
 Abstract—High speed links are widely deployed in modern day 
computer networks to meet the ever growing needs for increasing 
data bandwidth. However, with the increase in the link rate, the 
power consumption of the network interfaces increases 
exponentially, compounding growing concerns about network 
power consumption. Fortunately, network traffic characteristics 
show that rapid link rates are not always required. During times 
of reduced network traffic, the Adaptive Link Rate (ALR) 
mechanism allows link rates to be reduced with little impact on 
network performance. Current research has focused on policies 
to control when and how to change link rates, and have shown 
promising energy savings. However, these works have been 
largely simulative, and have not addressed many of the 
challenges involved in implementation. In this paper, we develop 
a hardware prototype ALR system and address real-time 
challenges involved in realizing such an implementation. We also 
identify new considerations for control policy development given 
current technology capabilities as well as future projections.  

Keywords-Adaptive link rate (ALR), local area networks, energy 
efficient Ethernet, Ethernet, hardware prototyping 

I. INTRODUCTION 
The aggregate power consumption of computer networks 

has been increasing at a rapid rate [4] due to the growing 
number of connected devices such as PCs, switches, and 
routers. To support the network traffic introduced by these 
devices, link rates of the connecting infrastructure have also 
been increasing. We find that as the link rate increases, the 
power consumption of the links increases exponentially. 
(Figure 4 ) 

To address this rapid increase in energy use, recent 
research has focused on reducing power consumption of both 
network devices and their infrastructure. One potential method 
for reducing power consumption is through exploiting the 
characteristics of network traffic, or the link utilization. 
Research shows that network packets are typically transmitted 
in bursts [16], with variable length periods of idleness or 
reduced link utilization between bursts. During these periods, 
energy is wasted by operating the network interfaces and links 
at the highest rates available. Devices may adaptively shut 
down and/or vary link rates in response to link utilization to 
reduce power consumption [1][4][9]. The ability to vary the 
link rate is a technique known as adaptive link rate (ALR) [9].  

Determining when to change link rates is a challenging 
problem due to the unpredictability and bursty nature of 

network traffic. Control policies determine the appropriate 
time to change link rates and the proper link rate to change to, 
taking into consideration several factors such as mean packet 
delay and packet loss. Mean packet delay is the total transit 
time for a packet, and if increased by too much, could result in 
human perceivable delay and reduced quality of service. Since 
the process of switching the link rate can introduce non-
negligible delay, control policies should consider this link rate 
switching time. Furthermore, these topics are currently a focus 
of the IEEE 802.3az study group [15].  

A large switching time is one of the biggest challenges in 
realizing ALR, and can increase mean packet delay very 
rapidly. Additionally, significant switching times can lead to 
buffer overflows and subsequent packet loss. However, in 
order to achieve fast link switching times, the physical 
implementation currently faces several challenges at multiple 
levels. These challenges are device synchronization at the 
MAC and PHY layers.  

Most previous research focused heavily on addressing 
control policy challenges through simulation models 
[1][8][9][10]. Due to the absence of a real-time ALR capable 
system, these efforts did not consider the implementation 
challenges for MAC and PHY synchronization. In this paper, 
we develop a hardware prototype ALR system to address these 
challenges. To the best of our knowledge, we are the first to 
prototype ALR in an FPGA system. We measure power 
consumption and link rate switching times using our hardware 
prototype, and discuss challenges and solutions involved in a 
direct implementation. Our measurements indicate that the 
switching time between link rates is on the order of 
milliseconds, which is at least 70 times larger than that 
assumed in previous works. Using our real-time measurements 
of link switching times, power, and energy consumption, we 
identify new considerations for future control policy 
development. 

II. BACKGROUND AND MOTIVATION 

A. Background 
Reducing energy consumption of network devices is a 

major research focus. Gupta et al. [12] proposed a method to 
reduce energy consumption in Ethernet switches by 
dynamically shutting down the transceiver completely 
depending on traffic arrivals, buffer occupancy, and a bounded 
maximum packet delay. Hays [13] proposed the active/idle 
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method which transmits data as fast as possible when it arrives 
and then dynamically switches the transceiver circuits to a low 
power idle state. ALR, first proposed by Nordman et al. [17], 
adaptively changes Ethernet link rate to any rate available 
based on link utilization to reduce energy consumption of the 
network interfaces of a system. 

However, both the ALR and active/idle mechanisms 
introduce several challenges, such as control policy 
development, which has been the focus of much research. A 
transceiver buffer occupancy-based dual threshold policy was 
first proposed by Gunaratne et al. [8]. In this policy, if the link 
was operating at a high link rate and the output buffer 
occupancy fell below a low threshold value, the link rate was 
decreased. Alternatively, if the link was operating at a low link 
rate and the output buffer occupancy rose above a high 
threshold value, the link rate was increased. This method 
achieved a fast response to traffic variations, but was overly 
sensitive to minute variations in traffic and caused 
unnecessary link oscillations, which resulted in increased 
mean packet delay.    

To solve the problem of link oscillation and avoid the 
resulting increase in mean packet delay, Gunaratne et al. [9] 
proposed a link utilization based threshold policy. The 
utilization threshold policy monitors link utilization by 
counting bytes transmitted during a defined time interval. 
However, counting these bytes requires additional hardware 
support such as accumulators and registers, which increases 
the complexity of ALR. In addition, choosing a representative 
time interval can be difficult. To reduce the complexity of the 
link utilization threshold policy, Gunaratne et al. [10] 
investigated a heuristic policy, called the ALR timeout 
threshold policy, to hold the link at the high rate for a fixed 
period of time following a switch from a lower rate. 

B. Motivation for Real-Time ALR Hardware 
Control policy performance greatly depends on how 

quickly the link rate can be switched. The lack of real-time 
ALR systems have led researchers to evaluate control policies 
through simulation, assuming very fast switching times on the 
order of 1 ms were achievable with current PHY and IEEE 
standards. Current research [3][20] estimates that the 
achievable link rate switching time between 1 Gbps and 100 
Mbps link rates ranges from 10 ms to more than 100 ms. This 
is contrary to the future subset PHY [6] technology proposed 
by Broadcom which estimates these times in microseconds. In 
this paper, we measure exact link rate switching times 
obtained from a real-time hardware prototype to more 
effectively evaluate ALR based on technology capabilities.  

III. LINK RATE SWITCHING MECHANISMS 
ALR is a three step process. The first step utilizes the 

control policy to determine when to switch the link rate. The 

second step is device synchronization through MAC 
handshaking. The third step is the physical link rate switching 
accomplished by configuring the PHY. Since control policy 
development is beyond the scope of this paper, in this section, 
we focus on the other two challenges.  

A. Device Synchronization 
Device synchronization is the mechanism which enables a 

network device to request a switch in the communicating link 
rate with another device. To ensure proper synchronization, 
we begin with an existing two-way MAC layer handshaking 
protocol [8]. This protocol begins with a request from the 
initiating device to switch the link rate (ALR request) and ends 
with a positive acknowledgment (ACK) or negative 
acknowledgement (NACK) from the recipient device to 
indicate whether or not the link rate can be switched. 

To implement this protocol, we augment the MAC control 
frames. The IEEE 802.3 standard [14] defines MAC control 
frames called PAUSE frames [14] to implement link level 
congestion control. We utilize reserved opcodes in the MAC 
control opcode field to implement our handshaking 
mechanism. Figure 1 shows the ALR control frame format, 
which we adapt from the PAUSE frame. The difference 
between the ALR frame and the PAUSE frame is the opcode 
field. The opcode values used for the ALR request, ACK, and 
NACK frames are 02, 03, and 04, respectively.  

To account for situations where two communicating 
devices do not both support ALR, it is necessary to advertise 
ALR capabilities during link establishment. This is 
accomplished using the reserved bits in the unformatted link 
code word (LCW) pages used in existing auto negotiation [14] 
(see Section III.B for further details on auto negotiation).  

Figure 2 depicts a block diagram of the ALR handshake 
mechanism. In this example, the two communicating devices 
are a network interface card (NIC) and a switch, denoted as 
node A and node B, respectively. Without loss of generality, 
we assume the control policy is the simple dual buffer 
threshold policy proposed in [8]. The algorithm for switching 
from a higher link rate to a lower link rate using the MAC 
handshake protocol is as follows: 

1) During link initialization, ALR capability is 
advertised during auto negotiation.  

2) After auto negotiation completes, the nodes 
exchange data at the determined link rate.  

3) If the control policy at node A determines a link 
rate switch is appropriate, node A sends an ALR 
request frame (Figure 2 (1a)) with the desired new 
(low) rate in the parameter field using the old (high) 
link rate.  

 
 
 
 

Figure 1: ALR control Frame 

Preamble 

(7-bytes) 
SFD 

(2-bytes) 

Destination 

MAC Address 

(6-bytes) 

Source MAC 
Address 

(6-bytes) 

Length/Type 

(2-bytes) 

Control 

(88-08) 

Flag 

(1-byte) 

(00toff) 

Op-Code 

02 

03 

04 

Parameters 

(2-bytes) 

(New Link 
Rate) 

Reserved 

(42-bytes) 

All zeros 

Frame Check 
Sequence 

(4-bytes) 

 

283



4) Node A starts a timer (Figure 2 (1b)) which 
expires if an ACK/NACK frame from node B is 
not received within a specified time. If the timer 
expires, node A sends the ALR request frame 
again (Figure 2  (1c)).  

5) Once node B receives the ALR request frame, it 
stops sending data, inspects its buffer occupancy 
(Figure 2 (2)), and determines whether it can 
switch to the new (low) link rate  

6) If node B accepts the link rate switch, it sends an 
ACK frame to node A using the old (high) link rate 
(Figure 2 (3a)). After sending the ACK, node B 
changes its link rate to the desired value and 
resynchronizes its clocks (Figure 2 (3b)). If node B 
rejects the link rate switch, it sends a NACK using 
the old (high) link rate and remains in the high link 
rate. 

7) After receiving an ACK, node A switches its link 
rate to the new (low) link rate, resynchronizes its 
clock (Figure 2 (4)), and starts data transmission at 
the new (low) link rate (Figure 2 (5)). If node A 
receives a NACK frame, it will continue to 
transmit data at the old (high) rate. Node A may 
re-request a link rate switch in the future.  

A similar mechanism can be used to switch from a low link 
rate to a high link rate. However, the only difference in this 
case is the recipient devices should always positively 
acknowledge the request, as a negative acknowledgement may 
result in buffer over flow and packet loss. 

B. PHY Resynchronization 
After the need to switch rates has been agreed upon, the 

PHY must physically switch the link rate. Link switching can 
be achieved by utilizing the existing auto negotiation feature 
defined in IEEE 802.3 [14] or by directly configuring the PHY 
control registers.  

Through auto negotiation, the connected PHY transceivers 
advertise their capabilities and mutually agree to communicate 
at the highest transmittable link rate. This sequence 
commences during initial device connection, or when a device 
is reset or reinitialized. Even though this method is simple and 
widely supported, auto negotiation is a lengthy process. For 
example, it requires several seconds for a 1000BASE-T 

implementation. For gigabit link rate, a limited sized buffer 
would fill up in milliseconds, and buffer overflow would be 
imminent.  

To decrease the link switching time, we utilize PHY 
register configuration, a mechanism to directly configure the 
PHY control registers allowing a device to change to a desired 
link speed. Soon after receiving an ACK frame, the MAC 
sends the appropriate management data input/output (MDIO) 
command frame to force the PHY transceivers to 
resynchronize to the desired link rate. Our experimental 
findings in section VI.A show that this method is orders of 
magnitude faster than the auto negotiation mechanism.  

IV. MATHEMATICAL MODEL 
In addition to imposing non-negligible delay, switching the 

link rate also expends energy during the switching time when 
no data packets are transferred. In this case, power is 
consumed, but no work is being done. To achieve overall 
energy savings, the wasted energy must be amortized by 
spending a minimum amount of time in the low link rate 
(MTSLR – Minimum Time to Stay in Low Rate).  

We denote the MTSLR as TL. Let PH and PL denote the 
power consumed by the MAC and PHY layers at the high and 
low link rates respectively. T1MAC and T1PHY are the times taken 
by the MAC and PHY layers to switch the link rate down and 
T2MAC and T2PHY are the times required for the MAC and PHY 
layers to switch the link rate up. We define the switching cycle 
(TTOTAL) as the total time to switch from the high link rate to 
the low link rate and then back to the high link rate.  

PHYMACLPHYMACTOTAL
TTTTTT
2211
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Thus, the total power consumption (PALR) for the switching 
cycle is: 
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To obtain the minimum value for TL, we differentiate the 
above equation with respect to TTOTAL and equate it to zero. 
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For the net energy consumption to break even, the sum of 
the switching energy should be equal to the energy in the low 
link rate. Thus, the MTSLR is: 
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Given the link switching times and power consumed by the 
device at both the high and low link rates, these equations can 
assist in control policy development to ensure overall energy 
savings.  

V. EXPERIMENTAL METHODOLOGY 

A. Prototype Hardware Architecture for an ALR-enabled 
NIC  
We developed a hardware prototype of an ALR-enabled 

NIC in order to analyze and evaluate the performance of ALR 
in terms of link rate switching time and power consumption. 

 
 Figure 2: ALR MAC handshake protocol 
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We utilized the Xilinx Virtex-II Pro development kit 
(XC2VP20-FF896) manufactured by Avnet Inc [2]. The Avnet 
board includes a Xilinx Virtex-II Pro FPGA, a Spartan-IIE 
FPGA, flash memory, SRAM 256MB DDR SDRAM, a PCI 
interface, a 10/100/1000 Ethernet PHY, and RJ-45 Ethernet 
connector. We built our NIC architecture based on the RICE 
programmable NIC [21]. We removed the DMA Unit, DDR 
controller, and Spartan bridge, since the communication 
between the NIC and host is not our research focus and 
resources are limited. The Virtex-II Pro FPGA contained most 
of ALR-enabled NIC logic including a PowerPC processor, 
on-chip memory, the clock control module, the MAC control 
unit, and the ALR MAC core. A high speed, 64-bit memory-
mapped processor local bus (PLB) operating at 100 MHz 
connected these components.  

The ALR MAC core is the focal point of ALR MAC 
handshake protocol implementation and generates the ALR 
control frames. We developed the ALR MAC core based on 
the tri-mode Ethernet MAC core available from Opencores 
[19]. We removed some internal modules and added extra 
components to existing modules to incorporate the ALR 
functionality.  

Figure 3 depicts the architecture of the ALR MAC core 
consisting of the transmitting and receiving engines and the 
PHY interface, as well as critical components outside of the 
MAC core. The transmitting engine includes the following 
modules: the ALR control frame generator (MAC_tx_Ctrl), 
destination and source MAC address generator 
(MAC_tx_addr_add), cyclic redundancy check (CRC) 
generator (CRC_gen), and the packet transmit buffer 
(MAC_tx_fifo). The receiving engine includes the ALR 
control frame response module (MAC_rx_Ctrl), the packet 
receive buffer (MAC_rx_fifo), and the CRC (CRC_check) 
module. The transmitting and receiving engines communicate 
and synchronize with each other via the flow control module 
(Flow_ctrl). The GMII and MII modules enable two way 
communications of ALR and data frames between the MAC 
core and the PHY. The MAC control unit is located outside 
the MAC core, and provides data frames via the MAC_tx_fifo 
buffer. 

The MAC control unit also contains the control policy. To 
initiate a link rate switch, the control policy sets the ALR 
request signal (ALR_req) to trigger the MAC core to begin the 
ALR MAC handshake protocol. The MAC control unit also 
specifies the desired link rate on the link_rate bus. The status 
signal indicates to the MAC control unit that link rate 
switching is in progress, so that no data packets are sent to the 
MAC core. Once ALR_req is set, the transmitting engine of 
the MAC core generates the ALR request frame and refrains 
from sending data frames until it receives an indication from 
the receiving engine that it has received an ACK/NACK frame.  

We added ALR capabilities to the receiving engine by 
adding ALR control frame processing to a custom version of 
the standard MAC data reception module. The receiving 
engine stores the data frames received from the PHY into a 
small FIFO until the MAC control unit transfers the frames to 
its own internal buffer. If the receiving engine receives an 
ALR control frame indicating the link rate should switch, the 
receiving engine informs the transmitting engine to configure 
the PHY via the media independent interface management 
(MIIM) [14] module.  

B. Experimental Setup and Measurement Methodology 
Our experimental setup consisted of two desktop 

workstations both running Linux OS to execute the firmware 
compiler and Xilinx FPGA tools, including Xilinx ISE [26], 
Xilinx EDK [25], and Xilinx Chipscope [24]. Each 
workstation was connected to one of the standalone ALR-
enabled NIC via the JTAG port and RS-232 serial port. The 
JTAG port was used for downloading compiled bitstreams to 
the FPGA and updating firmware. The serial port was used for 
viewing console output from the firmware. We connected the 
RJ-45 Ethernet connectors of the two NICs using two meters 
of CAT 5E crossover cable. We used Xilinx Chipscope to 
debug hardware, view the timing diagram, and monitor the 
link rate switching.  

We measure the total switching time as three separate 
components to identify the bottlenecks. These components are 
the MAC handshaking time, the PHY register configuration 
time, and the PHY resynchronization time. We force our 
system to switch link rates by periodically sending ALR 
request signals. Once the ALR request is initiated, we set a 
timer, and record the sequence number for the ALR request 
frame. After receiving the corresponding ACK, the timer value 
reports MAC handshaking time. The PHY register 
configuration time can be viewed directly through Chipscope. 
After completion of the PHY register configuration, another 
timer records the time for PHY resynchronization, which can 
also be viewed from Chipscope.  

To measure power consumption during a link rate switch, 
we force our system to switch link rates as quickly as possible 
so that the sustained power consumption will reflect only the 
power consumed during the actual switching. This switching 
period is the measured link switching time. We measure the 
average power consumption during constant switching using 
Xpower [27] and a Watts Up Pro power meter [22]. 

We note that, without loss of accuracy, we do not need to 
simulate Internet traffic traces to gather both link rate 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: ALR MAC core block diagram 
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switching time and power consumption. These two 
measurements are largely independent of both traffic and 
control policy. The link switching time has only a small 
dependency on the particular moment that link switching is 
determined, because transmission of the current data frame 
must be completed before link switching occurs.  

VI. PERFORMANCE ANALYSIS OF ALR 
In this section, we present our measured link rate switching 

times and power consumption. In addition, we evaluate two 
control policies based on MTSLR, power, and energy 
consumption given our measurements. 

A. Link Rate Switching Time  
We measure and report MAC handshaking, PHY register 

configuration, and PHY resynchronization times separately to 
show that PHY resynchronization is the dominating 
component. MAC handshaking time depends on the length of 
the cable and minimum inter-frame gap, which is the 
minimum idle period between transmissions of Ethernet 
frames. In our experiments, we use a two meter cable. The 
longest possible cable for 1000BASE-T Ethernet is 100 meters 
which would only increase the MAC handshaking time on the 
order of microseconds, but can largely increase the PHY 
resynchronization time due to increases in noise and phase 
lock time, the time spent acquiring signal frequency [3]. 

Table 1 summarizes the MAC handshaking, PHY register 
configuration, and PHY resynchronization times. As expected, 
the MAC handshaking time depends greatly on the initial link 
rate. Switching from an initial link rate of 10 Mbps is 10 to 44 
times longer than switching from an initial link rate of either 
100 Mbps or 1 Gbps.  

The PHY register configuration time is independent of link 
rate, since configuration control data are sent at a constant 
frequency of 2.5 MHz.  

In contrast to the MAC handshaking time, the PHY 
resynchronization time depends on the target link rate. When 
the link rate switches to either 1 Gbps or 100 Mbps, the PHY 
resynchronization time is approximately 70 ms, which is well 
within the range proposed by [3][20]. However, when the link 
rate switches to 10 Mbps, the PHY resynchronization time 
increases dramatically to 576 ms. This is due to the increased 
time for the devices to negotiate with each other at the PHY 
layer with lower transmitting and receiving frequencies.  

Not only does the switching time vary based on initial and 
target link rates, we point out that switching times are 

asymmetric. For instance, switching from 1 Gbps to 10 Mbps 
takes 8.4 times longer than switching from 10 Mbps to 1 Gbps. 

Both the drastic differences in switching times and the 
asymmetry reveal three new considerations. First, for control 
policies to be most effective, they should consider all available 
link rates, and not focus on switching between only two link 
rates. Furthermore, since these switching times can be 
dependent on both architecture and environment, we propose 
that control policies poll switching times at startup and 
incorporate these values when making switching decisions. 

Secondly, current control policy development has largely 
revolved around millisecond or even microsecond switching 
times. In those studies, extremely fast switching times relaxed 
buffer pressure and had little impact on maximum packet 
delay. However, large switching times exacerbate buffer 
pressure, increasing metrics such as mean and maximum 
packet delay and buffer overflows. We evaluated both the dual 
threshold and timeout threshold control policies and observed 
that effects of increased switching time appear to additively 
affect these metrics, illustrating similar trends for metric 
verses link utilization. 

Furthermore, we acknowledge that our measured switching 
times are much longer than 1 ms, which is assumed in 
previous research [8][9][10], but our switching time between 1 
Gbps and 100 Mbps is well within the time projected by 
[3][20]. Unfortunately, this lengthy time is due to limitations 
of the current PHY technology and IEEE standards. Currently, 
the fastest available switching mechanism is MAC 
handshaking with PHY register configuration to manually 
force the PHY to change rates. Manual PHY register 
configuration is used in PHY resynchronization to skip 
unnecessary auto negotiation steps that occur during initial 
link setup. This switching mechanism reduces the switching 
time from seconds to milliseconds, but is still much longer 
than 1 ms. Despite this discrepancy, the asymmetry and 
variation in switching times that we measure reveal important 
results needed for further control policy development which is 
beyond the scope of this paper.  

B. Link Rate Switching Power Consumption 
Figure 4 shows the power consumption for constant link 

rates and link rate switching. The first three bars show the 
power consumption for constant link rates of 10 Mbps, 100 
Mbps, and 1 Gbps. The measurements show a near 
exponential increase in link rate power consumption [5]. The 
last three bars show the link rate switching power when the 
link switches between two different rates. Link rate switching 

TABLE 1. LINK RATE SWITCHING TIMES 

Link Rate 
Switching 

MAC 
Handshake 
Time (us) 

PHY Register 
Configuration 

Time (us) 

PHY 
Resynchronize 

Time (ms) 

Total 
Switching 
Time (ms) 

1Gbps/100Mbps 2.0 13.84 72.320 72.3 

100Mbps/1Gbps 8.4 13.84 68.572 68.6 

100Mbps/10Mbps 2.0 13.84 575.813 575.8 

10Mbps/100Mbps 88.6 14.00 72.320 72.4 

1Gbps/10Mbps 8.4 13.84 575.813 575.8 

10Mbps/1Gbps 88.6 14.00 68.572 68.7 

 

 
 
 
 
 
 
 

 
Figure 4: Power consumption for constant link rate and link rate switching.  
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power, on the other hand, shows a different trend. During 
switching, a certain amount of time is spent in both link rates. 
The link rate switching power cannot simply be assumed to be 
the average of the initial and target link rates constant power 
consumption because the time spent in each rate is different. 
This is evident given the results we present in Table 1. A 
worst-case scenario could always assume that the power 
consumed during switching is simply fixed at the power 
consumption of the highest link rate, but results would be 
pessimistic, and could compound to very large discrepancies 
when calculating energy savings.  

C. MTSLR 
The first three bar groups of Figure 5 show the MTSLR for 

switching between different high initial rates and low target 
rates (initial/target) for assumed switching times of 1 ms and 
10 ms, and our measured switching times. For very low 
switching times, the MTSLR is largely negligible and, given 
the bursty nature of network traffic, MTSLR is likely not a 
concern. However, we notice that for our measured switching 
times, the MTSLR is quite different. For 1G/100M, the 
MTSLR is low but hardly negligible. However, we see a very 
large increase in MTSLR when the target link rate is 10 Mbps 
due to the long switching time. 

Even though the switching time for 100M/10M is nearly 
the same as 1G/10M, the MTSLR is more pronounced because 

the long switching time is spent in a higher power consuming 
state for 1G/10M. We observed that the MTSLR for 1G/10M 
is not simply the sum of 1G/100M and 100M/10M. This is due 
to the highest power consuming switch (1G/100M) being a 
fast switch and the lowest power consuming switch 
(100M/10M) being a slow switch. Given this, we propose a 
step-down technique, which switches the link to an 
intermediate rate before switching down to the ultimate target 
rate. The last bar group of Figure 5 shows the MTSLR using 
the step-down technique to switch from 1G/10M by switching 
from 1G/100M then switching from 100M/10M. The MTSLR 
is still quite large but is 75% less than switching directly from 
1G/10M.  

D. Control Policy Power Analysis  
We reanalyze the dual threshold [8] and timeout threshold 

[10] control policies for switching between 1 Gbps and 100 
Mbps using our measured switching times. To simulate 
network traffic, we use a Poisson process to model the arrival 
of packets of a constant maximum packet length of 1518 bytes, 
which reflects that used in previous work [9][10]. To represent 
different network traffics ranging from light to heavy, we vary 
the average link utilization of input traces from 1% to 15%. 
High and low buffer threshold values are specified as 0 KB 
and 32 KB respectively [8][9][10]. 

Figure 6 shows power consumption for the dual threshold 
policy (a), the timeout threshold policy with a 10 ms holding 
time (b), and the timeout threshold policy with a 100 ms 
holding time (c) for both an assumed link switching time of 1 
ms and our measured link switching time of 70 ms for varying 
link utilization. The dual threshold policy results in similar 
power consumption regardless of link switching time due to 
frequent link oscillation. In comparison, the timeout threshold 
policy with a 100 ms holding time reveals less power 
consumption with a 70 ms switching time than with a 1 ms 
switching time when link utilization is between 1% and 10%. 
This reduction is a result of the 70 ms switching time forcing 
the link to spend more time switching than staying in the high 
rate. For the timeout threshold policy with a 10 ms holding 
time, the 70 ms switching time causes the device to experience 
a sharper increase than it does with a 1 ms switching time. 
This is because the timeout threshold policy with a long 
switching time is less sensitive to variation of traffic utilization 
than with a short switching time.  

 
 
 
 
 
 
 
 
 
 

Figure 5: Minimum time to stay in the low link rate (MTSLR) for assumed 
switching times of 1 ms and 10 ms and our measured switching times. Each 

bar grouping shows MTSLR for switching from an initial rate to a target 
rate (initial/target) or an initial rate to a target rate via an intermediate rate 

(initial/intermediate/target)  

 
 
 
 
 
 
 
 
 

Figure 6: Power consumption for the (a) dual threshold policy, (b) timeout threshold policy with a 10 ms holding time, and (c) timeout threshold policy with a 
100 ms holding time for an assumed link switching time of 1 ms and our measured link switching time (70 ms). 

   
(a) (b) (c) 
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E. Energy Analysis  
Given the drastically different switching times depending 

on the target link rate, we analyze the energy consumed during 
the link switching process. The first three bars in Figure 7 
show energy consumed while switching from a high initial rate 
to a low target rate (initial/target). The energy consumed by 
1G/10M is 4 times that of the energy consumed by 1G/100M 
or 100M/10M due to the reasons we discussed in sections IV 
and 0.C. Using our step-down technique (bar four in Figure 7), 
the energy consumption is 75% less than a direct 1G/10M 
switch. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper presents three major contributions. First, we are 

the first to build an ALR-enabled NIC on an FPGA platform, 
and disseminate the real-time switching overheads, which are 
important for evaluating ALR performance. Second, we 
developed an ALR-capable NIC, which we make available for 
the research community [23] to test and perform experiments 
with ALR for further study. Third, we utilize our measured 
link switching times and power consumption to re-analyze 
control policies and identify new considerations in future 
research. Our future work includes developing a complete 
hardware prototype system with control policy mechanism 
capabilities, which can act on real time traces to assist control 
policy development and evaluation. 
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Figure 7: Energy consumption for various link rate switches. Each bar 
shows energy consumed when switching from an initial rate to a target 
rate (initial/target) or an initial rate to a target rate via an intermediate 

rate (initial/intermediate/target) 
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