

Abstract

The number of edge devices connected to the Internet is

increasing at a rapid rate. To maintain network connectivity,
the majority of these devices remain completely powered on
when idle, wasting unnecessary energy. A novel idea to
conserve energy while maintaining network connectivity is to
place the computer in standby mode during idle periods and
delegate the packet-handling functions to its network interface
card (NIC). The NIC, acting as a liaison for the host, can proxy
a variety of network protocols, increasing the standby time of
the host without compromising its active connections. In this
paper, we analyze the requirements of such a packet classifier
and design a low-power hardware-based packet classification
technique, which, compared to a software-based packet
classification technique, consumes 59% less energy with a 9x
speedup.

1. Introduction
With the rapid increase in the number of edge devices

connected to the Internet, the aggregate power consumption of
these devices will become a major concern in the near future
[2]. The most prevalent of these edge devices are consumer
desktop computer systems, consuming on average 60 – 95 watts
of power and up to 195 watts in high-end systems [22].

Research estimates that these systems are on average left
idle for 75% of the time when powered on [18]. During these
idle periods, systems could be powered down to a standby mode
to reduce power consumption by 80% [2]. However, standby
mode currently disrupts the system’s network connectivity.
Popular Internet applications such as peer to peer (P2P) clients
and instant messengers demand continuous network
connectivity in order to respond to incoming file queries and to
announce a user’s presence. In order to ensure this connectivity,
users typically disable the power management features,
inhibiting the transition to standby mode, and thereby increasing
the energy consumption of otherwise idle systems. However,
given existing system architectures, disabling standby mode is
the only option to retain two-way network connectivity for user
applications.

A novel approach to address this problem is to augment the
network interface card (NIC) to act as a proxy (or liaison) for
the system during standby mode, and maintain network
connectivity by handling a subset of certain application network
protocol semantics [8][18]. This subset has the unique
characteristic that responses do not require a complex decision
process, thus the NIC can proxy automated responses, allowing
the system to remain in standby mode – a technique known as
power proxying. Network protocols that are amenable to

proxying are called proxiable protocols. Purushothamom et al.
[18] demonstrated that the NIC can successfully proxy portions
of P2P application protocol semantics, increasing the amount of
time a system can be in standby mode by 85%. Similarly,
several other applications such as instant messengers, initiating
sessions of Internet telephony, and new mail notification of e-
mail clients are suitable for power proxying.

For a NIC to provide the capability of power proxying,
power proxying rules are required to enable the NIC to identify
packets that may be appropriately responded to using proxiable
protocols. The system provides these rules to the NIC
immediately prior to entering standby mode. Such a ‘smart’-
NIC (SNIC) would, upon receiving a packet, identify the packet
and either respond appropriately or wake up the system.

To provide this functionality, the SNIC must have a packet
classifier, a method of examining incoming packets to
determine the appropriate action. Thus, packet classification is
the process of determining which rule an inbound packet
satisfies. This packet classification methodology is similar to
that performed in traditional routers. However, router
techniques for packet classification are not directly applicable to
a desktop NIC due to high resource requirements such as power,
energy, and computational intensity. Even though resources to
implement packet classification exist on modern NICs with
built-in embedded RISC processors [3][9][14][21], these
processors are significantly less powerful than those available
on routers, and are unable to meet necessary classification
speeds. Alternatively, router processors are too costly and
demanding for implementation on consumer NICs. Thus, a low-
power, small area, and efficient packet classification scheme is
required.

In this paper, we present, to the best of our knowledge, the
first hardware-based, low power packet classification scheme
for reduced power consumption in NICs. We first analyze the
characteristics of power proxying rules and develop a packet
classifier that suits the proxying requirements. We initially
prototype our packet classifier in software intended to run on
existing NIC processors and show that these processors lack the
ability to classify packets quickly enough to keep up with link
speeds greater than 100 Mbps. To keep pace with rapidly
advancing technology, we develop and analyze a hardware-
based packet classifier to achieve packet classification
throughput nearly reaching that needed for 10 Gbps link speeds.

2. Background and Related Work
Power proxying on a NIC requires three key elements. First,

a methodology is needed to control the state switching of the
system. Second, protocol classes amenable to power proxying
must exist. And lastly, the NIC must have the necessary
computing resources to implement the power proxying

Karthikeyan Sabhanatarajan, Ann Gordon-Ross*, Mark Oden, Mukund Navada, Alan George*
HCS Research Lab, ECE Department, University of Florida.

{sabhanatarajan,ann,oden,navada,george}@hcs.ufl.edu
* Also with the NSF Center For High-Performance Reconfigurable Computing at the University of Florida

Smart-NICs: Power Proxying for Reduced Power Consumption in Network
Edge Devices

technique. In this section, we elaborate on these key
requirements.

2.1 Power Proxying with the SNIC
We partition our system into the two components

responsible for responding to network traffic at particular times:
the operating system (OS) and the SNIC. When the system is in
full power mode, the OS responds to network traffic, while the
SNIC responds when the system is in standby mode.

We define the delegation of network control between the
SNIC and the OS. Before the system transitions to the standby
state due to system idleness, the PC offloads power proxying
rules to the SNIC for all active networking applications and
delegates the network control to the SNIC. Thus, the PC enters
the low-power state without disrupting network connectivity.
At this time, the packet classifier on the SNIC applies the power
proxying rules to incoming packets. If the packet classifier
identifies a packet that can be handled by the SNIC, the proxy
module identifies the target application using the application ID
field within the power proxying rule (we discuss further details
in section 3.1). The proxy module invokes a corresponding
application handler to respond to the packet. For every
proxiable application that runs in the system, there is a
corresponding application handler running on an embedded
processor inside the SNIC to handle protocol semantics. The
application handler determines an appropriate response by
inspecting the payload of the packet. Additionally, if the packet
classifier recognizes the packet as network chatter that is not
intended for the system, the packet is discarded.

Two situations exist where the SNIC is unable to proxy a
response to an incoming packet, requiring the PC to be woken
up out of standby mode using a Wake on LAN (WOL) [4]
interrupt. The first is when the SNIC receives a packet that does
not match any power proxying rule and is not network chatter.
The second is when certain proxied applications such as Internet
telephony, on reception of certain types of packets, demand the
PC to be woken up.

2.2 Protocol Semantics and Applications
Popular networking applications such as P2P file sharing

programs, instant messengers, Internet telephony, and
diagnostic applications such as ‘ping’ have proxiable features,
making them the most promising candidates for power
proxying. These applications are grouped under one of four
protocol classes: Address Resolution Protocol (ARP), Internet
Control Message Protocol (ICMP), Transmission Control
Protocol (TCP), and User Datagram Protocol (UDP).

ARP request packets do not require the PC to be powered
on and can be easily delegated to the SNIC. For example, IP
conflicts can be avoided when the PC is in a standby mode by
allowing the SNIC to respond to gratuitous ARP packets.

Ping, the popular network diagnostic application, uses
ICMP to request and respond to messages to detect the presence
of a particular system and is amenable for proxying.

Many popular applications such as P2P file sharing
programs and session initiations of Internet telephony
applications use TCP for network communications.
Additionally, several instant messaging implementations using
the TCP class constantly send out user status packets (or
presence packets) and are amenable to power proxying. While

in standby mode, the SNIC can send out these packets at a
constant time interval.

The fourth protocol class is UDP. A fitting application
example for this category is a new e-mail notification sent as a
UDP packet to the corresponding e-mail client [19]. Upon
receiving this packet, the PC can be awoken by the SNIC to
download the new message.

2.3 NIC-Based Computing Resources
Modern NICs contain embedded processors that are largely

underutilized, and much current research focuses on exploiting
these resources. Friedman et al. [3] conceived and implemented
a NIC-based distributed firewall system called iNIC for
Ethernet platforms using a 100 MHz Intel i960 RISC processor
with 128 MB of RAM. Otey et al. [16] proposed and
empirically evaluated a novel architecture for network intrusion
detection systems using NICs for commercial Myrinet platforms
featuring a 66 MHz LANai with 4 processors and 1 MB of
memory. In [20], a gigabit Ethernet adapter built on a dual RISC
processor architecture supported TCP offload implementation.
Broadcom’s family of Convergent-NICs (C-NIC) is another
example of intelligent NICs. Killer NIC is a gaming NIC that
utilized a 400 MHz Freescale RISC processor for accelerating
game data [9]. All of these implementations function only
during the powered-on mode of a system and none propose
offloading processing to the NIC so that the system can be
placed in a standby mode.

3. Packet Classifier
For a packet classifier to function successfully on the SNIC,

we identify the characteristics of the power proxying rules and
impose operating requirements.

3.1 Characteristics of Power Proxying Rules
Power proxying rules can uniquely identify application

network traffic based on header fields such as port and/or source
address. This means packet classification for power proxying is
a 6-dimensional problem, the dimensions being the link-layer
protocol, network-layer source and destination addresses,
network-layer protocol, and the transport-layer source and
destination port numbers. For example, all TCP application
traffic flows can be uniquely recognized using the source and
destination address and port header fields. For UDP
applications, only the destination address and port fields identify
the traffic flow. In addition to the header fields, link-layer
protocol and network-layer protocol fields are required to
distinguish between the four classes.

Conventional packet classifier rules are specified as
address/mask and operator/number(s) pairs [6]. However, power
proxy classifier rules are specified only in operator/number(s)
format because the end points of a connection in the network are
clearly defined. Therefore, the use of the address/mask
representation is avoided. Since this paper primarily targets
applications running on specific ports, we limit the scope of the
operator to equality. If the packet classifier were to be extended
for firewall and security applications, range operators (such as
greater than and less than) could easily be implemented.

Upon matching a packet with a rule, the application handler
utilizes the information provided by the packet classifier to
selectively respond to incoming flows. Given certain situations,

the application handler may choose not to respond, electing to
wake up the PC.

3.2 SNIC Packet Classifier Characteristics and
Requirements

The SNIC packet classifier is similar to a router-based
packet classifier, but the operating environments and goals
differ. For example, the SNIC packet classifier operates only
during periods of system inactivity and will only deal with
packets addressed to the particular destination PC, unlike a
router, which must deal with packets addressed to many
destinations.

Additionally, the SNIC packet classifier operates under
limited processing resources. A typical NIC processor’s clock
frequency ranges from 66 MHz to 400 MHz. In contrast, routers
operate with dedicated network processors at GHz clock
frequencies. However, even with limited resources, the packet
classifier should be able to sustain link rates of
10/100/1000/10000 Mbps and the latency of the packet
classification should avoid any packet loss.

Fundamentally, SNIC packet classification is similar to
routing for delay sensitive applications. The primary difference
is the nature and number of rules for both cases. Typically,
router rules are more complex and are large in terms of quantity
and size of rules. The number of rules a SNIC packet classifier
searches is directly proportional to the number of running
applications suitable for proxying, thus, there are significantly
fewer rules. Additionally, SNIC rules are disjoint so that a
packet obeys only one rule, in contrast to traditional router-
based packet classifiers that have forward or backward
redundancy [7].

4. Packet Classification Methods
We designed a software-based packet classification

methodology to quantify the packet classification capabilities
available on existing unaugmented NICs, and to serve as a
comparison for our hardware-based classification methodology.
The simplest software classification algorithm utilizes a binary
search algorithm, while the simplest hardware classification
implementation utilizes Content Addressable Memories
(CAMs) [6][7].

4.1 Software Packet Classification
We used existing embedded processors available on

commercial NICs to implement a software packet classifier. We
implemented the software packet classifier using a binary search
algorithm with a complexity of O (log N) to find a matching
rule.

The software packet classifier functions as follows. A
receiver FIFO buffers incoming packets until they are
transferred to the NIC’s memory. After the packets are moved,
the MAC control unit notifies the embedded processor and
packet classification begins. The software extracts the required
header fields from each packet and passes the fields to the
packet classifier implemented in firmware. Finally, the
embedded processor performs a binary search on these rules and
determines an appropriate action. The process of header
extraction and basic classification functionality is similar to our
hardware implementation, which we elaborate on in the next
section.

4.2 Hardware Packet Classification
We implemented the hardware packet classifier using

CAMs. Traditionally, routers use ternary CAMs (TCAMs) for
packet classification. Since our packet classifier does not
demand a longest prefix match, we can implement the
classification using basic CAMs, which require less power than
TCAMs.

Figure 1 shows the architecture of our hardware packet
classifier. The header processing unit acts as the primary control
module and is responsible for extracting the necessary data from
the header of the packets, supplying the CAMs with source IP,
source port, and destination port. Additionally, the header
processor maintains classifier state. The packet classifier
receives the input packets from the MAC core.

Figure 2 shows the placement of the packet classifier with
respect to the MAC core. The MAC core is attached to two
FIFOs, one for transmitting (Tx FIFO) and the other for
receiving (Rx FIFO). When a new packet arrives, the MAC core
buffers the packet in the Rx FIFO at the rate of one byte per
clock cycle [25]. The packet descriptor FIFO is a data structure
where the packet classifier writes all the information regarding
the classification of a packet, including the packet’s class and its
matching address, if any. The application handler running on the
SNIC processor uses this information to determine the
appropriate action.

A packet’s critical path is between the MAC core and the
receiver FIFO. Because the packet classifier lies outside this
path, it does not increase the critical path latency of the packet.

Figure 1: Architecture of the CAM-based hardware packet
classifier.

Figure 2: Architectural placement of the packet classifier.
New components are shaded.

Packet class

Application ID

Source IP
Address

CAM

M
at

ch
 So

ur
ce

IP

Source
Port CAM

M
at

ch
 So

ur
ce

Po

rt
Destination
Port CAM

M
at

ch
 D

es
t

Po
rt

Match Address

Multiple
Match

M
ul

tip
le

M

at
ch

M
ul

tip
le

M

at
ch

Multiple
Match

A
dd

re
ss

A
dd

re
ss

Address M
at

ch
 ID

Header Processor

Incoming Packet (From MAC Core)

Tx FIFO

Rx FIFO

Packet
Descriptor FIFO

Packet
Classifier

TE
M

A
C

(M

A
C

 C
or

e)

From
PHY

We implemented the header processing unit as a finite state
machine, which is triggered when a packet arrives from the
MAC core. The Ethernet protocol field specifies if a packet is
an ARP or an IP packet. An ARP packet has the quickest
classification time, as it requires only a single comparison of the
Ethernet protocol field. In the case of an IP packet, the header
processor checks whether it is an ICMP, TCP, or a UDP packet.
For each packet, the layer three destination address field is
checked to see if it matches the PC’s address, as we are only
interested in packets destined for the host.

Next, the packet classifier compares TCP and UDP packets
against the power proxying rules stored in the CAMs. We
partitioned the source address, source port, and destination port,
and store them in separate CAMs. For a TCP packet, the packet
classifier extracts the layer three source address information
from the incoming packet data and searches the source address
CAM. Only upon a match will the packet classifier continue
with packet classification. If the packet classifier finds no match
in the source address CAM, the packet classifier interrupts the
processing element on the NIC to wake up the PC.
Alternatively, if a match in the source address CAM occurs, the
packet classifier extracts the source port from the header and
searches the source port CAM. If a match occurs in the source
port CAM, the packet classifier checks the destination port
CAM. Since the CAMs are sequentially searched, unnecessary
switching activities are avoided if the header processing unit
detects a mismatch in the earlier phases, saving power when
compared to a single CAM implementation.

A rule for TCP matches if and only if all three CAMs return
the same matching address. In the case of UDP packets, only the
destination port CAM needs to match and since the destination
address is a single value, the address can be stored in a register
and the packet classifier performs an equality comparison.

For TCP traffic, cases arise where multiple TCP flows will
map to a single TCP application, giving rise to multiple
matches. The match address unit addresses this issue using the
multiple match flags and representing the CAM addresses in bit
vector format [26]. In such a case, the unencoded CAM address
forms a bit vector where each bit indicates a matching address.
A match occurs for a TCP application by intersecting the bit
vectors of all three CAMs.

5. Experimental Results
We performed experiments to compare the software and

hardware classifiers in terms of classification speed and
dynamic power dissipation.

5.1 Experimental Setup
We implemented the software packet classifier using the

embedded PowerPC 405 on the RiceNIC platform [21]. The
RiceNIC is a programmable network interface card that
incorporates an FPGA and two embedded PowerPCs. The
RiceNIC implementation clocks the PowerPC at 300 MHz and
the processor bus at 100 MHz. We also modified the PowerPC
to operate at 100 MHz in order to observe the performance of
the packet classifier at lower clock frequencies, representing
low-end NICs.

Our experimental setup for the software packet classifier
consisted of two PCs, one emulating a network switch and the
other equipped with the RiceNIC board. Using the packet
generation tool NPG [13], the PC emulating the switch injected

minimum sized packets to the RiceNIC equipped PC. We
instrumented the RiceNIC to record packet classification time
statistics.

We prototyped the hardware packet classifier on the Xilinx
Virtex-II Pro FPGA XC2VP20 and used Verilog HDL and
Xilinx IP cores to generate the CAMs with block memory. We
developed and simulated the system, which implemented the
Xilinx TEMAC core [25], using Xilinx ISE 9.1 [27] and
ModelSim XE [12]. We designed system operation supporting
the three link rates of 10/100/1000 Mbps, with corresponding
clock frequencies of 1.25, 12.5, and 125 MHz, respectively.
Next, we synthesized the hardware system and performed time-
constraint based placement and routing with Xilinx XST. We
subjected the system to heavy timing simulations (post-place
and route timing simulation) using both the ISE simulator and
Modelsim XE. We utilized Xilinx XPower [30] for power
estimation [1].

Worst case power dissipation occurs when the hardware
prototype continuously receives minimum sized Ethernet
packets. Hence, we generated the test benches using minimum
sized Ethernet packets (64 bytes) and created four types of test
benches, each corresponding to one of the four protocol classes.

5.2 Packet Classifier Speed
The primary goal of the packet classifier is to meet the

standard minimum-sized Ethernet packet throughput of 1.48
millions of packets per second (MPPS) at a 1 Gbps link rate.
For the software packet classifier, worst-case packet
classification time occurs when the matching rule is the last rule
checked. For the hardware packet classifier, worst-case packet
classification time occurs when all dimensions (CAMs) match.
For a successful match, the worst-case classification time for the
software classifier is O (log n) and O (1) for the hardware
classifier.

Figure 3 shows the worst-case packet classification time for
successful matches for both classifiers using a power proxy rule
set containing 100 rules. In the hardware design, TCP packets
take slightly more processing time than the UDP packets due to
three sequential CAM lookups for TCP compared to a single
lookup for UDP. As expected the hardware-based classification
is much faster than software-based classification for both 100
MHz and 300 MHz processors.

Figure 4 examines the variation of the worst-case packet
classification time for the TCP/UDP packets with varying rule
set sizes. The hardware packet classification time is constant for
any number of rules while the software packet classification
time increases logarithmically.

Figure 3: Worst-case packet classification time for each protocol
class with a power proxy rule set of 100 rules

We define the throughput of our hardware and software
packet classifiers in terms of number of MPPS that the system is
able to process. This metric reveals the maximum link rate
sustainable by each technique. Figure 5 shows the obtainable
worst-case throughput for both packet classification techniques
for TCP packets. The software implementation operating at 300
MHz can only process at most 1 MPPS and fails to meet the
gigabit Ethernet throughput requirement which may lead to
unnecessary dropping of packets. We also estimate that the
embedded processing element’s clock rate should be at least 500
MHz to meet the gigabit Ethernet throughput requirement. The
hardware implementation comfortably meets the throughput
requirement and supports up to 2.5 MPPS operating at 125
MHz. At this packet classification speed, the classifier can
support one link of 1 Gbps and up to 7 links of 100 Mbps speed
giving a total link rate of 1.7 Gbps.

During idle times the system may not be subjected to a huge
influx of packets, thus the software implementation may be fast
enough to support classification. However, 1 Gpbs link rates are
becoming commonplace and 10 Gpbs link rates will soon
follow. Significantly more powerful embedded processors are
required to speedup software packet classification to meet future
link speeds, and these embedded processors are likely too power
hungry to be included on a desktop NIC. Not only is our
hardware classification technique much closer to meeting 10
Gpbs link rates (and in some rule cases, does meet the
requirements), we project that we can optimize the hardware to
maintain a link rate of 10 Gpbs with minimal added power
overhead.

Figure 6 shows the speedup obtained with hardware
classification versus software classification. We assume the
hardware and software are continuously supplied with packets

to classify. This figure denotes the lower bound on the
achievable speed up. Speedup times range from 2.5x to 9x
depending on traffic type and available NIC processing speeds.

5.3 Power Consumption
We estimated the power consumption of our hardware

design using Xilinx XPower. The embedded PowerPC core in
the Virtex-II Pro consumes 0.9mW/MHz at an ambient
temperature of 25oC [29]. We obtained the power consumption
of the PowerPC system operating at 100 MHz and 300 MHz
with the bus interface clocked at 100 MHz using the online
power estimation tool [28], and found the power consumption to
be 100 mW and 280 mW respectively. However, [17] reveals a
more realistic power estimation that also accounts for the bus
power dissipation. Thus, the PowerPC consumes 259.5 mW and
441 mW of power when clocked at 100 MHz and 300 MHz
respectively. These numbers are in close agreement with [15],
which also estimates the idle power of the PowerPC to be 50
mW. We obtain all power estimations at an ambient temperature
of 25oC.

The highest measured power consumption of our hardware
packet classifier is 180 mW when it processes a TCP packet
with 100 rules. The software packet classifier consumes
between 2.4x and 2.9x more power than the hardware packet
classifier. We project that in order for the software classifier to
meet the 1 Gbps throughput requirements, the processor must
operate at 500 MHz requiring an additional 294 mW over the
300 MHz processor – 4x more power than the hardware packet
classifier.

Figure 7 shows the variation of the average hardware power
consumption for various packet classes across different link
rates for 100 rules. We can trace an exponential increase in
power consumption with increasing link rate speed due to the
system clock frequency, which is a function of the exponentially
increasing link rate. As seen in the figure, processing a TCP
packet involves slightly more power than processing other
packets. This increase results from switching activity in the
source address and source port CAMs, which only occurs in
TCP packets.

5.4 Hardware Operating Frequency and
Scalability

We obtained a maximum frequency of 177.17 MHz for an
implementation with 20 rules and a minimum frequency of
138.9 MHz for an implementation with 100 rules. The standard
frequency requirement for a 10 Gbps link rate is 156.25 MHz,

Figure 4: Worst-case packet classification time for TCP and
UDP traffic vs. number of power proxying rules. (Both

hardware classification times overlap on the bottom line.)

Figure 5: Obtainable throughput in MPPS for hardware and
software packet classifiers vs. number of rules for TCP traffic.

Figure 6: Speedup obtained by using a hardware classifier
compared to a software classifier for varying number of rules.

which transmits data in units of 64 bits. Our prototype meets
this requirement for 20 rules and we project that with larger
FPGAs, our prototype can easily meet the 10 Gbps frequency
requirement for an implementation with 100 rules.

6. Conclusions and Future Work
Power proxying is a key element in realizing energy savings

in network devices and allows them to be placed in standby
mode without losing network connectivity. In this paper, we
analyzed power proxying rules and developed packet classifiers
intended to operate on a NIC to enable power proxying. We
developed a low power hardware-based packet classification
technique and analyzed it in terms of classification speed,
packet throughput, and power consumption compared to a
software-based implementation. Our hardware packet classifier
was able to meet the Gigabit link rate requirements comfortably,
with only minor optimizations needed to satisfy 10 Gbps link
rates. An equivalent software-based packet classifier would
consume 4x more power than the hardware-based packet
classifier. Additionally, the hardware packet classifier was up to
9x faster than the software packet classifier, allowing the PC to
be awoken sooner, thus reducing the possibility of packet loss.

Future directions of work include development of an
energy efficient content inspection module to extend the
functionality of SNICs.

7. Acknowledgements
This work is supported by the National Science Foundation

under Grant No. 0520081. The authors would like to thank
Casey B. Reardon for his insightful comments and review of the
paper.

8. References
[1] J. Becker, M. Huebner, and M. Ullmann, “Power estimation and

power measurement of Xilinx Virtex FPGAs: trade-offs and
limitations”, Proc. of 16thSymposium on Integrated Circuits and
Systems Design (SBCCI), 2003.

[2] K. Christensen, P. Gunaratne, B. Nordman, and A. George “The
next frontier for communications networks: power management,”
Computer Communications, vol. 27, no. 18, pp. 1758-1770,
December 2004.

[3] D. Friedman and D. Nagle, “Building Firewalls with Intelligent
Network Interface Cards”, CMU SCS Technical Report, CMU-CS-
00-173, May 2001

[4] J.A. Gil-Martinez-Abarca, F. Macia-Perez, D. Marcos-Jorquera,V.
Gilart-Iglesias, "Wake on LAN over Internet as Web Service,"
IEEE Conference on Emerging Technologies and Factory
Automation, 2006. ETFA '06, Sept. 2006

[5] P. Gupta, S. Lin and N. McKeown, “Routing Lookups in
Hardware at Memory Access Speeds”, Proc. Infocom, April 98,
San Francisco.

[6] P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields”, Proc. Sigcomm, Computer Communication Review, vol.
29, no. 4, pp 147-60, September 1999.

[7] P. Gupta and N. McKeown, “Algorithms for Packet
Classification”, IEEE Network Special Issue, vol. 15, no. 2, pp 24-
32, March/April 2001.

[8] M. Jimeno, K. Christensen, and A. Roginsky, "A Power
Management Proxy with a New Best-of-N Bloom Filter Design to
Reduce False Positives," Proc. of the IEEE International
Performance Computing and Communications Conference, pp.
125-133, April 2007

[9] Killer Network Interface Card, http://www.killernic.com/
[10] H. Kim, S. Rixner, and V. Pai, “Network Interface Data Caching”,

IEEE Transactions on Computers, Volume 54, No. 11, pp. 1394-
1408, November, 2005.

[11] Microsoft Corporation, “Scalable Networking: Network Protocol
Offload -Introducing TCP Chimney”, WinHEC Version, Apr.
2004.

[12] ModelSim, http://www.modelsim.com
[13] Network Packet Generator,

http://www.wikistc.org/wiki/Network_packet_generator.
[14] NetXen 10 Gigabit Ethernet Controller, http://www.netxen.com.
[15] J. Noguera, R.M. Badia, “Power performance trade off for

reconfigurable computing”, Proc. of International Conference on
Hardware/Software Codesign and System Synthesis (CODES +
ISSS), September 2004, Stockhom.

[16] M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula, and D.
Panda, “Towards NIC-based intrusion detection” Proc. of the
ACM International Conference on Knowledge Discovery and
DataMining, 2003.

[17] D. Petrick, “Analyzing the Xilinx Virtex-II Pro PowerPC with the
Dhrystone Benchmark Application”, Technical report, NASA –
Goddard Space Flight Center, August 2007.

[18] P. Purushothaman, M. Navada, R. Subramaniyan, C. Reardon, and
A. George, "Power-Proxying on the NIC: A Case Study with the
Gnutella File-Sharing Protocol," Proc. of 31st IEEE Conference
on Local Computer Networks (LCN), Nov, 2006, Tampa.

[19] RFC 4146, Simple New Mail Notification.
[20] RN2/RN4/RN6 Datasheet, Raptor Networks Technology Inc.
[21] J. Shafer and S. Rixner, “A Reconfigurable and Programmable

Gigabit Ethernet Network Interface Card”, Technical report
TREE0611, Department of Electrical and Computer Engineering,
Rice University, December 2006.

[22] R. Stedman , “Reducing Desktop PC Power Consumption Idle and
Sleep modes”, Technical presentation, Dell Computer
Corporation, June 2005

[23] “The Gnutella protocol specification 0.6”,
http://rfcgnutella.sourceforge.net.

[24] T. Mohsenin, "Design and Evaluation of FPGA-Based Gigabit-
Ethernet/PCI Network Interface Card", Masters Thesis, Rice
University, 2003

[25] Tri-Mode Ethernet MAC v2.1 user guide, April 2005.
[26] Xilinx IP core – Content Addressable Memory data sheet.
[27] Xilinx ISE, http://www.xilinx.com
[28] Xilinx Online Power Estimator, http://www.xilinx.com/cgi-

bin/power_tool/power_Virtex2p.
[29] Xilinx, Virtex-II Pro Platform Data Sheet, March 2005.
[30] Xilinx XPower Tutorial, July 2002.

Figure 7: Hardware power consumption vs. link rate for 100
rules.

