
Two-tier Bloom filter to achieve faster
membership testing

M. Jimeno, K.J. Christensen and A. Roginsky

Testing for element membership in a Bloom filter requires hashing of a
test element (e.g. a string) and multiple lookups in memory. A design
of a new two-tier Bloom filter with on-chip hash functions and cache is
described. For elements with a heavy-tailed distribution for popularity,
membership testing time can be significantly reduced.

Introduction: Bloom filters [1] are a space-efficient, probabilistic data
structure for representing a list of elements (for example, a list of
strings). A Bloom filter is an array of m bits. A string is mapped into
a Bloom filter by inputting it to a group of k hash functions resulting
in k array positions. Each indexed array position is set to 1. A string
is tested for membership by inputting it to the same group of k hash
functions. If all k generated array positions are determined to be set to
1, then the string is probably a member. False positives can occur
with Pr [false positive] ¼ (12 1/m)kn for n elements mapped into a
Bloom filter.

Bloom filters are widely used with many applications in the domain of
networks [2]. One application of interest is representing large file lists;
for example lists of shared files in servers or caches to enable determi-
nation if a given file name is in a list of shared files. The key perform-
ance measures for a Bloom filter are membership testing time (also
called computation time in [3]), memory requirements, and probability
of false positive. Membership testing time is the time to determine if
an element belongs to the set represented by the Bloom filter. The key
motivation for using Bloom filters (over more conventional data struc-
tures) is reduced memory requirement and faster membership testing
[3]. Membership testing time is a function of the time to (a) compute
up to k hashes and (b) perform up to k lookups in memory where the
Bloom filter array is stored. Memory lookup times depend on the type
of memory in which the Bloom filter is stored (e.g. high-speed localised
static random access memory (SRAM) or slower main memory dynamic
random access memory (DRAM). In this Letter, the membership testing
time for a Bloom filter is reduced by implementing hashing directly in
specialised hardware and by introducing a second tier cache Bloom
filter to reduce the number of accesses required into slower main
memory.

element

hashing
circuitry cache hit

cache
Bloom filter

hashes

main hit

Fig. 1 Design of two-tier Bloom filter

If cache hit is false then hashes are used for lookup in external Bloom filter in
main memory. If main hit is true then cache learns the element

Two-tier Bloom filter: A two-tier Bloom filter design is proposed to
reduce membership test time. Fig. 1 shows the basic design of a
single component (such as a specialised chip) containing hashing circui-
try and a Bloom filter. The two tiers might exist in a hardware implemen-
tation of a Bloom filter, or between processor cache and main memory in
a computer. An on-chip Bloom filter can be implemented using fast
SRAM, but it is limited in size to about m ¼ 4 Mb [4]. Using m/n ¼

32 and k ¼ 22 (as recommended in [5]) to achieve a low probability
of false positive, the number of elements that can be mapped into the
on-chip Bloom filter is n ¼ 131 072. For applications with more than
131 072 elements, the on-chip Bloom filter can be used as a cache for
a larger off-chip Bloom filter stored in the main memory (typically
implemented in DRAM, with slower lookup time than SRAM) of a
system. The two-tier Bloom filter takes as input the element (e.g. a
string) to be mapped into, or tested for membership, and outputs the k
hash values and a single test output to indicate if the element being
tested for was found (or ‘hit’) in the on-chip cache Bloom filter. If the
cache hit output is false, then the computed hash values are used to
test the external Bloom filter in main memory. If the element is found
in the external Bloom filter the main hit input causes the cache Bloom
ELECTRONICS LETTERS 27th March 2008 Vol. 44
filter to learn the element (if the cache is not yet full). Thus, the cache
Bloom filter contains a subset of the elements mapped into the main
memory Bloom filter (the main memory Bloom filter contains mappings
for all elements). How well the cache learns the most popular elements
determines the performance (measured in membership testing time) of
the two-tier Bloom filter.

Membership testing time (Ttest) is a function of hashing time (thash),
cache Bloom filter testing time (tcache), main memory Bloom filter
testing time (tmain), and probability of a successful membership test in
the cache Bloom filter (pcache). The membership testing time is
Ttest ¼ thashþ tcacheþ (12 pcache)tmain for the two-tier Bloom filter
and Ttest ¼ thashþ tmain for a single Bloom filter in main memory. In
order for the two-tier Bloom filter to have a smaller membership
testing time than that of a single Bloom filter in main memory,
tcache2 pcachetmain , 0 must hold. The speed-up (S) of Ttest is the ratio
of the time required by the two-tier Bloom filter divided by the time
required by a single Bloom filter stored in main memory. The speed-
up expresses the relative (percentage) reduction in membership testing
time by using the two-tier Bloom filter. Speed-up is

S ¼
thash þ tmain

thash þ tcache þ ð1� pcacheÞtmain
ð1Þ

Application to file search: The specific target application for the two-
tier Bloom filter is membership testing for a file system containing
millions of files, each file with a unique identifier (e.g. path plus file
name). It is well known that the distribution of the requests for files in
some applications such as P2P (peer to peer) file sharing and web
caching follow a Zipf-like distribution [6, 7] where the probability of
requesting the element ranked jth in popularity among a population of
N elements is Pr[j] ¼ V/j a, where V is the normalisation constant
and a is the shape parameter. The normalisation constant is the
inverse sum of 1/j a for j ¼ 1, 2,. . . , N. For a ¼ 0 the distribution is
uniform and as a increases the distribution becomes skewed and
heavy tailed. For P2P file sharing, a values between 0.60 and 0.83
have been measured [6].

Performance evaluation: In this performance evaluation we use simu-
lation to study the speed-up, S, of the two-tier Bloom filter compared
to a single Bloom filter stored in main memory. The speed-up of the
two-tier Bloom filter for a stream of Zipf distributed membership tests
is a function of thash, tcache, tmain and pcache (the subscripts cache and
main describe the parameter as applying to the cache and main
memory Bloom filters, respectively). The probability pcache is a function
of the size of the cache (ncache), the popularity of the elements (modelled
here with a Zipf distribution with parameters nmain ¼ N and a), and how
well the cache learns the ncache most popular elements. If the cache
Bloom filter learns (and thus represents) the ncache most popular
elements – called a ‘perfect cache’ in this Letter – for the population
of N elements, then the probability of a cache hit is the cumulative prob-
ability mass of elements 1, 2, . . . , ncache:

pcache ¼
Pncache
j¼1

V

ja
ð2Þ

In reality, the cache will learn a set of elements that are less than perfect.
This is called the ‘realistic cache’ in this Letter and its cumulative prob-
ability mass can be computed as follows. Given N distinct elements that
are sampled with replacement, let xj be the probability of drawing an
element of type j. Sampling continues until M elements of different
types are sampled (this corresponds to the cache being fully loaded).
Here M is ncache and N is nmain. The cumulative probability, T, corre-
sponding to pcache for a realistic cache is

T ¼
X

xu1 þ xu2 þ � � � þ xuM
� �

� Pr subset G½

is sampled first of all M subsets of N types�
ð3Þ

whereG is the subset u1; u2; . . . ; uMf g and where the summation is taken
over allM subsets of N types of elements. This summation is likely to be
intractable to compute given the very large number of subsets possible
for a large N. Given this intractability, a simulation model of the
two-tier Bloom filter was created. From this simulation model pcache
for a realistic cache could be experimentally estimated.
No. 7

The following parameters were the control variables for the evalu-
ation. For the elements, N ¼ 8� 106 and a ¼ 0; 0:1; 0:2; . . . ; 1:0;
modelling 8 million elements in the population with popularity
ranging from uniform (a ¼ 0) to highly skewed (a ¼ 1). For hashing
and memory access time, thash ¼ 0 (to focus on speed-up from
caching effects only), tcache ¼ 1, and tmain ¼ 5 (modelling SRAM as 5
times faster than DRAM). For the cache Bloom filter the parameter
values were mcache ¼ 4Mb and mcache ¼ 16Mb, and kcache ¼ 22. For
the main memory Bloom filter the parameter values were
mmain ¼ 256� 106 b (or about 30.5 MB to be able to represent
N ¼ 8� 106 elements with 32 bits for each element), and kmain ¼ 22.

Fig. 2 shows the results for pcache from (2) for a perfect cache and from
simulation for a realistic cache. The simulation results for pcache for a rea-
listic cache are the average of 30 trials for each value of a. It can be seen
that pcache increases when a increases. It can also be seen that pcache for
the perfect and realistic caches could be up to 100% different for a
between 0.4 and 0.7. Fig. 3 shows the results for speed-up. It can be
seen that the speed-up is achieved for values of a . 0:7 and the
larger mcache is, the greater the speed-up. The results show that even
with a small cache memory, the two-tier Bloom filter can achieve
faster membership testing for a heavy-tailed distribution of elements.
The relationship between tcache and tmain affects the possible speed-up.

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p c
ac

he
, %

α

4 Mb realistic

4 Mb perfect

16 Mb realistic

16 Mb perfect

Fig. 2 pcache against mcache and a

0.8

1.2

1.6

2.0

2.4

2.8

3.2

sp
e

ed
-u

p
, S

4 Mb realistic

4 Mb perfect

16 Mb realistic

16 Mb perfect

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

Fig. 3 S against mcache and a
ELECTRON
Conclusions and future work: A new two-tier Bloom filter architecture
has been developed that can achieve a shorter membership testing time
than a single-tier Bloom filter. The two-tier Bloom filter implements a
caching Bloom filter in on-chip SRAM. Future work includes (a) study-
ing cache learning to determine when to invalidate the cache and re-learn
it (for example, when the popularity of elements changes) and (b) devel-
oping greater insight into (3), including finding an approximation that is
computable.

The Institution of Engineering and Technology 2008
8 January 2008
Electronics Letters online no: 20080081
doi: 10.1049/el:20080081

M. Jimeno and K.J. Christensen (Department of Computer Science and
Engineering, University of South Florida, 4202 East Fowler Avenue,
ENB 118, Tampa, FL 33620, USA)

E-mail: mjimeno@cse.usf.edu

A. Roginsky (Computer Security Division, National Institute of
Standards and Technology, Gaithersburg, MD 20899, USA)

M. Jimeno: On leave from Universidad del Norte, Barranquilla,
Colombia

References

1 Bloom, B.: ‘Space/time trade-offs in hash coding with allowable errors’,
Commun. ACM, 1970, 13, (7), pp. 422–426

2 Broder, A., and Mitzenmacher, M.: ‘Network applications of Bloom
filters: a survey’, Internet Math., 2004, 1, (4), pp. 485–509

3 Mitzenmacher, M.: ‘Compressed Bloom filters’. Proc. 20th ACM Symp.
on PODC, August 2001, pp. 144–150

4 Dharmapurikar, S., Krishnamurthy, P., and Taylor, D.E.: ‘Longest prefix
matching using Bloom filters’, IEEE/ACM Transactions on Networking,
2006, 14, (2), pp. 397–409

5 Fan, L., Cao, P., Almeida, J., and Broder, A.: ‘Summary cache: a scalable
wide area web cache sharing protocol’. ACM SIGCOMM, 1998,
pp. 254–265

6 Chu, J., Labonte, K., and Levine, B.: ‘Availability and locality
measurements of peer-to-peer file systems’. in ‘ITCom: scalability and
traffic control in ip networks’, Proc. of SPIE, July 2002, Vol. 4868

7 Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S.: ‘Web caching
and Zipf-like distributions: Evidence and implications’. Proc. IEEE
INFOCOM, April 1999, pp. 126–134
ICS LETTERS 27th March 2008 Vol. 44 No. 7

