
 Abstract—High speed links are widely deployed in modern day
computer networks to meet the ever growing needs for increasing
data bandwidth. However, with the increase in the link rate, the
power consumption of the network interfaces increases
exponentially, compounding growing concerns about network
power consumption. Fortunately, network traffic characteristics
show that rapid link rates are not always required. During times
of reduced network traffic, the Adaptive Link Rate (ALR)
mechanism allows link rates to be reduced with little impact on
network performance. Current research has focused on policies
to control when and how to change link rates, and have shown
promising energy savings. However, these works have been
largely simulative, and have not addressed many of the
challenges involved in implementation. In this paper, we develop
a hardware prototype ALR system and address real-time
challenges involved in realizing such an implementation. We also
identify new considerations for control policy development given
current technology capabilities as well as future projections.

Keywords-Adaptive link rate (ALR), local area networks, energy
efficient Ethernet, Ethernet, hardware prototyping

I. INTRODUCTION
The aggregate power consumption of computer networks

has been increasing at a rapid rate [4] due to the growing
number of connected devices such as PCs, switches, and
routers. To support the network traffic introduced by these
devices, link rates of the connecting infrastructure have also
been increasing. We find that as the link rate increases, the
power consumption of the links increases exponentially.
(Figure 4)

To address this rapid increase in energy use, recent
research has focused on reducing power consumption of both
network devices and their infrastructure. One potential method
for reducing power consumption is through exploiting the
characteristics of network traffic, or the link utilization.
Research shows that network packets are typically transmitted
in bursts [16], with variable length periods of idleness or
reduced link utilization between bursts. During these periods,
energy is wasted by operating the network interfaces and links
at the highest rates available. Devices may adaptively shut
down and/or vary link rates in response to link utilization to
reduce power consumption [1][4][9]. The ability to vary the
link rate is a technique known as adaptive link rate (ALR) [9].

Determining when to change link rates is a challenging
problem due to the unpredictability and bursty nature of

network traffic. Control policies determine the appropriate
time to change link rates and the proper link rate to change to,
taking into consideration several factors such as mean packet
delay and packet loss. Mean packet delay is the total transit
time for a packet, and if increased by too much, could result in
human perceivable delay and reduced quality of service. Since
the process of switching the link rate can introduce non-
negligible delay, control policies should consider this link rate
switching time. Furthermore, these topics are currently a focus
of the IEEE 802.3az study group [15].

A large switching time is one of the biggest challenges in
realizing ALR, and can increase mean packet delay very
rapidly. Additionally, significant switching times can lead to
buffer overflows and subsequent packet loss. However, in
order to achieve fast link switching times, the physical
implementation currently faces several challenges at multiple
levels. These challenges are device synchronization at the
MAC and PHY layers.

Most previous research focused heavily on addressing
control policy challenges through simulation models
[1][8][9][10]. Due to the absence of a real-time ALR capable
system, these efforts did not consider the implementation
challenges for MAC and PHY synchronization. In this paper,
we develop a hardware prototype ALR system to address these
challenges. To the best of our knowledge, we are the first to
prototype ALR in an FPGA system. We measure power
consumption and link rate switching times using our hardware
prototype, and discuss challenges and solutions involved in a
direct implementation. Our measurements indicate that the
switching time between link rates is on the order of
milliseconds, which is at least 70 times larger than that
assumed in previous works. Using our real-time measurements
of link switching times, power, and energy consumption, we
identify new considerations for future control policy
development.

II. BACKGROUND AND MOTIVATION

A. Background
Reducing energy consumption of network devices is a

major research focus. Gupta et al. [12] proposed a method to
reduce energy consumption in Ethernet switches by
dynamically shutting down the transceiver completely
depending on traffic arrivals, buffer occupancy, and a bounded
maximum packet delay. Hays [13] proposed the active/idle

Real-Time Performance Analysis of Adaptive Link Rate

Baoke Zhang, Karthikeyan Sabhanatarajan, Ann Gordon-Ross*, Alan George*
HCS Research Lab, ECE Department, University of Florida

{zhang,sabhanatarajan,ann,george}@hcs.ufl.edu
* Also with the NSF Center For High-Performance Reconfigurable Computing at the University of Florida

282978-1-4244-2413-9/08/$25.00 ©2008 IEEE

method which transmits data as fast as possible when it arrives
and then dynamically switches the transceiver circuits to a low
power idle state. ALR, first proposed by Nordman et al. [17],
adaptively changes Ethernet link rate to any rate available
based on link utilization to reduce energy consumption of the
network interfaces of a system.

However, both the ALR and active/idle mechanisms
introduce several challenges, such as control policy
development, which has been the focus of much research. A
transceiver buffer occupancy-based dual threshold policy was
first proposed by Gunaratne et al. [8]. In this policy, if the link
was operating at a high link rate and the output buffer
occupancy fell below a low threshold value, the link rate was
decreased. Alternatively, if the link was operating at a low link
rate and the output buffer occupancy rose above a high
threshold value, the link rate was increased. This method
achieved a fast response to traffic variations, but was overly
sensitive to minute variations in traffic and caused
unnecessary link oscillations, which resulted in increased
mean packet delay.

To solve the problem of link oscillation and avoid the
resulting increase in mean packet delay, Gunaratne et al. [9]
proposed a link utilization based threshold policy. The
utilization threshold policy monitors link utilization by
counting bytes transmitted during a defined time interval.
However, counting these bytes requires additional hardware
support such as accumulators and registers, which increases
the complexity of ALR. In addition, choosing a representative
time interval can be difficult. To reduce the complexity of the
link utilization threshold policy, Gunaratne et al. [10]
investigated a heuristic policy, called the ALR timeout
threshold policy, to hold the link at the high rate for a fixed
period of time following a switch from a lower rate.

B. Motivation for Real-Time ALR Hardware
Control policy performance greatly depends on how

quickly the link rate can be switched. The lack of real-time
ALR systems have led researchers to evaluate control policies
through simulation, assuming very fast switching times on the
order of 1 ms were achievable with current PHY and IEEE
standards. Current research [3][20] estimates that the
achievable link rate switching time between 1 Gbps and 100
Mbps link rates ranges from 10 ms to more than 100 ms. This
is contrary to the future subset PHY [6] technology proposed
by Broadcom which estimates these times in microseconds. In
this paper, we measure exact link rate switching times
obtained from a real-time hardware prototype to more
effectively evaluate ALR based on technology capabilities.

III. LINK RATE SWITCHING MECHANISMS
ALR is a three step process. The first step utilizes the

control policy to determine when to switch the link rate. The

second step is device synchronization through MAC
handshaking. The third step is the physical link rate switching
accomplished by configuring the PHY. Since control policy
development is beyond the scope of this paper, in this section,
we focus on the other two challenges.

A. Device Synchronization
Device synchronization is the mechanism which enables a

network device to request a switch in the communicating link
rate with another device. To ensure proper synchronization,
we begin with an existing two-way MAC layer handshaking
protocol [8]. This protocol begins with a request from the
initiating device to switch the link rate (ALR request) and ends
with a positive acknowledgment (ACK) or negative
acknowledgement (NACK) from the recipient device to
indicate whether or not the link rate can be switched.

To implement this protocol, we augment the MAC control
frames. The IEEE 802.3 standard [14] defines MAC control
frames called PAUSE frames [14] to implement link level
congestion control. We utilize reserved opcodes in the MAC
control opcode field to implement our handshaking
mechanism. Figure 1 shows the ALR control frame format,
which we adapt from the PAUSE frame. The difference
between the ALR frame and the PAUSE frame is the opcode
field. The opcode values used for the ALR request, ACK, and
NACK frames are 02, 03, and 04, respectively.

To account for situations where two communicating
devices do not both support ALR, it is necessary to advertise
ALR capabilities during link establishment. This is
accomplished using the reserved bits in the unformatted link
code word (LCW) pages used in existing auto negotiation [14]
(see Section III.B for further details on auto negotiation).

Figure 2 depicts a block diagram of the ALR handshake
mechanism. In this example, the two communicating devices
are a network interface card (NIC) and a switch, denoted as
node A and node B, respectively. Without loss of generality,
we assume the control policy is the simple dual buffer
threshold policy proposed in [8]. The algorithm for switching
from a higher link rate to a lower link rate using the MAC
handshake protocol is as follows:

1) During link initialization, ALR capability is
advertised during auto negotiation.

2) After auto negotiation completes, the nodes
exchange data at the determined link rate.

3) If the control policy at node A determines a link
rate switch is appropriate, node A sends an ALR
request frame (Figure 2 (1a)) with the desired new
(low) rate in the parameter field using the old (high)
link rate.

Figure 1: ALR control Frame

Preamble

(7-bytes)
SFD

(2-bytes)

Destination

MAC Address

(6-bytes)

Source MAC
Address

(6-bytes)

Length/Type

(2-bytes)

Control

(88-08)

Flag

(1-byte)

(00toff)

Op-Code

02

03

04

Parameters

(2-bytes)

(New Link
Rate)

Reserved

(42-bytes)

All zeros

Frame Check
Sequence

(4-bytes)

283

4) Node A starts a timer (Figure 2 (1b)) which
expires if an ACK/NACK frame from node B is
not received within a specified time. If the timer
expires, node A sends the ALR request frame
again (Figure 2 (1c)).

5) Once node B receives the ALR request frame, it
stops sending data, inspects its buffer occupancy
(Figure 2 (2)), and determines whether it can
switch to the new (low) link rate

6) If node B accepts the link rate switch, it sends an
ACK frame to node A using the old (high) link rate
(Figure 2 (3a)). After sending the ACK, node B
changes its link rate to the desired value and
resynchronizes its clocks (Figure 2 (3b)). If node B
rejects the link rate switch, it sends a NACK using
the old (high) link rate and remains in the high link
rate.

7) After receiving an ACK, node A switches its link
rate to the new (low) link rate, resynchronizes its
clock (Figure 2 (4)), and starts data transmission at
the new (low) link rate (Figure 2 (5)). If node A
receives a NACK frame, it will continue to
transmit data at the old (high) rate. Node A may
re-request a link rate switch in the future.

A similar mechanism can be used to switch from a low link
rate to a high link rate. However, the only difference in this
case is the recipient devices should always positively
acknowledge the request, as a negative acknowledgement may
result in buffer over flow and packet loss.

B. PHY Resynchronization
After the need to switch rates has been agreed upon, the

PHY must physically switch the link rate. Link switching can
be achieved by utilizing the existing auto negotiation feature
defined in IEEE 802.3 [14] or by directly configuring the PHY
control registers.

Through auto negotiation, the connected PHY transceivers
advertise their capabilities and mutually agree to communicate
at the highest transmittable link rate. This sequence
commences during initial device connection, or when a device
is reset or reinitialized. Even though this method is simple and
widely supported, auto negotiation is a lengthy process. For
example, it requires several seconds for a 1000BASE-T

implementation. For gigabit link rate, a limited sized buffer
would fill up in milliseconds, and buffer overflow would be
imminent.

To decrease the link switching time, we utilize PHY
register configuration, a mechanism to directly configure the
PHY control registers allowing a device to change to a desired
link speed. Soon after receiving an ACK frame, the MAC
sends the appropriate management data input/output (MDIO)
command frame to force the PHY transceivers to
resynchronize to the desired link rate. Our experimental
findings in section VI.A show that this method is orders of
magnitude faster than the auto negotiation mechanism.

IV. MATHEMATICAL MODEL
In addition to imposing non-negligible delay, switching the

link rate also expends energy during the switching time when
no data packets are transferred. In this case, power is
consumed, but no work is being done. To achieve overall
energy savings, the wasted energy must be amortized by
spending a minimum amount of time in the low link rate
(MTSLR – Minimum Time to Stay in Low Rate).

We denote the MTSLR as TL. Let PH and PL denote the
power consumed by the MAC and PHY layers at the high and
low link rates respectively. T1MAC and T1PHY are the times taken
by the MAC and PHY layers to switch the link rate down and
T2MAC and T2PHY are the times required for the MAC and PHY
layers to switch the link rate up. We define the switching cycle
(TTOTAL) as the total time to switch from the high link rate to
the low link rate and then back to the high link rate.

PHYMACLPHYMACTOTAL
TTTTTT
2211

++++=

Thus, the total power consumption (PALR) for the switching
cycle is:

TOTAL

PHYLMACLLLPHYHMACH

ALR

T

TPTPTPTPTP
P

2211

++++
=

To obtain the minimum value for TL, we differentiate the
above equation with respect to TTOTAL and equate it to zero.

LLPHYLMACLPHYHMACH
TPTPTPTPTP !=+++

 2211
 -*** *

For the net energy consumption to break even, the sum of
the switching energy should be equal to the energy in the low
link rate. Thus, the MTSLR is:

!

T
L
"
P
H

P
L

* (T
1MAC

+ T
1PHY

) + (T
2MAC

+ T
2PHY

)

Given the link switching times and power consumed by the
device at both the high and low link rates, these equations can
assist in control policy development to ensure overall energy
savings.

V. EXPERIMENTAL METHODOLOGY

A. Prototype Hardware Architecture for an ALR-enabled
NIC
We developed a hardware prototype of an ALR-enabled

NIC in order to analyze and evaluate the performance of ALR
in terms of link rate switching time and power consumption.

 Figure 2: ALR MAC handshake protocol

Node A
(NIC)

Node B
(Switch)

1a. ALR request frame at
current link rate

1b. Set timer for
ACK/NACK

1c. Resend request if timer expires

2. Check
buffer status 3a. Send ACK/NACK at old rate

3b. If ACK,
change rate,
synchronize

clocks. If
NACK, do

nothing

4. If ACK,
change rate,
synchronize

clocks. If
NACK, do

nothing

5. If ACK, data exchange
resumes at new link rate. If

NACK, data exchange resumes
at old link rate

284

We utilized the Xilinx Virtex-II Pro development kit
(XC2VP20-FF896) manufactured by Avnet Inc [2]. The Avnet
board includes a Xilinx Virtex-II Pro FPGA, a Spartan-IIE
FPGA, flash memory, SRAM 256MB DDR SDRAM, a PCI
interface, a 10/100/1000 Ethernet PHY, and RJ-45 Ethernet
connector. We built our NIC architecture based on the RICE
programmable NIC [21]. We removed the DMA Unit, DDR
controller, and Spartan bridge, since the communication
between the NIC and host is not our research focus and
resources are limited. The Virtex-II Pro FPGA contained most
of ALR-enabled NIC logic including a PowerPC processor,
on-chip memory, the clock control module, the MAC control
unit, and the ALR MAC core. A high speed, 64-bit memory-
mapped processor local bus (PLB) operating at 100 MHz
connected these components.

The ALR MAC core is the focal point of ALR MAC
handshake protocol implementation and generates the ALR
control frames. We developed the ALR MAC core based on
the tri-mode Ethernet MAC core available from Opencores
[19]. We removed some internal modules and added extra
components to existing modules to incorporate the ALR
functionality.

Figure 3 depicts the architecture of the ALR MAC core
consisting of the transmitting and receiving engines and the
PHY interface, as well as critical components outside of the
MAC core. The transmitting engine includes the following
modules: the ALR control frame generator (MAC_tx_Ctrl),
destination and source MAC address generator
(MAC_tx_addr_add), cyclic redundancy check (CRC)
generator (CRC_gen), and the packet transmit buffer
(MAC_tx_fifo). The receiving engine includes the ALR
control frame response module (MAC_rx_Ctrl), the packet
receive buffer (MAC_rx_fifo), and the CRC (CRC_check)
module. The transmitting and receiving engines communicate
and synchronize with each other via the flow control module
(Flow_ctrl). The GMII and MII modules enable two way
communications of ALR and data frames between the MAC
core and the PHY. The MAC control unit is located outside
the MAC core, and provides data frames via the MAC_tx_fifo
buffer.

The MAC control unit also contains the control policy. To
initiate a link rate switch, the control policy sets the ALR
request signal (ALR_req) to trigger the MAC core to begin the
ALR MAC handshake protocol. The MAC control unit also
specifies the desired link rate on the link_rate bus. The status
signal indicates to the MAC control unit that link rate
switching is in progress, so that no data packets are sent to the
MAC core. Once ALR_req is set, the transmitting engine of
the MAC core generates the ALR request frame and refrains
from sending data frames until it receives an indication from
the receiving engine that it has received an ACK/NACK frame.

We added ALR capabilities to the receiving engine by
adding ALR control frame processing to a custom version of
the standard MAC data reception module. The receiving
engine stores the data frames received from the PHY into a
small FIFO until the MAC control unit transfers the frames to
its own internal buffer. If the receiving engine receives an
ALR control frame indicating the link rate should switch, the
receiving engine informs the transmitting engine to configure
the PHY via the media independent interface management
(MIIM) [14] module.

B. Experimental Setup and Measurement Methodology
Our experimental setup consisted of two desktop

workstations both running Linux OS to execute the firmware
compiler and Xilinx FPGA tools, including Xilinx ISE [26],
Xilinx EDK [25], and Xilinx Chipscope [24]. Each
workstation was connected to one of the standalone ALR-
enabled NIC via the JTAG port and RS-232 serial port. The
JTAG port was used for downloading compiled bitstreams to
the FPGA and updating firmware. The serial port was used for
viewing console output from the firmware. We connected the
RJ-45 Ethernet connectors of the two NICs using two meters
of CAT 5E crossover cable. We used Xilinx Chipscope to
debug hardware, view the timing diagram, and monitor the
link rate switching.

We measure the total switching time as three separate
components to identify the bottlenecks. These components are
the MAC handshaking time, the PHY register configuration
time, and the PHY resynchronization time. We force our
system to switch link rates by periodically sending ALR
request signals. Once the ALR request is initiated, we set a
timer, and record the sequence number for the ALR request
frame. After receiving the corresponding ACK, the timer value
reports MAC handshaking time. The PHY register
configuration time can be viewed directly through Chipscope.
After completion of the PHY register configuration, another
timer records the time for PHY resynchronization, which can
also be viewed from Chipscope.

To measure power consumption during a link rate switch,
we force our system to switch link rates as quickly as possible
so that the sustained power consumption will reflect only the
power consumed during the actual switching. This switching
period is the measured link switching time. We measure the
average power consumption during constant switching using
Xpower [27] and a Watts Up Pro power meter [22].

We note that, without loss of accuracy, we do not need to
simulate Internet traffic traces to gather both link rate

Figure 3: ALR MAC core block diagram

PHY
interface

M
AC

 C
on

tro
l U

ni
t

MAC_tx_Ctrl
MAC_tx
_fifo

CRC_
gen

MAC_tx_
addr_add

ALR_req

link_rate

 status

MAC Core

Flow_
ctrl

MAC_rx_Ctrl
MAC_rx
_fifo

CRC_
check

GMII

MII

Transmitting
engine

Receiving
engine

PH
Y

MIIM

285

switching time and power consumption. These two
measurements are largely independent of both traffic and
control policy. The link switching time has only a small
dependency on the particular moment that link switching is
determined, because transmission of the current data frame
must be completed before link switching occurs.

VI. PERFORMANCE ANALYSIS OF ALR
In this section, we present our measured link rate switching

times and power consumption. In addition, we evaluate two
control policies based on MTSLR, power, and energy
consumption given our measurements.

A. Link Rate Switching Time
We measure and report MAC handshaking, PHY register

configuration, and PHY resynchronization times separately to
show that PHY resynchronization is the dominating
component. MAC handshaking time depends on the length of
the cable and minimum inter-frame gap, which is the
minimum idle period between transmissions of Ethernet
frames. In our experiments, we use a two meter cable. The
longest possible cable for 1000BASE-T Ethernet is 100 meters
which would only increase the MAC handshaking time on the
order of microseconds, but can largely increase the PHY
resynchronization time due to increases in noise and phase
lock time, the time spent acquiring signal frequency [3].

Table 1 summarizes the MAC handshaking, PHY register
configuration, and PHY resynchronization times. As expected,
the MAC handshaking time depends greatly on the initial link
rate. Switching from an initial link rate of 10 Mbps is 10 to 44
times longer than switching from an initial link rate of either
100 Mbps or 1 Gbps.

The PHY register configuration time is independent of link
rate, since configuration control data are sent at a constant
frequency of 2.5 MHz.

In contrast to the MAC handshaking time, the PHY
resynchronization time depends on the target link rate. When
the link rate switches to either 1 Gbps or 100 Mbps, the PHY
resynchronization time is approximately 70 ms, which is well
within the range proposed by [3][20]. However, when the link
rate switches to 10 Mbps, the PHY resynchronization time
increases dramatically to 576 ms. This is due to the increased
time for the devices to negotiate with each other at the PHY
layer with lower transmitting and receiving frequencies.

Not only does the switching time vary based on initial and
target link rates, we point out that switching times are

asymmetric. For instance, switching from 1 Gbps to 10 Mbps
takes 8.4 times longer than switching from 10 Mbps to 1 Gbps.

Both the drastic differences in switching times and the
asymmetry reveal three new considerations. First, for control
policies to be most effective, they should consider all available
link rates, and not focus on switching between only two link
rates. Furthermore, since these switching times can be
dependent on both architecture and environment, we propose
that control policies poll switching times at startup and
incorporate these values when making switching decisions.

Secondly, current control policy development has largely
revolved around millisecond or even microsecond switching
times. In those studies, extremely fast switching times relaxed
buffer pressure and had little impact on maximum packet
delay. However, large switching times exacerbate buffer
pressure, increasing metrics such as mean and maximum
packet delay and buffer overflows. We evaluated both the dual
threshold and timeout threshold control policies and observed
that effects of increased switching time appear to additively
affect these metrics, illustrating similar trends for metric
verses link utilization.

Furthermore, we acknowledge that our measured switching
times are much longer than 1 ms, which is assumed in
previous research [8][9][10], but our switching time between 1
Gbps and 100 Mbps is well within the time projected by
[3][20]. Unfortunately, this lengthy time is due to limitations
of the current PHY technology and IEEE standards. Currently,
the fastest available switching mechanism is MAC
handshaking with PHY register configuration to manually
force the PHY to change rates. Manual PHY register
configuration is used in PHY resynchronization to skip
unnecessary auto negotiation steps that occur during initial
link setup. This switching mechanism reduces the switching
time from seconds to milliseconds, but is still much longer
than 1 ms. Despite this discrepancy, the asymmetry and
variation in switching times that we measure reveal important
results needed for further control policy development which is
beyond the scope of this paper.

B. Link Rate Switching Power Consumption
Figure 4 shows the power consumption for constant link

rates and link rate switching. The first three bars show the
power consumption for constant link rates of 10 Mbps, 100
Mbps, and 1 Gbps. The measurements show a near
exponential increase in link rate power consumption [5]. The
last three bars show the link rate switching power when the
link switches between two different rates. Link rate switching

TABLE 1. LINK RATE SWITCHING TIMES

Link Rate
Switching

MAC
Handshake
Time (us)

PHY Register
Configuration

Time (us)

PHY
Resynchronize

Time (ms)

Total
Switching
Time (ms)

1Gbps/100Mbps 2.0 13.84 72.320 72.3

100Mbps/1Gbps 8.4 13.84 68.572 68.6

100Mbps/10Mbps 2.0 13.84 575.813 575.8

10Mbps/100Mbps 88.6 14.00 72.320 72.4

1Gbps/10Mbps 8.4 13.84 575.813 575.8

10Mbps/1Gbps 88.6 14.00 68.572 68.7

Figure 4: Power consumption for constant link rate and link rate switching.

286

power, on the other hand, shows a different trend. During
switching, a certain amount of time is spent in both link rates.
The link rate switching power cannot simply be assumed to be
the average of the initial and target link rates constant power
consumption because the time spent in each rate is different.
This is evident given the results we present in Table 1. A
worst-case scenario could always assume that the power
consumed during switching is simply fixed at the power
consumption of the highest link rate, but results would be
pessimistic, and could compound to very large discrepancies
when calculating energy savings.

C. MTSLR
The first three bar groups of Figure 5 show the MTSLR for

switching between different high initial rates and low target
rates (initial/target) for assumed switching times of 1 ms and
10 ms, and our measured switching times. For very low
switching times, the MTSLR is largely negligible and, given
the bursty nature of network traffic, MTSLR is likely not a
concern. However, we notice that for our measured switching
times, the MTSLR is quite different. For 1G/100M, the
MTSLR is low but hardly negligible. However, we see a very
large increase in MTSLR when the target link rate is 10 Mbps
due to the long switching time.

Even though the switching time for 100M/10M is nearly
the same as 1G/10M, the MTSLR is more pronounced because

the long switching time is spent in a higher power consuming
state for 1G/10M. We observed that the MTSLR for 1G/10M
is not simply the sum of 1G/100M and 100M/10M. This is due
to the highest power consuming switch (1G/100M) being a
fast switch and the lowest power consuming switch
(100M/10M) being a slow switch. Given this, we propose a
step-down technique, which switches the link to an
intermediate rate before switching down to the ultimate target
rate. The last bar group of Figure 5 shows the MTSLR using
the step-down technique to switch from 1G/10M by switching
from 1G/100M then switching from 100M/10M. The MTSLR
is still quite large but is 75% less than switching directly from
1G/10M.

D. Control Policy Power Analysis
We reanalyze the dual threshold [8] and timeout threshold

[10] control policies for switching between 1 Gbps and 100
Mbps using our measured switching times. To simulate
network traffic, we use a Poisson process to model the arrival
of packets of a constant maximum packet length of 1518 bytes,
which reflects that used in previous work [9][10]. To represent
different network traffics ranging from light to heavy, we vary
the average link utilization of input traces from 1% to 15%.
High and low buffer threshold values are specified as 0 KB
and 32 KB respectively [8][9][10].

Figure 6 shows power consumption for the dual threshold
policy (a), the timeout threshold policy with a 10 ms holding
time (b), and the timeout threshold policy with a 100 ms
holding time (c) for both an assumed link switching time of 1
ms and our measured link switching time of 70 ms for varying
link utilization. The dual threshold policy results in similar
power consumption regardless of link switching time due to
frequent link oscillation. In comparison, the timeout threshold
policy with a 100 ms holding time reveals less power
consumption with a 70 ms switching time than with a 1 ms
switching time when link utilization is between 1% and 10%.
This reduction is a result of the 70 ms switching time forcing
the link to spend more time switching than staying in the high
rate. For the timeout threshold policy with a 10 ms holding
time, the 70 ms switching time causes the device to experience
a sharper increase than it does with a 1 ms switching time.
This is because the timeout threshold policy with a long
switching time is less sensitive to variation of traffic utilization
than with a short switching time.

Figure 5: Minimum time to stay in the low link rate (MTSLR) for assumed
switching times of 1 ms and 10 ms and our measured switching times. Each

bar grouping shows MTSLR for switching from an initial rate to a target
rate (initial/target) or an initial rate to a target rate via an intermediate rate

(initial/intermediate/target)

Figure 6: Power consumption for the (a) dual threshold policy, (b) timeout threshold policy with a 10 ms holding time, and (c) timeout threshold policy with a
100 ms holding time for an assumed link switching time of 1 ms and our measured link switching time (70 ms).

(a) (b) (c)

287

E. Energy Analysis
Given the drastically different switching times depending

on the target link rate, we analyze the energy consumed during
the link switching process. The first three bars in Figure 7
show energy consumed while switching from a high initial rate
to a low target rate (initial/target). The energy consumed by
1G/10M is 4 times that of the energy consumed by 1G/100M
or 100M/10M due to the reasons we discussed in sections IV
and 0.C. Using our step-down technique (bar four in Figure 7),
the energy consumption is 75% less than a direct 1G/10M
switch.

VII. CONCLUSIONS AND FUTURE WORK
This paper presents three major contributions. First, we are

the first to build an ALR-enabled NIC on an FPGA platform,
and disseminate the real-time switching overheads, which are
important for evaluating ALR performance. Second, we
developed an ALR-capable NIC, which we make available for
the research community [23] to test and perform experiments
with ALR for further study. Third, we utilize our measured
link switching times and power consumption to re-analyze
control policies and identify new considerations in future
research. Our future work includes developing a complete
hardware prototype system with control policy mechanism
capabilities, which can act on real time traces to assist control
policy development and evaluation.

VIII. ACKNOWLEDGMENTS
This material is based on work supported by the National

Science Foundation under Grant No. 0520081

IX. REFERENCES
[1] H. Anand, C. Reardon, R. Subramaniyan, and A. George, "Ethernet

Adaptive Link Rate (ALR): Analysis of a MAC Handshake Protocol",
Proceedings of the IEEE Conference on Local Computer Networks, pp.
533-534, November 2006

[2] Avnet Inc. http://www.avnet.com/
[3] M Chadha, J. Barnette, amd W. Lertniphonphun “Feasibility of 1000-

Base-T RPS Restart” Presentation for IEEE 802.3az Task Force. April,
2007.

http://grouper.ieee.org/groups/802/3/eee_study/public/apr07/chadha_1_0
407.pdf

[4] K. Christensen, P. Gunaratne, B. Nordman, and A. George, "The Next
Frontier for Communications Networks: Power Management," Computer
Communications, Vol. 27, No. 18, Dec. 2004, pp. 1758-1770.

[5] K. Christensen and B. Nordman, "Improving the Energy Efficiency of
Networks: A Focus on Ethernet and End Devices," presentation to Cisco,
San Jose, October 20, 2006.

[6] W. Diab and S. Powell, Broadcom “Subset PHY: Cost and Power
Analysis” Presetation for IEEE 802.3az Task Force. Sept 2007.
http://grouper.ieee.org/groups/802/3/eee_study/public/sep07/diab_2_090
7.pdf

[7] C. Gunaratne, K. Christensen, and B. Nordman, “Managing energy
consumption costs in desktop PCs and LAN switches with proxying,
split TCP connections, and scaling of link speed,” International Journal
of Network Management, Vol. 15, No. 5, pp. 297-310,
September/October 2005.

[8] C. Gunaratne, K. Christensen, and S. Suen, “Ethernet Adaptive Link
Rate (ALR): Analysis of a buffer threshold policy,” Proceedings of IEEE
GLOBECOM 2006, November 2006.

[9] C. Gunaratne and K. Christensen, "Ethernet Adaptive Link Rate: System
Design and Performance Evaluation", Proceedings of the IEEE
Conference on Local Computer Networks, pp. 28-35, November 2006

[10] C. Gunaratne, K. Christensen, S. Suen, and B. Nordman, "Reducing the
Energy Consumption of Ethernet with an Adaptive Link Rate (ALR),"
IEEE Transactions on Computers, April 2008

[11] M. Gupta and S. Singh, “Greening of the Internet”, Proceedings of ACM
SIGCOMM, Karlsruhe, Germany, August 2003, pp. 19-26

[12] M. Gupta and S. Singh, “Dynamic Ethernet Link Shutdown for Energy
Conservation on Ethernet Links”, Proceedings of the IEEE International
Conference on Communications 2007, June 2007.

[13] R. Hays, Intel Corporation “Active/Idle Toggling with Low-Power Idle”
Presentation for IEEE 802.3az Task Force. Jan 2008.
http://grouper.ieee.org/groups/802/3/az/public/jan08/hays_01_0108.pdf

[14] IEEE 802.3 Standard Part 3: Carrier sense multiple access with collision
detection (SMA\CD) access method and physical layer specifications.

[15] IEEE 802.3 az study group
http://grouper.ieee.org/groups/802/3/eee_study/index.html

[16] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “ On the self-
similar Nature of Ethernet Traffic,” In IEEE/ACM Transactions on
Networking, vol.2 , No.1 , Feb. 1994.

[17] B. Nordman and K. Christensen, "Reducing the Energy Consumption of
Network Devices," Tutorial for the July 2005 IEEE 802 LAN/MAN
Standards Committee Plenary Session, San Francisco, July 19,2005

[18] A. Odlyzko, “Data Networks are Lightly Utilized and Will Stay That
Way,” Review of Network Economics, Vol. 2, No. 3, pp. 210-237,
September 2003

[19] Opencores. http://www.opencores.org
[20] S. Powell and H. Frazier, “Technical Considerations and Possible

Solution Sets for EEE” Presentation for IEEE 802.3az Task Force
http://grouper.ieee.org/groups/802/3/eee_study/public/may07/powell_2_
0507.pdf

[21] J. Shafer and S.Rixner, “A Reconfigurable and Programmable Gigabit
Ethernet Network Interface Card”, Technical report TREE0611,
Department of Electrical and Computer Engineering, Rice University,
December 2006

[22] Watt Up Pro Power meter, http://www.wattsupmeter.com.htm
[23] http://www.csee.usf.edu/~christen/energy/main.html
[24] Xilinx Chipscope, http://www.xilinx.com/ise/optional_prod/cspro.htm
[25] Xilinx EDK, http://www.xilinx.com/ise/embedded/edk_docs.htm
[26] Xilinx ISE, http://www.xilinx.com/ise_eval/index.htm
[27] Xilinx Xpower,

http://www.xilinx.com/products/design_tools/logic_design/verification/x
power.htm

Figure 7: Energy consumption for various link rate switches. Each bar
shows energy consumed when switching from an initial rate to a target
rate (initial/target) or an initial rate to a target rate via an intermediate

rate (initial/intermediate/target)

288

