

Ken Christensen

Department of Computer Science and Engineering
University of South Florida
Tampa, FL 33620
christen@cse.usf.edu
(813) 974-4761

This material is based upon work funded by the National Science Foundation under grant CNS-0520081.

1 of 45 eeTalk07.ppt (January 6, 2007) IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Acknowledgments

- Much of the work was done by Chamara Gunaratne as a graduate student at USF
- Much of the work was done in collaboration with Bruce Nordman of LBNL

IEEE 802.3 EEE Study Group – January 15, 2007 USF UNIVERSITY OF SOUTH FLORIDA

2 of 45

Agenda

- Motivation and introduction
- Control policies
- Effects on higher layers
- Summary and future directions

3 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Agenda

- Motivation and introduction
- Control policies
- Effects on higher layers
- Summary and future directions

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA USF UNIVERSITY OF SOUTH FLORIDA

Motivation

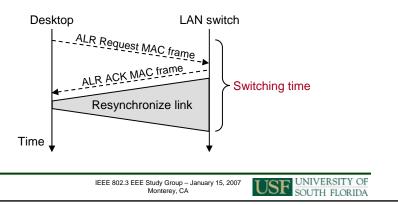
- Goal is Energy Efficient Ethernet
- Many Ethernet links are idle most of the time
 - This applies especially to desktop links
 - Does not apply to all Ethernet links
- Match link rate with link utilization for efficiency
 - Lower link rate consumes less power
 - Must always have highest link rate available if/when needed
- Savings potential (at the wall socket)
 - 2 to 4 W per link for 1 Gb/s versus 100 Mb/s
 - 10 to 20 W per link for 10 Gb/s versus 1 Gb/s

5 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Motivation continued

- Existing laptop NICs drop link rate to save power
 - When entering sleep or off state
 - When on battery power
- Existing auto-negotiation is used
 - Requires 3 to 4 seconds to switch link data rate
 - Not acceptable for "real time" use
- What is needed
 - A fast method to switch link rate for real time use


IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

USF UNIVERSITY OF SOUTH FLORIDA

6 of 45

Introduction to RPS

- RPS is Rapid PHY Selection
 - A possible mechanism for fast switching of link rate
 - Supported on both ends of a link
- RPS mechanism could be a MAC frame handshake

Introduction to RPS continued

- · RPS is a mechanism only
- Need a control policy to determine when to switch link rate
 - Outside the scope of any possible RPS standard
 - Multiple control policies are possible
 - This can be a competitive advantage for vendors
- We investigate <u>technical feasibility</u>
 - The control policy determines possible energy savings

USF UNIVERSITY OF SOUTH FLORIDA

8 of 45

7 of 45

Agenda

- Motivation and introduction
- Control policies
- Effects on higher layers
- Summary and future directions

9 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Control policy trade-off

Fundamental trade-off is...

Time in low data rate versus packet delay

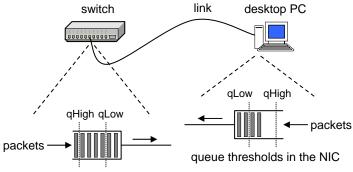
- Want lowest possible packet delay?
 - Use only highest link rate at all times

Seek a balance

- Want lowest possible energy use?
 - Use only lowest link rate at all times

Control policy goals

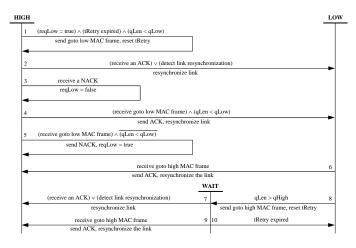
- · A good control policy is...
 - 1) Simple
 - 2) Responsive to changes in link utilization
 - 3) Does not cause oscillation of link rate
- Resulting in...
 - Low and bounded packet delay
 - Maximized energy savings


11 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Dual-threshold policy

- · Use thresholds in output buffers
 - If queue is above qHigh then switch to high rate
 - If queue is below qLow then switch to low rate


queue thresholds in the switch port

12 of 45

Dual-threshold policy continued

FSM for dual-threshold policy

13 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Dual-threshold policy continued

- A pseudocode process description
 - Handshake details omitted

Executes on receiving a frame...

```
if (link rate is low)
  if (buffer length greater than qHigh)
   handshake for high link rate
```

Executes on transmitting a frame...

```
if (link rate is high)
  if (buffer length less than qLow)
  handshake for low link rate
```

14 of 45

Dual-threshold policy continued

- This policy can cause oscillation of link rate
 - Will occur with smooth traffic at medium utilization
- Can be dampened with timers
 - "up" timer for high link rate
 - "down" timer for low link rate
- But, there may be a better policy...

15 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Utilization-threshold policy

- Make explicit utilization measurement part of policy
 - Prevents drop to low rate when not warranted

Executes on receiving a frame...

```
if (link rate is low)
if (buffer length greater than qHigh)
handshake for high link rate
```

Executes on transmitting a frame...

```
if (link rate is high)
  if (buffer length less than qLow)
   if (measured utilization less than low target)
    handshake for low link rate
```

16 of 45

Performance evaluation

- Implemented simulation model of RPS and policies
 - Queuing model built using CSIM19
 - Used trace and synthetic traffic as input
 - Varied the link rate switching time
- Control variables
 - Utilization of input traffic
 - Burstiness of input traffic
 - Link rate switching time
- Response variables
 - Packet (or burst) delay
 - Time in low link rate

17 of 45

18 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Time scales of interest

- How long is a link idle between bursts of packets?
- Time the user leaves his or her PC
 - Seconds, minutes, to hours
- Time between data transfer bursts (active use)
 - Milliseconds to seconds
 - · For example, web surfing

Trace traffic characteristics

- · Collected packet level traces from 100 Mb/s links
 - Note very low average utilization

Trace	Duration	Description	Avg util.
USF #1	0.5 hours	Link to "busiest" user in USF	4.11 %
USF #2	0.5	Link to 10th busiest user	2.63
USF #3	0.5	Link to an average user	0.03
PSU #1	2.0	Link to a desktop PC	0.13
PSU #2	2.0	Link connecting two switches	1.01
PSU #3	2.0	Link connecting switch to router	1.03

PSU traces are from Suresh Singh at Portland State University

19 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Results with trace traffic

- · Simulation results for dual-threshold policy
 - Use 1 millisecond link rate switching time

For 1 Gb/s the delays would be smaller

Trace	10 Mb/s	100 Mb/s	Delay	Time in low rate
USF #1	7.60 ms	0.09 ms	2.79 ms	99.42 %
USF #2	3.95	0.08	1.81	99.81
USF #3	196.29	0.05	1.48	99.99
PSU #1	33.51	0.18	5.63	99.99
PSU #2	2321.31	0.12	9.55	99.12
PSU #3	1147.83	0.51	4.07	99.83

Time in 10 Mb/s

20 of 45

Results with trace traffic continued

- Simulation results for dual-threshold with timers
 - Use 1 millisecond link rate switching time

Lower delay is due to less oscillation

				_
Trace	10 Mb/s	100 Mb/s	Delay	Time in low rate
USF #1	7.60 ms	0.09 ms	2.40 ms	96.91 %
USF #2	3.95	0.08	1.67	99.58
USF #3	196.29	0.05	1.25	99.98
PSU #1	33.51	0.18	5.11	99.88
PSU #2	2321.31	0.12	0.98	94.26
PSU #3	1147.83	0.51	3.16	99.45
				A /

Time in 10 Mb/s

21 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Results with trace traffic continued

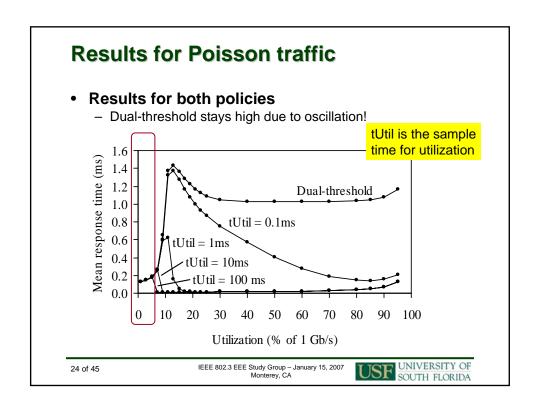
- Simulation results for utilization-threshold policy
 - Use 1 millisecond link rate switching time

Even lower delay, but less time in low rate

Trace	10 Mb/s	100 Mb/s	Delay	Time in low rate
USF #1	7.60 ms	0.09 ms	1.47 ms	78.21 %
USF #2	3.95	0.08	1.48	95.09
USF #3	196.29	0.05	1.11	99.92
PSU #1	33.51	0.18	4.76	99.80
PSU #2	2321.31	0.12	0.50	96.47
PSU #3	1147.83	0.51	2.57	98.54

Time in 10 Mb/s

22 of 45



Simulation with Poisson traffic

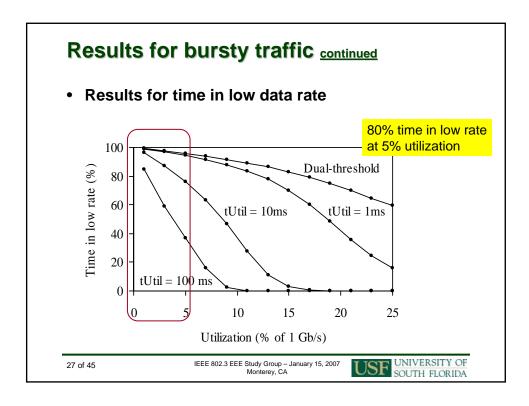
- · Use Poisson to model "smooth" traffic
 - Model a 1 Gb/s link
- Link switching time is 1 millisecond
- For utilization-threshold policy
 - tUtil is the time period used for sampling utilization
 - Set utilization threshold to be 5% of 1 Gb/s

23 of 45

Simulation with bursty traffic

- Synthetically generated 1 Gb/s bursty traffic
 - Pareto burst size, exponential interburst time
 - Mean burst size is small (about 8.4 KB)
 - · Small burst size is worst case for energy savings
- Link switching time set to 1 millisecond

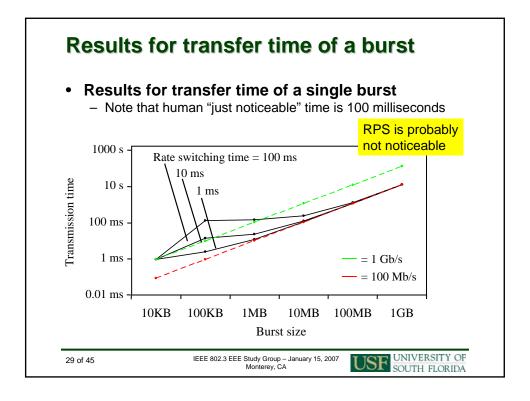
25 of 45


26 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

USF SOUTH FLORIDA

Results for bursty traffic Results for mean packet delay - Again, dual-threshold stays high due to oscillation! 0.5 ms delay at 5% utilization 1.6 Mean response time (ms) 1.4 tUtil = 100 msDual-threshold 1.2 1.0 0.8 tUtil = 1ms0.6 0.4 0.2 tUtil = 10ms0.0 0 10 15 20 25 Utilization (% of 1 Gb/s)



Simulation of a single burst

- · Transfer time of a single burst
 - Vary the burst size
 - Vary the link switching time
- · At what point can RPS be noticed by a user?

USF UNIVERSITY OF SOUTH FLORIDA

28 of 45

Wrap-up of control policy topic

- Multiple control policies are possible
 - Three have been shown here
 - Each side is independent and will interoperate
- Trade-off in packet delay versus energy saved
- Performance summary:
 - About 0.5 millisecond increase in packet delay
 - About 80% time in low data rate

30 of 45

Agenda

- Motivation and introduction
- Control policies

Including humans (users)

- Effects on higher layers
- · Summary and future directions

31 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Effects of RPS on users

- Users will disable power management if annoying
- Yet... some users may tolerate slight annoyance in order to be "green"
- RPS with suitable policy should be entirely invisible
 - To most users

32 of 45

Effects of RPS on users continued

- Need to consider
 - Effect of increased packet delay
 - If packet loss can occur (and its effect) due to buffer overflows
- Human perception time is about 100 milliseconds
 - Delays below this threshold are unnoticeable

33 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Effects of RPS on desktop applications

- Data transfer applications
 - Web surfing
 - File downloading
- Playback streaming application
 - YouTube and etc.
- Realtime streaming applications
 - VoIP telephony

Try it!

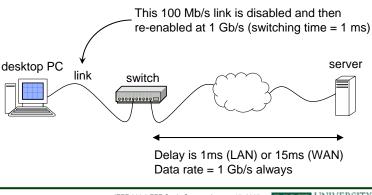
Surprising result: Video players can buffer about six seconds of video in the first second of play. So even a four second link outage causes *no* effect.

34 of 45

Effects of RPS on TCP/IP

- Will a switching delay cause packet loss?
- · What is the effect of packet loss?
- We have some preliminary work
 - Using the ns-2 simulator

35 of 45


IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Simulation of TCP/IP

Preliminary results

- Use ns2 simulator to evaluate effects of RPS on TCP
 - Study LAN and WAN environments
 - FTP between two nodes via an intermediate node
 - All default except window_ set to 1000 (default is 20)

36 of 45

Simulation of TCP/IP continued

Preliminary results

• Important note on ns2

All buffers are destroyed in an ns2 model when a link is disabled/enabled. So, results here are much worse than realistic.

We plan to develop a realistic model.

37 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Simulation of TCP/IP continued

Preliminary results

- ns2 LAN environment
 - Shows TCP congestion window (transition at Time = 5 s)

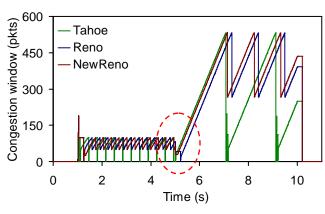
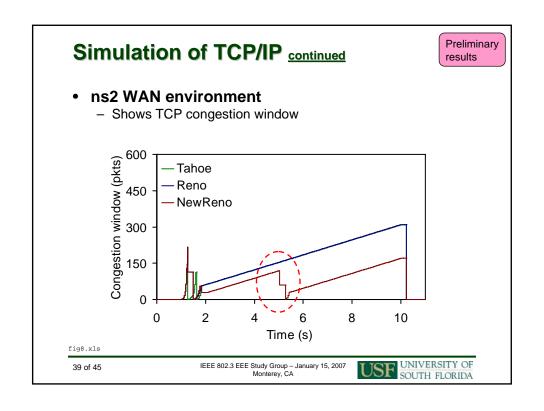
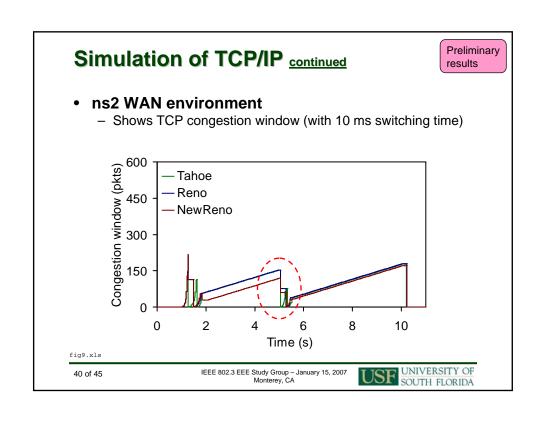




fig7.xls

38 of 45

Agenda

- Motivation and introduction
- Control policies
- Effects on higher layers
- Summary and future directions

41 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Summary

- Simple RPS control policies are possible
- · Utilization-threshold control policy works well
 - Added packet delay is very small
 - Energy savings can be considerable
- Energy efficiency should be invisible
 - Can be achieved with good RPS control policy

Future work

- Further work is possible in control policies
 - Context driven
 - Adaptive based on user input
- Further work is possible in evaluating RPS effects
 - Build a h/w device to "kill" link to emulate RPS switching
- · Currently experimenting with a "Soft-ALR"
 - ALR = Adaptive Link Rate
 - ALR is RPS + control policy
 - Use auto-negotiation to switch link rate via a Linux script
 - · Experience a 4 second link switch delay

43 of 45

IEEE 802.3 EEE Study Group – January 15, 2007 Monterey, CA

Future work continued

Soft-ALR is now on SourceForge

By Matt Landau (USF student)

44 of 45

The End

- Any questions?
- Much of the material in this talk comes from...
 - C. Gunaratne, K. Christensen, B. Nordman, and S. Suen, "Reducing the Energy Consumption of Ethernet with Adaptive Link Rate (ALR)," submitted to *IEEE Transactions on Computers* in January 2007.
 - C. Gunaratne, K. Christensen, and S. Suen, "Ethernet Adaptive Link Rate (ALR): Analysis of a Buffer Threshold Policy," *Proceedings of IEEE GLOBECOM 2006*, November 2006.
 - C. Gunaratne and K. Christensen, "Ethernet Adaptive Link Rate: System Design and Performance Evaluation," *Proceedings of the 31st IEEE Conference on Local Computer Networks*, pp. 28-35, November 2006.

45 of 45

