
Green Telnet

Reducing energy consumption is of growing importance. Jeremy and Ken create a "green telnet" that
lets clients transition to a low-power, sleep state.

By Jeremy Blackburn and Ken Christensen, Dr. Dobb's Journal
Oct 23, 2008
URL:http://www.ddj.com/cpp/211600219

Jeremy is a student in the Department of Computer Science and Engineering at the University of South Florida. Ken is a
Professor in the Department of Computer Science and Engineering at the University of South Florida.

Reducing the energy consumption of IT equipment is of growing interest for operational, economic, and environmental reasons.
The existing client/server model that uses TCP connections tightly couples application state to connection state. Thus, when a
client machine transitions to a sleep state to reduce its energy footprint, the TCP connection drops and the application state is lost
on the server. Because of this tight coupling, an idle client machine must remain fully awake to avoid losing its TCP connection to
the server and any application state associated with that connection. That is, the client machine must remain in this energy
inefficient state or lose any outstanding work (state) in the server. As a result, users often permanently disable power management
in client machines.

To address this, we have created a "green telnet" that lets clients transition to a low-power, sleep state to save energy and not lose
their telnet session (and state) in the server. We have modified telnetd to recognize when a client machine goes to sleep, gracefully
handling the loss of the TCP connection, and then buffering data for the sleeping client. When the telnet client wakes up, a new
TCP connection is established and the data buffered in the server is delivered to the client. Our new "gtelnetd" daemon is a
modification of the Minix 3 telnetd daemon (www.minix3.org) and is as distribution agnostic as possible by relying on fork() and
minimal IPC primitives. To enable the client machine to go to sleep without losing its session, we wedge three processes between
the network connection and the telnetd application. These three processes coordinate data transfer, data queuing, and sleep/wake
state transitions in a manner that is transparent to the telnet session. We also make some changes to the telnet client and introduce
several sleep-related control messages.

Making the Client/Server Model Green

To make the client/server model green, we must allow for the client to go to sleep and thus lose its TCP connection to the server,
but still maintain application state in the server. The first step in this process is to define the protocol with which the client and
server will communicate power state changes. We have defined three control messages through which the client and server
communicate information regarding power state change:

gtWSLE, which the client sends to the server to indicate that it wants to go to sleep. The payload for this control message is
a time indicating how long the client intends to be asleep (0 indicates an unknown sleep period).
gtWWAK is issued by the client when it wants to wake up. The payload for this message is a byte count used to recover from
any data loss that might have occurred.
gtRECO is sent by the server to let the client know which port number it should reconnect to for the next sleep/wake cycle.

Figure 1 shows the flow of control messages when a client goes to sleep (TCP ACKs are not shown). Upon receiving notification
from the host power-management system, the client sends a gtWSLE message to the server. While the client is asleep the server
uses an intermediate queue to buffer data destined for the client. When the client wakes back up, it reconnects to the server and
sends a gtWWAK message. The server responds by sending the client the next reconnect port via a gtRECO message and any data
necessary for synchronization. To delineate control messages from normal data messages, a 2-byte flag field is inserted into data
packets sent between a green telnet client and server as in Figure 2.

http://www.ddj.com/article/printableArticle.jhtml;jsessionid=4GMZLJ2JAHTCMQSNDLPCKH0CJUNN2JVN?articleID=211600219&dept_url=/cpp/

Figure 1: Power state change notification.

While the client sleeps, any running applications in the server continue to write data as normal; however, the data is not
immediately sent to the client. Instead, we place the data in an intermediate queue and wait until the client reconnects. When the
client transitions to a fully awake state and reestablishes a connection to the server (to its previously determined reconnect port),
the server flushes any queued data back out to the client.

Figure 2: gtelnet packet showing new gt field.

The reconnect, send data, and receive data processes compose the wedge we placed between the server application and the network
connection. Figure 3 is an application-level block diagram of the reconnect process and its interactions with the send data and
receive data processes. When the client is asleep, the reconnect process waits for a new connection from the client. When the client
opens a new connection, we transition to "client is awake" state. The reconnect process accepts the new connection, sends the port
number that the client should reconnect to for the next sleep/wake cycle, and spawns two processes—one to send data to the client
and one to receive data from the client. The send and receive data processes execute in parallel, writing to and reading from the
client independently. When the client transitions to a sleep state, the send and receive data processes cease executing and the
reconnect process waits for the client to wake up and connect again. Because the server application itself never writes or reads
directly to a socket, the sleep/awake transitions occur transparently, uncoupling the state of the application from the state of the

http://www.ddj.com/article/printableArticle.jhtml;jsessionid=4GMZLJ2JAHTCMQSNDLPCKH0CJUNN2JVN?articleID=211600219&dept_url=/cpp/

connection.

Figure 3: Server application-level process interaction.

The recv-dataA() Function

When the reconnect process detects that the client has reestablished a connection, it spawns a process to receive the data from this
connection. This new process calls the recv_data() function in Listing One. This function handles reading data from the network
connection to the client and places it in an intermediate queue from which the gtelnet application reads. In this way, we have
abstracted the underlying network connection uncoupling the state of the TCP connection from the state of the gtelnet daemon. The
recv_data() function receives three variables as parameters. It requires the socket that the client is connected with (s_client), a
FIFO buffer to write data that is read from the client (recv_data_fd), and the PID of the send data process to notify when the client
goes to sleep (send_data_pid). Lines 13 through 15 read data from the client socket, s_client, and write the read data to
recv_data_fd, which is the FIFO buffer that the server application reads data from. When the client is asleep and recv_data() is not
invoked, the recv_data_fd has no new data placed into it, which appears as an idle connection to the server application. When a
control message is detected from the client, we first determine whether or not it is a gtWSLE command, in which case, on line 23
or 42 we notify the send data process that the client has gone to sleep. At this point, the recv_data() function exits and data will not
be read from the client until the client transitions back to an awake and operational state.

 1. void recv_data(int s_client, int recv_data_fd, pid_t send_data_pid) {
 2. struct gserver_msg client_message;
 3. char gt_packet[BUF_SIZE];
 4. char * p;
 5. int bytes_read = 0;
 6. int i = 0;
 7. char last = 1;
 8. char *iacptr;
 9. char tb[1];

http://www.ddj.com/article/printableArticle.jhtml;jsessionid=4GMZLJ2JAHTCMQSNDLPCKH0CJUNN2JVN?articleID=211600219&dept_url=/cpp/

10. int temp_bytes_read = 0;
11.
12. while ((bytes_read = read(s_client, gt_packet, sizeof(gt_packet))) > 0) {
13. iacptr = memchr(gt_packet, 255, bytes_read);
14. if (!iacptr) {
15. write(recv_data_fd, gt_packet, bytes_read);
16. } else if (iacptr && iacptr > gt_packet) {
17. if (iacptr == >_packet[BUF_SIZE - 1]) {
18. write(recv_data_fd, gt_packet, bytes_read - 1);
19. temp_bytes_read = read(s_client, tb, 1);
20. if ((unsigned char)tb[0] == 255) {
21. bytes_read = read(s_client, &client_message, sizeof(client_message));
22. if (client_message.command == gtWSLE) {
23. (void)kill(send_data_pid, SIGALRM);
24. return;
25. }
26. } else {
27. write(recv_data_fd, tb, temp_bytes_read);
28. }
29. }
30. } else if (iacptr) {
31. if (*((unsigned char *)(iacptr + 1)) == 255) {
32. if ((iacptr + 1 + sizeof(client_message)) <= >_packet[BUF_SIZE - 1]) {
33. p = (char *)&client_message;
34. iacptr+= 2;
35. for (i = 0; i < sizeof(client_message); i++) {
36. *p = *iacptr;
37. p++;
38. iacptr++;
39. }
40. }
41. if (client_message.command == gtWSLE) {
42. (void)kill(send_data_pid, SIGALRM);
43. return;
44. }
45. }
46. }
47. }
48. if (bytes_read < 1)
49. exit(1);
40. return;
41. }

Listing One

The send_data() Function

The send_data() function sends data over the wire to the client. Again, the server application itself never interacts directly with a
socket, but rather writes data to an intermediate queue. When the client is awake, the send_data() function reads data from the
intermediate queue and writes it to the client's socket. The send_data() function is in Listing Two. Lines 18 and 19 ensure that the
client is still awake and awaits notification of the server application placing data in the queue. The condition on the loop breaks
when the client_wants_ sleep flag is set to True via the signal handler that catches a notification from recv_data() of the client
transitioning to a sleep state. Next, starting on line 22 we loop through the intermediate queue, sending each message placed into
the queue by the server application to the client. Lines 25 through 29 mark the replay buffer used to sync any data that had its
transmission interrupted by the client going to sleep. Lines 30 through 44 simply close the queue if the client goes to sleep prior to
transmission of all data in the queue, while lines 46 through 48 close the queue upon successful transmission of all its data.

 1. void send_data(int s_client, int send_data_fd, struct replay_buffer *replay_buff) {
 2. struct gqnode dequeued_data;
 3. struct stat queue_stats;
 4. struct flock fl;
 5. char gt_packet[BUF_SIZE + 2];
 6. char data_notifier;
 7. char *p;
 8. char c;
 9. long queue_file_size;
10. int temp = 0;
11. int bytes_written = 0;
12. int queue_fd;
13. int status;

http://www.ddj.com/article/printableArticle.jhtml;jsessionid=4GMZLJ2JAHTCMQSNDLPCKH0CJUNN2JVN?articleID=211600219&dept_url=/cpp/

14. int messages_written;
15. int bytes_read = 0;
16. int i = 0;
17.
18. while (!client_wants_sleep &&
19. read(send_data_fd, &data_notifier, sizeof(data_notifier)) > 0) {
20. queue_fd = open (queue_file_path, O_RDWR);
21. fl = acquire_queue_lock (queue_fd);
22. while (read(queue_fd, &dequeued_data, sizeof(dequeued_data)) > 0) {
23. if (!client_wants_sleep &&
24. (bytes_written = write (s_client, dequeued_data.buf, dequeued_data.nbytes))
25. replay_buff->byte_count = replay_buff->byte_count + bytes_written;
26. for (i = 0; i < bytes_written; i++) {
27. replay_buff->buffer[replay_buff->index] = dequeued_data.buf[i];
28. replay_buff->index = (replay_buff->index + 1) % RB_MAX;
29. }
30. if (client_wants_sleep) {
31. status = fstat (queue_fd, &queue_stats);
32. queue_file_size = queue_stats.st_size;
33. temp_queue_fd = open (queue_file_path, O_RDWR);
34. messages_written = 0;
35. while (read(queue_fd, &dequeued_data, sizeof(dequeued_data)) > 0) {
36. write(temp_queue_fd, &dequeued_data, sizeof(dequeued_data));
37. messages_written++;
38. }
39. close(temp_queue_fd);
40. ftruncate(queue_fd, messages_written*sizeof(dequeued_data));
41. release_queue_lock(queue_fd, fl);
42. close(queue_fd);
43. return;
44. }
45. }
46. ftruncate(queue_fd, 0);
47. release_queue_lock(queue_fd, fl);
48. close(queue_fd);
49. }
50. return;
51. }

Listing Two

Changes to the Telnet Client

The telnet client has two major changes. Similar to the server, the client has a rolling byte count that keeps track of how many bytes
of data it has received from the server. More importantly, however, the telnet client also has a thread that receives notification from
the host operating system when the (client) machine changes power state. For the client to notify the server of changes in power
state, the client must receive these changes from the host operating system. We have provided two possible implementations for
this. The first implementation works on Ubuntu Linux and utilizes a script that is invoked by the host operating system's sleep and
wake power management scripts. The script simply connects to each running client and passes the state change on. Our second
implementation utilizes the power management API of Mac OS X. In this case, the client receives power state change notification
directly from the operating system. Once the client has been made aware of a change in power state, it simply passes the notification
up to the server with a gtWSLE or gtWWAK message.

When the client wakes up, it reconnects to the server and performs a two-step information exchange before normal communication
resumes. As in Figure 1, the client first receives the next reconnect port number from the server. The client then sends the server its
byte count, which the server uses to calculate any data discrepancies. The client then resumes normal operation. If the server
determines that any data has to be resent to the client, the client receives it via normal communication channels. That is, while the
data may have originally been sent by the server prior to the client going to sleep, if the client missed this data for any reason it is
simply resent in the normal manner after the client wakes up.

gtelnetd in Action

Figure 4 shows gtelnetd in action. Three clients are connected to an IRC server and chatting in the same room. Chatter "Alice" stays
connected to the server the entire time, chatter "Bob" is using the gtelnet client, and chatter "Charlie" is using a regular telnet client.
Both Bob and Charlie are logged into a shell account from which they run their respective IRC clients. At 05:33pm, Alice sees
both Bob and Charlie enter the chat room. After some initial conversation, both Bob and Charlie send their machines to sleep at
05:35pm. Alice receives a message indicating that Charlie has disconnected from the IRC server due to a dropped TCP connection

http://www.ddj.com/article/printableArticle.jhtml;jsessionid=4GMZLJ2JAHTCMQSNDLPCKH0CJUNN2JVN?articleID=211600219&dept_url=/cpp/

to the server he is running his IRC client on. Bob, however, effectively never leaves the chat room due to his usage of the gtelnet
client. When his machine goes to sleep, the gtelnetd server buffers all data that is transmitted. When Bob wakes-up his machine at
05:44pm, he sees the messages that Alice transmitted when his machine was asleep. Charlie, however, reconnects at 05:46pm and
has not received any of the chatting that took place between 05:35pm and 05:46pm.

Figure 4: gtelnetd in action.

Next Steps: Spreading the Meme

The developed gtelnetd is a useable application. All source code is available at sourceforge.net/projects/gtelnet and contributions
are welcome. The techniques applied in the creation of gtelnet can be used in other client/server applications. Any interactive
program in which data might be generated and delivery desirable, even though a user may not wish to respond in real time, is ripe
for making power-state aware. While telnet is not used often anymore, SSH is popular and implementing power-state aware
functionality should be very similar to our green telnet modifications. Instant messaging applications are another set of software in
which clients may want to receive messages sent while the machine sleeps.

A Lawrence Berkeley National Laboratory technical report (enduse.lbl.gov/Info/LBNL-45917b.pdf) stated that, "proper
functioning of power management would achieve additional savings of 17 TWh/year." At $0.10 per kWh, this is $1.7 billion per
year—a very large savings potential! Many, if not most, desktop computers have power management completely disabled due to the
inconvenience it causes to users. By removing the application state's dependency on a network connection as we have done with
gtelnetd, users will be less inclined to disable power management. This can result in large savings of money and also reduce the
CO2 footprint of PCs.

Acknowledgments

The development of this material is based on work supported by the National Science Foundation under grant CNS-0520081. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily
reflects the views of the National Science Foundation (NSF). The authors thank Axel Vigo from the University of Puerto Rico,
Mayaguez for his early prototypes of green client/server applications.

http://www.ddj.com/article/printableArticle.jhtml;jsessionid=4GMZLJ2JAHTCMQSNDLPCKH0CJUNN2JVN?articleID=211600219&dept_url=/cpp/

