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Abstract– Universal Plug and Play (UPnP) is an automatic 
configuration protocol for network devices.  A key component in 
UPnP is the Simple Service Discovery Protocol (SSDP).  SSDP is 
a fully distributed discovery protocol and requires all devices in 
a UPnP network to be fully powered-up at all times in order to 
send periodic advertisements and respond to discovery messages.  
In this paper, the design and implementation of a UPnP power 
management proxy is described.  This proxy makes it possible 
for UPnP devices to enter and remain in a low-power sleep state 
and thus reduce the energy used by the device.  Wake-on-LAN is 
used by the proxy to wake up sleeping UPnP devices only when 
their services are needed.  The proxy is completely backwards 
compatible with existing UPnP standards.  The estimated 
economic savings in reduced electricity use is between $125 and 
$312 million per year in the US alone, if this approach was to be 
widely adopted.   

 
I.  INTRODUCTION 

The amount of energy used by networked electronic 
devices is growing rapidly.  In 1999 electricity use by office 
and network equipment was about 2% of the total electricity 
consumed in the USA corresponding to $6 billion in energy 
costs and the emission of more than 50 million metric tons of 
carbon dioxide per year [1].  This quantity has increased since 
1999.  Within the typical US residence, electricity use by 
electronic equipment when in a low-power mode (i.e., not in 
active use) is now about 1000 kWh/year (approximately $80 
per year) and is greater than the energy used by a refrigerator 
[2].  Research into improving the energy efficiency of 
electronic devices – equipment that is almost always 
connected to a network – is of great economic and 
environmental significance [3], [4].  Energy efficiency is also 
of concern for mobile devices where battery lifetime is often 
the limiting design constraint and impairs functionality.   

Dynamic power management methods address the problem 
of energy use of electronic devices by putting devices into 
low-power sleep states when they are not in active use.  A 
timer can be used to detect user inactivity and predict that 
inactivity will likely continue.  Upon expiration of the 
inactivity timer, the device will enter sleep mode.  On 
detection of user activity, or receipt of a Wake-on-LAN 
(WOL) packet, the device resumes a fully-powered state.  The 
time to power up and down between sleep and fully 
operational states is non-negligible and thus powering down 
should only take place for long periods of inactivity.   

Increasingly, network protocols have been found to induce 
energy use in devices.  That is, network protocols are forcing 
devices to remain fully powered-up continuously, even when 
not in active use, to respond to protocol messages.  One 
example of this is the Universal Plug and Play (UPnP) 
automatic configuration protocol and its underlying Simple 
Service Discovery Protocol (SSDP) [5].  UPnP is a standard 
protocol intended to extend the PC peripheral plug-and-play 
concept to networks [6].  The network medium can be wired 
(e.g., Ethernet) or wireless (e.g., WiFi).  UPnP has the 
potential to be a widely deployed protocol in residential 
networks.  Microsoft, Intel, and Nokia are key supporters of 
UPnP.  In a UPnP network – that is, a network where all 
devices execute a UPnP protocol implementation – a new 
device brought into a network can automatically discover 
available services in other devices.  The discovered services 
can then be used (i.e., are automatically configured) by the 
new device.  It is the underlying SSDP protocol that requires 
all devices to be fully powered-up in order to send and 
respond to SSDP messages at all times.  Thus a device that 
enters a low-power sleep state and ignores most network 
traffic is considered disconnected from the network.  When 
configuring a UPnP network, it is required that power 
management is disabled in all devices.  In this paper, we 
address how to allow UPnP devices to power down to a low-
power sleep state and still be fully discoverable by SSDP (i.e., 
how to enable power management in UPnP devices).  We 
approach this problem with the design and implementation of 
a proxy to “spoof” for powered-down devices and wake them 
up when their services are required. 

The remainder of this paper is organized as follows.  
Section II describes the design of a UPnP power management 
proxy.  Section III describes implementation and evaluation 
of the proxy.  In Section IV possible energy savings are 
estimated.  Section V briefly describes related work.  Section 
VI is the summary and outlines future work. 

 
II.  DESIGN OF THE POWER MANAGEMENT PROXY 

In this section we present an overview of the SSDP 
protocol in UPnP and describe the design of a power 
management proxy.  Two versions of a UPnP power 
management proxy are considered – an invisible proxy and a 
cooperating proxy. 



 

 
A.  Overview of discovery in UPnP 

UPnP is fundamentally a client/server protocol where 
devices can serve as a client, server, or as both.  UPnP uses 
the concepts of device, service, and control point.  A device is 
a physical entity such as a mobile phone, printer, or PC.  
Within devices are logical services and control points.  A 
printer may contain services for printing and faxing.  A 
mobile phone may contain a control point for invoking the 
services in a printer (e.g., to print pictures stored in the 
mobile phone that can be sent to the printer via Bluetooth).  
Devices with services must advertise their presence and do so 
via periodic, multicast SSDP presence announcements 
(SSDP:alive).  Information contained in an SSDP:alive 
is only valid a limited time, and must therefore be periodically 
resent.  This is to determine which devices may have 
unexpectedly left the network.  Control points need to 
discover services in devices and do so via multicast SSDP 
discovery requests (SSDP:discover).  Discovery 
messages are typically sent out when the control point 
connects to the network.  Fig. 1 shows two devices, one with 
a control point and one with a service, and the key SSDP 
packet flows between the devices.  Fig. 2 shows a simplified 
FSM (the complete FSM is in [7]) for a UPnP service.  
Transition S11a is the action of receiving a discovery packet 
from a control point and replying with a discovery 
acknowledgement packet.  Transition S11b shows the action 
of receiving an HTTP GET from a control point and replying 
with an XML scheme describing service capabilities.  

Transition S11c shows the action of updating timed out 
information about the service. Finally, transitions S12 and 
S21 show a control point using the service.   

It is transitions S11a and S11c in Fig. 2 that are of primary 
concern.  If a device enters a sleep state, the discovery 
message cannot be replied to and periodic presence 
announcement messages cannot be sent.  Could the discovery 
message be used to trigger a wake up of a sleeping device?  
This is infeasible because existing Ethernet and WiFi NICs 
cannot recognize a discovery message as a trigger for wake 
up.  Existing NICs can, however, recognize a WOL packet for 
wake up.  Existing NICs would need to be redesigned and all 
existing UPnP devices replaced if a discovery-triggered wake 
up was to be used  In addition, if discovery messages were to 
be used to trigger a wake up, the device would be awake 
much more than is necessary thus reducing the amount of 
energy saved.  Finally, wake-up for discovery is insufficient – 
periodic presence announcement messages also need to be 
sent (again, requiring a device to be fully powered).  An 
alternative solution is to have a proxy reply on behalf of all 
sleeping devices.  This is the approach investigated in this 
paper. 

 
B.  Design of an invisible proxy 

A power management proxy is an always-on service in a 
device that does not enter a low-power sleep state.  An 
invisible power management proxy requires no changes to the 
devices for which it is proxying.  Fig. 3 shows how such a 
proxy can spoof for, or act on behalf of, a device in a sleep 
state.  The proxy spoofs periodic SSDP:alive messages 
and answers SSDP:discover messages destined for the 
sleeping device.  If there is an incoming request that the proxy 
cannot answer it will wake up the sleeping device using a 
standard wake up mechanism (e.g., sending a WOL packet). 

The invisible proxy does not communicate directly with 
any device nor announce its presence in the network.  This 
makes the proxy invisible to all other devices in the network.  
Fig. 4 shows the design of the invisible proxy (the complete 
design is in [7]).  Since the proxy will not be notified of a 
device entering a sleep state it must monitor the traffic on the 
network and calculate the time since the last activity from all 
devices.  If there has been no activity from a certain device 
after a threshold time, the proxy will start proxying for the 
device.  This is shown in transition S12 in Fig. 4.  While in 
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state S2 the proxy will send periodic SSDP:alive messages 
as seen in transition S22.  The proxy will also reply to 
incoming SSDP:discover messages destined for the 
sleeping device in transitions S23 and S32a.  If the proxy 
receives a request for a sleeping device, it will wake up the 
device using a WOL packet in transitions S24 and S41. 

For a proxy to work in a switched network – where no one 
device can “see” all the traffic in the network – a method of 
redirecting packets to the proxy can be used.  When the proxy 
takes over for a presumed sleeping device, it can send an 
ARP reply to the entire network associating the proxy’s MAC 
address with the IP address of the sleeping device.  When the 
device is detected by the proxy as being powered-up again, 
the proxy sends another ARP reply to re-associate the MAC 
address of the device to the IP address of the device 

 
C.  Design of a cooperating proxy 

The invisible proxy cannot verify the power state of a 
device.  If a device were to leave the network unexpectedly, 
the invisible proxy will “see” this as the device going to sleep 
and will begin acting for the now non-existent device.  This 
error will not be discovered until the proxy tries to wake up 
the device.  To correct this shortcoming, the cooperating 
proxy was designed. 

The cooperating proxy announces its presence on the 
network and communicates directly with all devices in the 
network.  To enable this communication each power managed 
UPnP device must implement a new power management 
service.  When a device enters sleep mode it will change the 
state of its power management service, automatically 
notifying the proxy using the GENA protocol.  The 
cooperating proxy will then start acting for the device.  When 
the sleeping device wakes up, the state of its power 
management service will change again and the proxy will be 
notified.  Using this design the risk of a proxy acting for 
disconnected devices is minimized.  The complete design of 
the cooperating proxy can be found in [7].  The design entails 
a modification of the FSM of Fig. 4 adding three new states 
and ten new transitions. 

D.  Design trade-offs and open issues 
Neither of the two proxy designs can determine if a 

sleeping device has left the network resulting in false 
proxying.  Another issue is how to select a proxy if more than 
one device in a network is capable of proxying.  An election 
procedure could be implemented.  If more than one device is 
capable of being a proxy, a means of backing-up each other 
could be designed.  The cooperating proxy design is already 
enabled for proxy-to-proxy communication and is the logical 
starting point for designs to implement failure detection and 
recovery. 

 
III.  IMPLEMENTATION AND EVALUATION OF THE PROXY 

The invisible and cooperating proxies were implemented 
as Microsoft Windows applications hosted in a standard PC.  
The proxy implementations were written in the C language 
using the Bloodshed Dev-CPP environment.  The NetWib 
library was used for the communications interface.  The key 
components in the implementation are caches and threads.  
Both proxies have a device and proxy cache.  The device 
cache contains basic information about all other devices in the 
network.  This information is required to construct answers to 
SSDP:discover messages.  The proxy cache contains the 
same information, but only about those devices that the proxy 
is acting for at a given moment.  

The implementation of the invisible proxy contains a main 
program and two threads – the proxy cache update thread and 
the notification thread as shown in Fig. 5.  The main program 
listens to all traffic on the network and processes all packets.  
The main program adds new devices that connect to the 
network to the cache and removes devices that leave the 
network from the cache.  The proxy update thread calculates 
the time since the last detected activity from a device.  If the 
threshold time value is reached, the information about the 
device is copied from the device cache to the proxy cache.  
The notification thread continually checks whether it is time 
to spoof an SSDP:alive for a device in the proxy cache.   
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The implementation of the cooperating proxy is based on 
the invisible proxy.  The main difference is the removal of the 
proxy update thread and the addition of a read event thread 
and an update device cache thread.  The read event thread 
keeps track of incoming GENA events in the case of a device 
entering or leaving sleep mode.  The thread will either copy 
information from the device cache to the proxy cache or 
remove information from the proxy cache, depending on the 
event.  The update device cache thread removes information 
from the device cache if the information has timed out (which 
means a device has unexpectedly left the network). 

Both proxy implementations have been tested with a 
variety of UPnP devices. Both proxy implementations 
allowed devices connected to the network to enter a sleep 
state without breaking any existing UPnP functionality.  See 
[7] for a description of the validation and verification. 

 
IV. EXPECTED ENERGY SAVINGS 

If the UPnP proxy was deployed in future UPnP networks, 
what would the electricity savings be?  It is unknown what the 
full penetration of UPnP will be in the next 5 to 10 years.  It 
is equally unknown what new networked devices will be 
developed.  However, a rough electricity savings estimate can 
be made by using stock estimates (for network connected 
devices in 2008) for notebook and desktop computers, and 
laser printers (which can be multi-function devices) [8].  An 
estimate based on only these devices will necessarily be 
conservative given that mobile and specialized UPnP devices 
(e.g., IP radio, home appliances, etc.) are entirely omitted, as 
are set-top boxes, media storage servers, and other power-
intensive products.  Table 1 shows the number of devices in 
millions, the power ratings for fully powered-up (“on”) and 
sleeping, and the number of hours per week of sleep with or 
without a proxy [8].  For printers, the “on” power is the sleep 
mode of the printer in which its processor remains powered-
up; the “sleep” line is a reduced sleep mode in which the 
processor can actually go to sleep.  From Table 1, the yearly 

energy savings are calculated in Wh.  We estimate 10% (low 
estimate) to 25% (high estimate) of these devices will be 
UPnP enabled and using the proxy system.  At 8 cents per 
kWh, the total savings range from $125 million to $312 
million per year if UPnP networks had a power management 
proxy.  Clearly, this estimate has many factors that could 
cause variation, but we believe this estimate to be 
conservative for the reasons described earlier in this paper. 

 
V.  RELATED WORK 

Significant research has been done in the area of power 
management focusing on predictive time-out schemes, 
frequency-voltage scaling, and other device-specific methods.  
Little work has been done focusing on power management 
from a systems (or network-wide) perspective.  Proxying for 
power management was first proposed by Christensen and 
Gulledge [9] to handle general IP protocols such as ICMP 
ping and ARP on behalf of sleeping PCs on a shared-medium 
Ethernet.  Recent work by Rosu et al. [10] has focused on 
using an HTTP proxy to shape incoming traffic to create 
longer idle periods, thus enabling wireless devices behind the 
proxy to sleep for longer periods of time.  Kejariwal et al. 
[11] have proposed proxying as method of splitting 
functionality (in this case for computationally complex tasks) 
between energy-constrained handheld devices and a mains-
powered proxy to reduce energy use of the handheld.  The 
focus is on conserving handheld battery energy use and not on 
overall reduction of energy use. 

The UPnP Forum [6] has a Low Power Working 
Committee (LPWC) addressing power management for 
UPnP.  The LPWC is drafting a proposal for a power 
management proxy.  The draft proposal is different from our 
proxy in that it requires significant changes to SSDP and 
other underlying UPnP protocols.  Our proxy is of interest to 
the power management research community because it is fully 
backwards compatible with existing UPnP protocols, and an 
implementation now exists to allow further experimentation 
and serve as a base for a deployable product.  The first two 
authors (Klamra and Olsson) are members of the UPnP 
Forum and the LPWC, and have contributed ideas to the 
Forum’s power management effort. 

 
VI.  SUMMARY AND FUTURE WORK 

Bringing power management into the network context is a 
new focus of our work.  Proxying is a useful method for 
allowing devices to enter a low-power sleep state while 
maintaining a virtual presence in the network (via an always 
powered-on proxy).  The feasibility of proxying for UPnP has 

TABLE 1 
ESTIMATED ENERGEY SAVINGS ASSUMPTIONS 

 
 Notebook Desktop Laser 
Number of devices 42.5 84.8 11.3 
Power in “on” (W) 22 82 15 
Power in “sleep” (W)   3   6   5 
On w/out proxy (hrs/wk) 56 56 56 
On w/ proxy (hrs/wk) 19 15   1 
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been shown by designing and implementing a fully backwards 
compatible power management proxy. The proxy 
implementation is freely available from the authors [7]. 

Future work is in several areas.  There are open problems 
in how a proxy should be selected (e.g., if there are multiple 
devices that are proxy-capable) and how proxied devices 
should monitor for the possible failure of a proxy.  For 
devices where the network interface is a small fraction of the 
overall device power consumption (e.g., as is the case for 
desktop PCs), the possibility of adding fully-distributed 
proxying on WiFi and Ethernet NICs can be explored – this 
“SmartNIC” concept is described in [4].  The general 
direction of bringing power management “outside of the box” 
has great potential for reducing the energy use of electronic 
equipment and requires further research.  The benefits are to 
both the environment in overall reduced energy use and to 
enabling battery-powered handheld devices to increase their 
functionality without increasing their use of battery power. 
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