
Submitted to the IEEE Conference on Local Computer Networks (LCN) on April 17, 2007 for review

A Prototype Power Management Proxy for Gnutella
Peer-to-Peer File Sharing

Miguel Jimeno and Ken Christensen
Department of Computer Science and Engineering

University of South Florida
Tampa, Florida 33620

{mjimeno, christen}@cse.usf.edu

Abstract— In order to be part of a peer-to-peer (P2P) file sharing
network a host must be fully powered-on all of the time. In
addition to providing a user interface, a P2P host handles query
messages and serves requested files. In this paper, we describe
the development of a prototype Gnutella-like P2P power
management proxy sub-system that handles query messages. This
can allow desktop PCs acting as P2P hosts to enter a low-power
sleep state for most of the time and be woken-up by the proxy
only when needed to serve files. TCP connections with neighbors
are maintained by the host when it is awake and by the proxy
when the host is sleeping. Experiments show that a low-cost
Freescale Coldfire processor can effectively proxy for a P2P host.
This suggests that a controller for a Gnutella P2P proxy could be
co-located on an Ethernet NIC at low cost. This could lead to
significant energy savings by allowing P2P hosts to power
manage into a low-power sleep state when not in active use.

Keywords- Peer-to-peer, power management, proxy

I. INTRODUCTION
The growing energy consumption of Information

Technology (IT) and Consumer Electronics (CE) equipment is
now a major concern. Research into reducing the energy use of
IT and CE equipment is of great economic and environmental
significance. A typical desktop PC consumes 120 W when
fully powered-on [7]. Operating one additional PC fully
powered-on all of the time in a typical US residence would add
about 10% to the yearly electricity bill [1]. This is a non-trivial
impact. Increasingly, networked applications have been found
to induce energy use in PCs and other networked devices.
Induced energy use occurs when devices are required to remain
fully powered-on – even when no user is present and network
access is only sporadic or incidental – in order to respond to
network protocol messages. One example of this is peer-to-peer
(P2P) file sharing. A desktop PC, or host, participating in a P2P
network must be fully powered-on at all times in order for it to
make available its files to other P2P hosts. This is the case even
if the actual time during which files are downloaded from a
P2P host is very small.

In [4] a power management proxy was designed and
evaluated for the UPnP protocol. In [3] we proposed and
outlined a direction for a power management proxy for P2P. In
this paper, we describe the design, implementation, and
preliminary evaluation of a prototype P2P power management
proxy for the Gnutella protocol.

II. OVERVIEW OF THE GNUTELLA P2P PROTOCOL
A P2P network is an overlay network on the Internet. P2P

host neighbors are connected by TCP connections. Neighbors
need not be physically nearby, and the process of identifying
neighbors involves a bootstrapping process. Gnutella is a P2P
file sharing protocol that uses a query flooding to find files in
the network. The standard protocol version is 0.4 and defines
five message types; Ping, Pong, Query, QueryHit, and Push
[2]. The Query message is used to find files; the QueryHit
message is the response from a queried P2P host that contains a
queried-for file. Files are downloaded from a host using HTTP.
Thus, each P2P host is also an HTTP server.

III. DESIGN AND IMPLEMENTATION OF A P2P PROXY
In [3] we proposed that a P2P power management proxy

could be designed to operate in a low-power microcontroller. In
particular, we considered the effective use of a Bloom filter for
look-up of files stored (and shared) within a P2P host. The
shared files could not be stored in the proxy due to its limited
storage capabilities. When a request for a file – in the form of
an HTTP GET – was received at the proxy, the proxy would
wake-up the host and the host would then serve the file.

A. Design of a P2P proxy
Figure 1 shows a P2P host with a proxy sub-system. The

proxy sub-system can be co-located within the host (e.g., on an
Ethernet NIC) or in another device (e.g., a LAN switch). The
proxy subsystem takes over for the host when the host enters a
low-power sleep state. This would occur when no user is
present. For example, this would occur in a desktop PC after a
fixed period of inactivity (where inactivity is defined as no
keyboard or mouse activity). The goal is that the proxy sub-
system would consume much less energy than the host. The

Funding acknowledgment will go here.

Figure 1. P2P host with a proxy sub-system

Host

Proxy

State information and wake-up signal

TCP connections
to P2P neighbors

TCP connections
to P2P neighbors

Only host or
proxy active
at any time

Figure 1. P2P host with a proxy sub-system

Host

Proxy

State information and wake-up signal

TCP connections
to P2P neighbors

TCP connections
to P2P neighbors

Only host or
proxy active
at any time

proxy sub-system will be resource constrained and cannot store
files shared by the host. If the proxy is a separate sub-system
not physically contained within the host, it may have a different
IP address from that of the host.

A P2P application in a host includes a main program that
supports a user interface for generating Query messages,

displaying query results, and initiating file downloads. The P2P
application must also include capabilities for initiating and
accepting connections to and from neighbors, receiving and
forwarding Query messages, generating a QueryHit message
when a Query message for a file that is being shared is
received, and serving files that are requested with an HTTP
GET. A P2P proxy need only support a subset of this; which
are capabilities for initiating and accepting connections to and
from neighbors, receiving and forwarding Query messages,
generating QueryHit messages, and waking-up the host when
an HTTP GET is received. Figure 2 shows the main program
for the host and Figure 3 for the proxy. Figure 4 shows the
processes and functions common to both the host and proxy.
Figure 5 shows the processes specific to only the host (the
getServer()) and proxy (the redirector()). In all cases,
processes execute in parallel and do not terminate (e.g., as
Windows threads) and functions execute and terminate. The
redirector() process uses an HTTP 302 redirect message to
cause the requesting host to resend its HTTP GET message.
The GET can be forced to be resent to the same or another IP
address. The redirection gives the host time to wake-up.

State information needs to be shared between the host and
proxy. The state information shared includes:

• Power state of the host – fully powered-on or sleeping

• List of names of files shared

• List of IP addresses of neighbor nodes

The file names can be shared between the host and proxy in the
form of a Bloom filter. When control is transferred from the
host to the proxy, TCP connections to neighbors from the host
are terminated and then re-established from the proxy. When
control is transferred from proxy to host, the opposite occurs.

B. Implementation of a prototype P2P proxy
The P2P proxy was implemented using a NetBurner

MOD5270 Ethernet Development Kit [5] (shown in Figure 6)
with the following specifications: 32-bit Freescale ColdFire
processor running at 147 MHz, 512 KB of Flash memory,
8 KB Instruction/Data cache and 2 MB of SDRAM. The
system runs the uc/OS operating system. The host was a Dell
OptiPlex PC with a Pentium 4 at 3.2 GHz with 1 GB RAM
running Windows XP. Both systems support 100 Mb/s

Figure 2. Main program for host

Program hostProgram()
call listen()
call neighborConnect()
start queryHandler()
start getServer()
while (true)

prompt user for name of file to search
generate Query message for file
send Query message to all neighbors
receive and display results of QueryHit messages
prompt user for host name for download
use HTTP to request file from selected host

Program proxyProgram()
call listen()
call neighborConnect()
start queryHandler()
start redirector()

Figure 3. Main program for proxy

Process listen()
while (true)

listen for and accept incoming connections
update neighbor list with accepted connections

Function neighborConnect()
connect to all hosts in neighbor list

Process queryHandler()
while (true)

for (each connection)
wait to receive a Query message
forward Query message to all neighbors
check for queried file
if (file exists)

send a QueryHit message

Figure 4. Functions and processes common to host and proxy

Process getServer() – Standard HTTP server

Process redirector()
while (true)

wait for a connection on port 80
if (receive an HTTP GET)

wake-up the proxied host
send an HTTP 302 to redirect request to host

Figure 5. Processes specific to host or proxy

Figure 2. Main program for host

Program hostProgram()
call listen()
call neighborConnect()
start queryHandler()
start getServer()
while (true)

prompt user for name of file to search
generate Query message for file
send Query message to all neighbors
receive and display results of QueryHit messages
prompt user for host name for download
use HTTP to request file from selected host

Program proxyProgram()
call listen()
call neighborConnect()
start queryHandler()
start redirector()

Figure 3. Main program for proxy

Process listen()
while (true)

listen for and accept incoming connections
update neighbor list with accepted connections

Function neighborConnect()
connect to all hosts in neighbor list

Process queryHandler()
while (true)

for (each connection)
wait to receive a Query message
forward Query message to all neighbors
check for queried file
if (file exists)

send a QueryHit message

Figure 4. Functions and processes common to host and proxy

Process getServer() – Standard HTTP server

Process redirector()
while (true)

wait for a connection on port 80
if (receive an HTTP GET)

wake-up the proxied host
send an HTTP 302 to redirect request to host

Figure 5. Processes specific to host or proxy

Figure 6. Netburner development kit

Serial
ports

MCF5270
processor

10/100 Ethernet link

Figure 6. Netburner development kit

Serial
ports
Serial
ports

MCF5270
processor
MCF5270
processor

10/100 Ethernet link 10/100 Ethernet link

Ethernet. The NetBurner was selected for the low-cost
processor it uses and for its ability to be programmed in C.

The uc/OS operating system runs threads as sequential
tasks. Thus, the proxy program was implemented as a single
task with a main loop where all the processes were run in a
sequential manner. In the host, the processes were run in
parallel as threads. The proxy implementation used non-
blocking sockets that were read using time-outs of one
processor tick (which is 100 ns). In the host, blocking sockets
could be used in a threaded implementation.

IV. EVALUATION OF THE PROTOTYPE P2P PROXY
A key question is, how much processing “horsepower” is

needed in the proxy sub-system in order to maintain a
reasonable query forwarding rate at all times? The additional
overhead time to request and receive a file from a sleeping host
also needs to be considered. We designed experiments to
evaluate two key measures for our implemented prototype P2P
proxy. The two measures were:

• File download time from an awake and sleeping host.

• Query forwarding rate as a function of 1) the number of
neighbors and 2) the percentage of Query messages
resulting in a QueryHit message being generated.

For the Query forwarding experiments, a PC running a “Query
blaster” was used. The Query blaster was a C program that
establishes a connection to a P2P host and sends Query
messages as fast as possible. To evaluate the Query forwarding
rate as a function of the number of neighbors, we used other
PCs to connect to as P2P peers and varied the number of peers
from 1 to 10. For this experiment, we generated Query
messages for files not in the host, so the proxy would not
respond with a QueryHit message. For the second experiment
we evaluated the Query forwarding rate where a fixed
percentage of the Query messages would result in a QueryHit
message being returned. We varied the percentage of Query
messages that resulted in QueryHit messages from 0% to 10%.

For the file download time experiment it took less than 1
second to download from an awake host; it took 9 seconds to
download from a sleeping host that had to be woken-up The
wake-up time of Windows XP was the dominant factor in the 9
seconds. The HTTP request did not time out in any case. The
results from the Query forwarding experiments are shown in
Figure 7. The figure shows the Query forwarding rate per

connection. The Query forwarding rate for the proxy varied
from 360 to 130 messages per second. The rate for the host
varied from 12,547 to 324 messages per second. These results
show that as neighbors are added, the query forwarding rate per
link was decreased. The results for the QueryHit experiment
are shown in Figure 8. Similar to Figure 7, this figure shows
the Query forwarding rate per connection. As the percentage of
Query messages resulting in a QueryHit was increased from
0% to 10%, the Query forwarding rate remained roughly
constant for both the proxy and host. This demonstrates that the
overhead to send a QueryHit message is very low.

V. SUMMARY AND FUTURE WORK
We have designed and developed a prototype power

management proxy for a Gnutella-like P2P protocol targeted
for a low-cost ColdFire processor. The Query forwarding rates
achieved by the proxy were between four to ten times higher
than the measured Query message rates in actual P2P networks
[6]. Thus, we believe that our proxy can feasibly “take over”
for a P2P host. In [3] we calculated an expected energy savings
of $38 million per year in the US if 25% of all P2P hosts were
to adopt proxy-based power management. Future work
includes achieving full compliance with the Gnutella standard
and making available our work on SourceForge.

REFERENCES
[1] Energy Information Administration, “U.S Household Electricity

Report,” July 2005. URL: http://www.eia.doe.gov/emeu/reps/enduse/
er01_us.html.

[2] Gnutella Protocol Specification Version 0.4, 2002. URL:
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf.

[3] M. Jimeno, K. Christensen, and A. Roginsky, “A Power Management
Proxy with a New Best-of-N Bloom Filter Design to Reduce False
Positives,” Proceedings of the International Performance Computing
and Communications Conference, pp. 125-133, April 2007

[4] J. Klamra, M. Olsson, K. Christensen, and B. Nordman, “Design and
Implementation of a Power Management Proxy for Universal Plug and
Play,” Proceedings of the Swedish National Computer Networking
Workshop (SNCW 2005), September 2005.

[5] NetBurner MOD5270 Ethernet Core Module, 2007. URL:
http://www.netburner.com.

[6] K. Sripanidkulchai, ”The Popularity of Gnutella Queries and its
Implications on Scalability,” Technical Report, February, 2001. URL:
http://www.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html.

[7] US Department of Energy, Energy Efficiency and Renewable Energy,
“Estimating Appliance and Home Electronic Energy Use,” 2005. URL:
http://www.eere.energy.gov/consumer/your_home/appliances/index.cfm/
mytopic=10040.

Figure 7. Results from Query forwarding experiment

0
2000
4000
6000
8000

10000
12000
14000

1 2 3 4 5 6 7 8 9 10

Number of neighbors

Q
ue

ry
 fo

rw
ar

di
ng

 (m
es

s/
s)

Host

Proxy

Figure 8. Results from QueryHit experiment

0

400

800

1200

1600

0 1 2 3 4 5 6 7 8 9 10

Percentage of QueryHits (%)

Q
ue

ry
 fo

rw
ar

di
ng

 (m
es

s/
s)

Host

Proxy

