com/cgi-

bin/power_tool/power_Virtex2p. 
[29] Xilinx, Virtex-II Pro Platform Data Sheet, March 2005. 
[30] Xilinx XPower Tutorial, July 2002. 

 

 
 
 
 
 
 
 
 
 
 

Figure 7: Hardware power consumption vs. link rate for 100 
rules.  


