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Design and Performance Evaluation of a New Spatial Reuse 

FireWire Protocol 

                                          Vijay Chandramohan 

                                                 ABSTRACT 

  

New generations of video surveillance systems are expected to possess a large-scale 

network of intelligent video cameras with built-in image processing capabilities. These 

systems need to be tethered for reasons of bandwidth and power requirements. To support 

economical installation of video cameras and to manage the huge volume of information 

flow in these networks, there is a need for new shared-medium daisy-chained physical 

and medium access control (bus arbitration) layer communication protocols.  

 

This thesis describes the design principles of Spatial reuse FireWire Protocol (SFP), a 

novel request/grant bus arbitration protocol, architected for an acyclic daisy-chained 

network topology. SFP is a new extension of the IEEE 1394b FireWire architecture. SFP 

preserves the simple repeat path functionality of FireWire while offering two significant 

advantages: 1) SFP supports concurrent data transmissions over disjoint segments of the 

network (spatial reuse of bandwidth), which increases the effective throughput and 2) 

SFP provides support for priority traffic, which is necessary to handle real-time 

 vi



 

applications (like packet video), and mission critical applications (like event notifications 

between cameras) that have strict delay and jitter constraints. 

 

The delay and throughput performance of FireWire and SFP were evaluated using 

discrete-event queuing simulation models built with the CSIM-18 simulation library. 

Simulation results show that for a homogeneous traffic pattern SFP improves upon the 

throughput of IEEE 1394b by a factor of 2. For a traffic pattern typical of video 

surveillance applications, throughput increases by a factor of 7. Simulation results 

demonstrate that IEEE 1394b asynchronous stream based packet transactions offer better 

delay performance than isochronous transactions for variable bit rate video like MPEG-2 

and MPEG-4. SFP extends this observation by supporting priority traffic. QoS for packet 

video is provided in SFP by mapping individual asynchronous stream packets to the three 

priority classes.  
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CHAPTER 1 
 

INTRODUCTION 

 

There is a growing need for visual monitoring and surveillance systems in large facilities 

like airports and stadiums, for safety and security. New systems are envisioned with 

thousands of highly intelligent, interconnected cameras with rich image processing 

capabilities. Cameras can be used to monitor crowd behavior and access to restricted 

areas. With facial recognition, monitoring extends to identification of profiled 

individuals. Many novel applications for video surveillance are envisioned [8], [21], [24]. 

As these applications grow in complexity and demand, the underlying networks that 

support video surveillance need to evolve as well.  

 

1.1 Motivation 

 

Existing dedicated medium switched Ethernet/ATM based video surveillance systems 

require a communication cable per node (connected to a switch). This dedicated cabling 

will soon become the cost and performance bottleneck to further deployment of large-

scale (e.g., thousands of cameras in one installation) video surveillance systems. For 

high-resolution video and localized processing (image analysis) in each camera, power 

cannot be delivered for very long by a battery. Power distribution can be combined with 
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communication [15]. For economical installation of large-scale video surveillance 

systems, there is a need for new shared-medium, daisy-chained network technologies 

with built-in power distribution. Very significantly, new bus arbitration protocols capable 

of supporting multiple, high bit-rate video traffic must be investigated.  

 

1.2 Thesis contributions 

 

This thesis investigates new communication protocols suitable for video surveillance 

systems, in particular at the medium access control level (bus arbitration) and physical 

layer. The main contributions of this work are: 

• Review of suitable technologies for low-cost networking for video surveillance. 

• Performance evaluation of FireWire as a candidate technology for video 

surveillance. 

• Design and performance evaluation of Spatial reuse FireWire Protocol (SFP), a 

new bus arbitration protocol, which improves the effective throughput of 

FireWire by spatial reuse of bandwidth, and QoS support for packet video by a 

real-time priority based bus access mechanism. 
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1.3 Thesis organization 

 

The remainder of this work is organized as follows.   

• Chapter 2 describes the evolution of networks for video surveillance. This chapter 

studies the performance issues in FireWire protocols, especially the bus 

arbitration mechanisms.  

• Chapter 3 describes the design of the Spatial reuse FireWire Protocol (SFP). 

• Chapter 4 evaluates the queuing delay and the throughput performance of SFP 

and of existing FireWire protocols for packet-based video transmissions.   

• Chapter 5 presents a summary of results and discusses directions for future 

research. 
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CHAPTER 2 
 

BACKGROUND 

 

Sensor networks, also called Embedded Networks (EmNets) [7], are envisioned to tie 

together embedded systems.  EmNets can enable distributed processing and entirely new 

computational models.  In many applications, sensor networks are wireless [2], [4], [6].  

For applications such as habitat monitoring in a jungle [2] or tracking of items in a 

warehouse [6], a wired network is not possible.  However, for sensor applications with 

fixed locations and high bandwidth and power demands a wired sensor network (WSN) is 

needed [3]. One such application of national importance is video surveillance.  Open 

problems in video-based sensor networks include; collaboration of the large volume of 

sensor information, developing efficient image processing and video compression 

algorithms, and most importantly designing scalable, low-cost network technologies 

capable of providing the required QoS for high bit-rate video traffic  [8], [21].  

 

2.1 Evolution of networks for video surveillance 

 

With image processing included as part of an intelligent camera, many new applications 

for video surveillance can be envisioned [8], [21], [24].  Common to all of these 

applications is the need to communicate video, still images, or event notifications 
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between peer cameras and/or to one or more monitoring or sensor fusion points. New 

applications force an evolution in the underlying networks that support video surveillance 

systems. Four generations of networks for video surveillance systems are identified: 

• Existing – based on analog cameras and dedicated coax cabling. 

• Emerging – based on digital cameras and Ethernet or ATM with dedicated, 

unshielded twisted-pair cabling. 

• Near future – based on intelligent digital cameras with processing capability and      

shared cabling in acyclic topologies. 

• Future – based on intelligent digital cameras and arbitrary topologies where 

shared-medium acyclic clusters and store-and-forward nodes capable of routing 

will co-exist.  

The near future and future generations are predictions. Figures 1, 2, 3 and 4 show the four 

generations of video surveillance systems in order. 

 

For the existing generation, the coax cables for all cameras are brought into a common 

control room in which the analog video signals are monitored by a human and/or 

recorded.  In the control room human operators observe a large wall of monitors, each 

with rotating views from multiple cameras.  The operators may have the ability to lock a 

monitor to a specific camera and physically control the orientation and/or zoom-in of a 

camera, in order to manually follow a suspicious target. This existing generation is 

limited by the cost of the coaxial cabling (which can exceed camera costs) and the 

number of video streams that can be monitored by a human.  Image processing of the 

video streams would be difficult given that only centralized processing is possible. 
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The emerging generation uses low-cost digital cameras and incorporates an Ethernet [19] 

(or an ATM network [22]) connection in the camera unit.  Video is transmitted from the 

camera to a central point as MPEG-2 using IP.  By using Ethernet, lower cost unshielded 

twisted-pair cabling (e.g., UTP-5 for 100BaseT) can be used.  With the video stream 

already in digital and packet format, transmission over an existing IP network and/or 

recording on a PC hard disk are easily accomplished.  With a continued decrease in the 

cost of cameras, but no similar decrease in the cost of copper or labor to install cabling, a 

bottleneck will soon be hit.  
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It is envisioned that the future generations of video surveillance systems will require 

shared-medium and direct-wired networks to reduce cabling costs and allow for ad hoc 

installation of cameras.  In the near future, acyclic networks with intermediate clustering 

points are predicted. Tree branches can be extended with a new camera, or a camera 
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inserted into a branch. In the longer-term future, shared-medium acyclic clusters will co-

exist with new store-and-forward nodes.  These store and forward nodes will include 

routing and caching capabilities.  With such nodes, arbitrary network topologies become 

possible with redundant links for reliability and added bandwidth.  Very significantly, 

these future WSNs can enable new models of distributed image processing.  These 

systems may have distributed information (routing) servers to facilitate novel location 

and attribute based routing between video sensor nodes. Routing issues in WSNs with an 

arbitrary topology are studied in [3].  

 

Image processing localized in, or even distributed between, cameras is needed to build 

highly autonomous video surveillance systems that will require human intervention only 

on the detection of critical events. Existing, low-cost cameras are already capable of 

motion-detection and tracking [5].  For localized image processing in each node, battery 

power is not sufficient.  Thus, wiring is needed for power distribution.  Existing video 

surveillance systems have two cabling systems, one for power and another for 

communications.  Power distribution can be combined with communications.  IEEE 

802.3af standardizes power distribution on an Ethernet link to allow for nodes without 

separate power wiring [15].  FireWire includes power distribution as part of the standard 

cable bundle.  Wired sensor networks will combine power distribution with 

communications [3].  
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2.2 Overview of FireWire 

 

FireWire was originally developed by Apple (in 1987) as an extended serial bus 

technology intended to replace expensive parallel peripheral buses such as PCI 

(Peripheral Component Interconnect) and ISA (Industry Standard Architecture bus). Over 

the time, FireWire has evolved into a versatile method for interconnecting wide variety of 

high-bandwidth consumer electronic devices, peripherals and computers. FireWire is the 

only existing technology that supports a shared-medium daisy-chained topology and has 

built-in power distribution. It is believed that a shared-medium is necessary to support ad 

hoc installation of nodes and reduce cabling costs compared to dedicated medium 

technologies (such as switched Ethernet or ATM). Each FireWire node is a part of the 

repeat path. Nodes may have one or more ports to support branching and hence tree 

topologies. A FireWire cable consists of three pairs of wires, two for data transmission 

and one for power conductors as shown in Figure 5. All FireWire standards employ 

shielded twisted pair (STP) cabling. IEEE 1394b also uses plastic optic fiber (POF) and 

multimode fiber (MMF) for added bandwidth and distance. A FireWire cable cross-

section is approximately 5 millimeters in diameter. 

 

The number of nodes on a FireWire serial bus is limited to 63. Upto 1024 serial buses can 

be bridged together in a single network. The standard for FireWire bridges was still under 

development at the time of this writing [16]. There exist three versions of the FireWire 

standard, IEEE 1394-1995 [14], IEEE 1394a [13], and IEEE 1394b [12]. Each standard 

has successively increased the bandwidth and the reach of the serial bus network. Each 
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standard has also improved upon the bus arbitration mechanism. Table 1 gives a 

performance summary of the three FireWire standards. Performance of IEEE 1394 has 

been studied analytically in [20].  References [11] and [17] describe methods of 

transmitting IP packets over FireWire. In [9], IP over FireWire was compared to IP over 

Gigabit Ethernet, and it was found that throughput was very similar. Reference [27] 

provides a detailed capacity utilization analysis of IEEE 1394 FireWire. The rest of this 

chapter presents the Firewire architecture and performance issues. Bus arbitration 

mechanisms are described in detail. 

Power wires

Outer jacket

Outer shield

Signal pair shield

Twisted signal pairs

Power wires

Outer jacket

Outer shield

Signal pair shield

Twisted signal pairs

 

Figure 5. FireWire cable cross-section, taken from [1] 

 

2.3 Basic operation of FireWire 
 

Prior to the normal operation of FireWire a bus configuration phase must take place. Bus 

configuration is responsible for the “plug-and-play” feature of the network and occurs 
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whenever a node is added to or removed from the bus. This phase includes tree 

identification and self identification. During tree identification, nodes exchange a series 

of handshake signals to establish a parent / child relationship among them, and to 

determine the root node. The root node claims the bus ownership, and plays an important 

role in bus arbitration and several bus management activities. Usually tree identification 

fails if there is a loop in the topology. IEEE 1394b provides a solution to this problem by 

selective disabling of links [12]. Bus configuration also establishes the topology of the 

network. During self identification each node in the serial bus is assigned a unique 

address called “self id”, which ranges between 1 and 63. A detailed study of bus 

configuration in FireWire is given in [1]. 

 

Table 1. Summary of FireWire standards 

 IEEE 1394 IEEE 1394a IEEE 1394b 

Internode distance 4.5 meters (max) 4.5 meters (max) 100 meters (max)

Maximum hops 16 63 63 

Physical medium STP STP STP, POF, MMF 

Cable bandwidth 100, 200, 400 Mbps 100, 200, 400 Mbps Up to 1.6 Gbps  

Loop prevention No No Yes 

Arbitration Large idle gaps Small idle gaps No idle gaps 

 

All FireWire data transactions are packet based and can be broadly classified as 

asynchronous or isochronous. Asynchronous transactions are guaranteed in delivery and 

require an acknowledgement from the receiver. They are unicast in nature. Isochronous 
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transactions are guaranteed in time with a specific bandwidth reserved for them on the 

serial bus. Up to 80% of the bus bandwidth can be allocated for isochronous transactions. 

Bandwidth is allocated in portions of 125 microsecond intervals, called cycles. 

Isochronous transactions are multicast in nature, addressed to one or more nodes based on 

a channel number. FireWire supports another transaction service called asynchronous 

streaming, which is guaranteed neither in time nor in delivery. Asynchronous streaming 

can be unicast or multicast. FireWire data packets are variable in size. Maximum data 

payload size depends upon the type of transaction and the bandwidth of the FireWire 

serial bus. Figures 6 and 7 show different packet formats in FireWire. Asynchronous 

stream and isochronous packets follow the same format. 

data length tag channel tcode sy

header CRC

data block

data block

data CRC

...

msb (transmitted first)

lsb (transmitted last)

0 16 18 24 28 31

Tag represents data format (protocol specific), channel represents channel address, tcode
represents transaction code (asynchronous, isochronous, data packet, control packet 
etc.), sy represents synchronization code (application specific). 

data length tag channel tcode sy

header CRC

data block

data block

data CRC

...

msb (transmitted first)

lsb (transmitted last)

0 16 18 24 28 31

Tag represents data format (protocol specific), channel represents channel address, tcode
represents transaction code (asynchronous, isochronous, data packet, control packet 
etc.), sy represents synchronization code (application specific). 

 

Figure 6. FireWire asynchronous stream and isochronous packet format, taken from [1] 
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destination id t1 rt tcode pri

source id

destination offset

data block

data CRC

...

msb (transmitted first)

lsb (transmitted last)

0 16 22 24 28 31

Destination id includes 6 bit node id (for 63 nodes) and 10 bit bus id (for 1024 buses). 
Tcode represents transaction type, pri represents priority (this field is not used), 
destination offset represents address location within target node. Other fields are 
protocol specific.

destination offset

packet type-specific data

header CRC

data block

destination id t1 rt tcode pri

source id

destination offset

data block

data CRC

...

msb (transmitted first)

lsb (transmitted last)

0 16 22 24 28 31

Destination id includes 6 bit node id (for 63 nodes) and 10 bit bus id (for 1024 buses). 
Tcode represents transaction type, pri represents priority (this field is not used), 
destination offset represents address location within target node. Other fields are 
protocol specific.

destination offset

packet type-specific data

header CRC

data block

 

Figure 7. FireWire asynchronous packet format, taken from [1] 

 

FireWire architecture is built upon a four-layer protocol stack as shown in Figure 8. The 

physical layer implements bus arbitration, defines electrical signaling for data 

transmission and mechanical interface for cables and connectors. The link layer provides 

address and channel number decoding and CRC generation and verification for 

transmitted and received packets. The transaction layer provides request-response 

services for asynchronous transactions. Isochronous transactions operate independent of 
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this layer. The bus management layer provides support for several bus management 

activities and bus configuration. FireWire requires three primary bus management nodes 

for normal operation. They are cycle master, Isochronous Resource Manager (IRM), and 

bus manager. The cycle master generates and broadcasts cycle start packet every 125 

microseconds. A cycle start packet denotes the beginning of the periodic 125-

microsecond interval. The root node plays the role of cycle master. The IRM manages 

serial bus isochronous bandwidth and also allocates multicast channel numbers. The bus 

manager manages cable power distribution and publishes the topology map and the speed 

map of the serial bus. A speed map is necessary since FireWire can support nodes/cables 

of different bandwidth capacity in a single network. Usually, all nodes are capable of 

performing these bus management activities. However, the operational bus management 

nodes are elected during the bus configuration phase.  

 

2.4 Bus arbitration in FireWire 

 

FireWire employs a request / grant arbitration mechanism to control access to the shared-

medium network. A simple arbitration scheme works as follows: 

• Nodes that wish to transmit a packet request the bus owner for permission.  

• The bus owner selects a best request based upon certain criteria and issues a grant 

to the corresponding node. 

• Only the granted node transmits its packet, the other nodes continue to request 

until they receive a grant from the bus owner. 
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In IEEE 1394-1995 [14] and IEEE 1394a [13] the bus owner is always the root node. In 

IEEE 1394b [12] all arbitrating nodes perform the role of bus owner in a round-robin 

basis. A detailed description of FireWire bus arbitration is given in the following 

sections. 

Physical Layer

Link Layer

Transaction Layer

Node 
Controller

Cycle Master

IRM

Bus Manager

Bus Management 
Layer

Bus 
Management 

Interface
Transfer Interface

Asynchronous Isochronous

Software Driver

Serial Bus

Physical Layer

Link Layer

Transaction Layer

Node 
Controller

Cycle Master

IRM

Bus Manager

Bus Management 
Layer

Bus 
Management 

Interface
Transfer Interface

Asynchronous Isochronous

Software Driver

Serial Bus

 

Figure 8. FireWire protocol stack, taken from [1] 

 

2.4.1 Bus arbitration in IEEE 1394 and IEEE 1394a FireWire 

 

The basic arbitration mechanisms employed in IEEE 1394 and IEEE 1394a are the same, 

with a few arbitration enhancements proposed in the latter [13]. Figure 9 shows a 

FireWire data transmission interface (physical layer) with two twisted pairs TPA and 
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TPB that are crosswired within the cable (between nodes). Data transmission in IEEE 

1394a FireWire is done via data / strobe signaling. Binary data is transferred across one 

twisted pair and the strobe signal across the other [12]. The strobe signal changes if the 

data stays the same. This makes data transfer operation essentially half-duplex. Bus 

arbitration is performed using arbitration signals. Arbitration signals are not clocked data 

but rather are steady state signals across the twisted pairs [1]. Arbitration signaling can be 

bi-directional. Two connected nodes are permitted to drive their lines at the same time. In 

Figure 9, twisted pairs TPA and TPB have arrows at both ends, which indicates that both 

the lines must be driven simultaneously for data transmission or arbitration signaling. 

TPA TPA

TPB TPB

Arbitration 
Logic

Repeater

TX/RX 
Logic

Arbitration 
Logic

Repeater

TX/RX 
Logic

TPA TPA

TPB TPB

Arbitration 
Logic

Repeater

TX/RX 
Logic

Arbitration 
Logic

Repeater

TX/RX 
Logic

 

Figure 9. IEEE 1394 and IEEE 1394a data transmission interface 

 

When a node wishes to perform a data transaction it must arbitrate for the bus. Bus 

arbitration can be isochronous or asynchronous depending upon the type of transaction. 

Arbitrations are based upon the periodic 125-microsecond cycle, the start of which is 

indicated by a broadcast cycle start packet. Isochronous arbitrations can begin 

immediately after nodes detect the cycle start packet. Only those nodes that have reserved 

a specific bandwidth on the bus can perform isochronous arbitration. An arbitrating node 
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signals a request towards its parent. Each parent in turn repeats the request upwards 

towards its parent until the request reaches the root node. When both parent and child 

arbitrate for the bus, the parent overrides the child’s request. The root issues a grant 

signal for the received request, which in turn is repeated downwards until it reaches the 

requesting node. When the root receives multiple requests (i.e. on several ports) the 

request at the lowest numbered port is granted. The winning node transmits its 

isochronous data. The next isochronous arbitration can begin only after all nodes detect a 

specific amount of idle bus time, the isochronous gap, to make sure that the previous data 

transmission has completed. Every node can perform only one successful isochronous 

arbitration in a cycle. The end of isochronous arbitrations is marked by a larger bus idle 

time. This idle gap time is called the subaction gap. At the detection of a subaction gap 

nodes can begin their asynchronous arbitrations.  

 

Asynchronous arbitrations also employ the same request / grant signaling as used in 

isochronous arbitrations. After completion of an asynchronous data transmission, the next 

arbitration can begin only after all nodes detect a subaction gap. This ensures that 

asynchronous nodes receive their acknowledgements before a new arbitration begins. An 

acknowledgement packet does not require arbitration and can be sent immediately on the 

receipt of an asynchronous packet. Asynchronous transactions are divided into fairness 

intervals. Every node can successfully arbitrate maximum of once during an 

asynchronous fairness interval. When a node completes a data transaction it must give up 

any further arbitration in the current fairness interval. This ensures equal and fair sharing 

of the FireWire bandwidth between asynchronous nodes. When all arbitrating 
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asynchronous nodes complete their data transmission, the bus goes idle for a long 

arbitration reset gap. This gap indicates the end of a fairness interval and the beginning of 

a new one. The arbitration reset gap is larger than the subaction gap. Figure 10 shows a 

typical arbitration sequence in IEEE 1394 and IEEE 1394a FireWire. IEEE 1394a 

proposes acknowledge accelerated arbitration and fly-by arbitration that reduce the idle 

bus period to some extent [13]. Every FireWire node transmits data packets (both 

isochronous and asynchronous) on all active ports. Intermediate nodes repeat the packet 

on all ports except on the one on which it was received. Data packets are stripped by the 

end nodes in the network (no destination stripping is permitted). 

Cycle 
start

= Isochronous Transactions = Asynchronous Transactions (Ack included)

= Arbitration request/grant overhead

Isochronous gap Subaction gap Arbitration reset gap

Cycle N

Cycle 
start

= Isochronous Transactions = Asynchronous Transactions (Ack included)

= Arbitration request/grant overhead

Isochronous gap Subaction gap Arbitration reset gap

Cycle N

 

Figure 10. Arbitration sequence in IEEE 1394 and IEEE 1394a 

 

2.4.2 Bus arbitration in IEEE 1394b FireWire 

 

Earlier versions of FireWire alternate between arbitration and data transmission that were 

separated by distinct idle bus times. Idle bus occupancy vastly reduced the performance 

of FireWire. IEEE 1394b employs a new beta mode signaling that helps arbitration 

requesting to be overlapped with data transmission [12]. Arbitration overlapping 
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completely eliminates the idle bus occupancy seen in the previous standards. Beta mode 

signaling is a version of 8b/10b signaling protocol that is used in Gigabit Ethernet and 

Fibre Channel specifications. Beta mode signaling does not require both signal pairs for 

unidirectional data transfer. The signal pairs TPA and TPB can transmit data separately 

and continuously in opposite directions as shown in Figure 11. TPA and TPB have 

arrows at opposite ends, which indicates that only one of the lines need to be driven for 

data transmission or arbitration signaling. This full-duplex nature of the IEEE 1394b bus 

enables overlapping of arbitration with data transmission. In IEEE 1394b arbitration 

signals are not steady line states across the twisted pairs but rather are 10-bit symbols 

called tokens.  
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Figure 11. IEEE 1394b data transmission interface 

 

In IEEE 1394b the bus owner is not a fixed root node. All arbitrating nodes perform this 

role in a round-robin fashion. The last node to transmit a packet that does not require an 

acknowledgement acts as the next bus owner. The node claiming bus ownership is called 

the BOSS (Bus Owner Supervisor Selector). A node that transmits an isochronous packet, 

an acknowledgement packet, or an asynchronous stream packet becomes the BOSS and is 
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responsible for making the next arbitration decision. When a node wishes to perform a 

data transaction it sends out an arbitration request token towards the BOSS.  Arbitration 

tokens are sent out on any active port that is not transmitting (repeating) a data packet. 

Arbitration tokens propagate in the opposite direction from a data packet. As in IEEE 

1394a, IEEE 1394b arbitrations are divided into isochronous and asynchronous intervals. 

Both isochronous and asynchronous intervals alternate between “even” and “odd” 

arbitration phases. The concept of an arbitration phase is similar to the fairness interval 

scheme seen in IEEE 1394a. Any node that has transmitted an asynchronous / 

isochronous packet in the current phase can arbitrate only for the next / opposite phase. 

Each asynchronous phase is a fairness interval. In IEEE 1394a, two fairness intervals 

were separated by an idle bus period, called an arbitration reset gap. However, in IEEE 

1394b the BOSS explicitly advances fairness intervals by sending out an “arbitration 

reset token” that specifies the beginning and the phase of a new fairness interval. When 

the BOSS sees no pending asynchronous requests for the current phase, it advances the 

phase by sending an ASYNC_EVEN / ODD token corresponding to the new phase.  

 

Isochronous arbitrations begin when nodes see a cycle start token. When there are no 

pending isochronous arbitrations the BOSS begins an asynchronous arbitration interval 

by sending out an ASYNC_EVEN / ODD token. Each node transmits request tokens 

based upon the current phase and its transaction type. Arbitration request tokens are 

classified as isochronous or asynchronous and are also prioritized. Intermediate nodes 

always forward the highest priority request token to the next node. The BOSS issues a 

grant token towards the highest priority request that it receives. When the BOSS receives 
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two or more requests of the same priority then the request at the lowest port number is 

granted. Each grant token identifies the current phase and transaction type of the granted 

request. Every intermediate node can keep the grant for itself or forward it to other nodes 

based upon the priority of its own request and other requests. A detailed description of 

IEEE 1394b arbitration is given in [12]. Figure 12 shows a typical arbitration sequence in 

IEEE 1394b FireWire. It can be seen that successive isochronous and asynchronous 

packet transactions are separated only by a small arbitration grant overhead. The 

arbitration grant overhead is the time taken by a grant token to reach the source node and 

the amount of overhead depends upon the propagation and the repeat path delays. 

Cycle 
start

Cycle N

Arbitration requesting  is overlapped with data transmission.

= Isochronous Transactions = Asynchronous Transactions (Ack included)

= Arbitration grant overhead

Cycle 
start

Cycle N

Arbitration requesting  is overlapped with data transmission.

= Isochronous Transactions = Asynchronous Transactions (Ack included)

= Arbitration grant overhead

 

Figure 12. Arbitration sequence in IEEE 1394b 

 

2.5 Performance limitations in FireWire 

 

Though IEEE 1394b offers a higher throughput by completely eliminating the idle bus 

occupancy seen in earlier versions it still has certain performance limitations, which are 

discussed in this section. 
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2.5.1 Lack of spatial reuse  

 

IEEE 1394b envisions the entire network as a single logical serial bus. Every node 

transmits (repeats) incoming packets on all out-going ports and destination stripping of 

data packets is not possible. FireWire does not permit concurrent packet transmissions 

(spatial reuse) over distinct segments of the network. For example, Figure 13 shows an N 

node FireWire video network with nodes linked in a daisy-chained fashion. In this 

example, node 2 is sending traffic to node 1 and node 4 to node 6. Though these 

transmissions occupy non-overlapped (distinct) segments of the network, FireWire does 

not permit them to occur simultaneously. FireWire bus arbitration schedules these 

transactions to occur one after one. This limits the throughput of FireWire to single link 

capacity. To increase the effective throughput of FireWire and to improve its scalability 

beyond the 63-node limit, it is necessary to incorporate spatial reuse in FireWire. The 

idea of supporting spatial reuse in large (wide area) daisy-chained networks is not new. 

An emerging technology that supports this concept is Cisco’s SRP [26]. The scope of 

SRP is a metropolitan area ring topology network with a limited size of 32 to 64 nodes. 

SRP nodes store and forward incoming packets and have layer 3 routing capabilities. 

Congestion and fairness control is accomplished by a distributed control mechanism 

where control packets are continuously propagated between adjacent nodes in opposite 

direction from the data packets. Each data transaction involves a processing overhead 

(packet scheduling) and a store-and-forward overhead at every node. One goal of this 

thesis is to incorporate spatial reuse feature in IEEE 1394b while preserving the simple 
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repeat path functionality (physical layer) and the request/grant bus arbitration model of 

FireWire. 
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Figure 13. Lack of spatial reuse in FireWire 

 

2.5.2 Lack of support for priority traffic 

 

FireWire provides QoS guarantees for real-time traffic (like packet video) by isochronous 

bandwidth reservation. Isochronous nodes reserve a fixed amount of bandwidth on a per 

cycle basis. This service is not suitable for high-resolution variable bit-rate (VBR) 

encoded video like MPEG-2 and MPEG-4. Figures 14 and 15 show the rate snapshot of 

an MPEG-2 and an MPEG-4 video, respectively. The MPEG-2 video rate is 25 frames 

per second with a mean data rate of about 5 Mbps. The MPEG-4 video rate is 25 frames 

per second with a mean data rate of about 0.766 Mbps. The isochronous bandwidth 

reservation scheme lacks the flexibility to react to the rate variations as seen in MPEG-2 

and MPEG-4 video traffic. Reserving a bandwidth corresponding to the peak bit-rate will 

result in a waste of resources. A real-time priority based packet scheduling mechanism 

will be more suitable for widely used VBR video and will provide efficient use of 

computing resources [25]. The priority mechanisms in IEEE 1394b FireWire (i.e., the 
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request token priorities) provide a means for alternating between isochronous and 

asynchronous arbitrations and ensuring bandwidth fairness.  It is necessary to incorporate 

a priority service in FireWire so that QoS for packet video and mission critical 

applications can be provided by mapping traffic in different priority classes. 
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Figure 14. Rate plot for MPEG-2 video 
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Figure 15. Rate plot for MPEG-4 video 
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CHAPTER 3 

 

SPATIAL REUSE FIREWIRE PROTOCOL (SFP) 

 

Spatial reuse FireWire Protocol (SFP) is a request/grant bus arbitration protocol 

architected for an acyclic daisy-chained network (bus) topology. SFP preserves the 

simple repeat path architecture of IEEE 1394b FireWire while providing two significant 

improvements. 1) SFP increases the aggregate throughput of the network by spatial reuse 

of bandwidth by simultaneous data transport in multiple, distinct segments of the 

network. 2) SFP provides support for priority traffic, which forms the basis for real-time 

scheduling towards improved QoS support for packet video. This chapter describes the 

design principles of SFP. 

 

3.1 Overview of bus arbitration in SFP 

 

The core of SFP is the bus arbitration mechanism used for controlled access to the 

shared-medium network. A simple SFP arbitration scheme works as follows: 

• Arbitration requesting: Nodes that wish to perform a data transaction broadcast a 

request packet (or “request”) that is cached by every node in the network. Request 

packets are informative, they contain details about the source and destination 
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nodes involved in a transaction and other data packet properties (such as packet 

size, priority, etc.) 

• Bus owner arbitration decision: The current bus owner (i.e. the arbitration 

decision making node) examines the multiple requests in its cache and “selects” a 

group of “compatible” requests. The request selection procedure is described in 

section 3.4. Two requests are compatible if their corresponding data transactions 

occupy non-overlapped segments of the network. For example, in Figure 16, the 

transactions ‘A’ and ‘B’ are compatible. The source nodes corresponding to the 

selected compatible requests are “granted” (permitted) bus access. The knowledge 

of multiple requests and the informative nature of requests enable the bus owner 

to make an “intelligent” arbitration decision. The arbitration decision 

encompasses several “selection” constraints, such as maximizing the throughput 

of the network, providing support for high priority traffic and ensuring fairness 

among like priority nodes.  

• Arbitration granting: The bus owner broadcasts a grant packet with information 

about the “granted” nodes. Nodes that explicitly see a grant for them (in the grant 

packet) can transmit their data packet concurrently. The grant packet also 

identifies the destination nodes, which are supposed to strip the next data packet 

that they receive. Destination stripping enables spatial reuse by limiting 

bandwidth consumption to the used segments of the network. This work assumes 

only unicast packets. One of the granted nodes explicitly identified as the next bus 

owner (in the grant packet) takes-up its role at the end of data transmission. 

 

 27



 

 

 

 

 

 

 

 
…

N 2 1

SFP medium

3456

Transaction A Transaction B

Transaction C

…
N 2 1

SFP medium

3456

Transaction A Transaction B

Transaction C

 

 

Figure 16. SFP network  

 

3.2 SFP data transmission interface 

 

Figure 17 shows a high-level connection interface between two SFP nodes. The 

communication link has two twisted signal pairs, TPA and TPB. TPA and TPB are not 

crosswired within the cable, but operate as two independent half-duplex lines (i.e. there is 

a TPA-TPA link and a TPB-TPB link between adjacent nodes). Standard FireWire 

cabling can be used in SFP. TPB is called the request line and is dedicated to carrying 

arbitration requests. TPA or data line exclusively carries data traffic (and also grant 

packets) between nodes. TPA and TPB are driven by separate half-duplex 

transmitter/receiver logic. It is expected that TPA and TPB can independently and 

concurrently carry traffic between nodes. A signaling method similar to beta mode 

signaling in IEEE 1394b is assumed. SFP will combine power distribution with 

communication, but power distribution issues are beyond the scope of this work.  
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Figure 17. SFP data transmission interface  

 

The TPA interface can operate in two functionalities, repeat mode and blocking mode. 

When a node operates in repeat mode, it repeats an incoming packet towards its neighbor. 

When operating in blocking mode, nodes strip the next incoming packet. Blocking mode 

enables destination stripping of a data packet without the requirement of destination 

address lookup (a delay overhead) at every node. Normally, nodes always operate in 

repeat mode. Blocking mode operation is permitted only when nodes see their address 

explicitly identified in the “destination address list” of a grant packet. Blocking mode 

nodes switch to repeat mode immediately on stripping the next incoming data packet. 

Grant packets are always repeated while a data packet can be repeated or stripped. Each 

node has knowledge of the simple network topology and data packets are always routed 

towards the destination. A node can source data in one port and concurrently receive 

(strip) a packet from another port. A network configuration phase as seen in FireWire is 

assumed in SFP. Network configuration plays a key role in node addressing, topology 

discovery, and establishment of a root node. The SFP root node plays an important role 

in various bus management activities and fault tolerance (like assuming the role of bus 
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owner in the failure of one). This work does not study network configuration and fault 

tolerance issues in detail. It is assumed that there is no loss of arbitration request and 

grant packets. Network recovery methods used in IEEE 1394b can be easily extended to 

SFP.   

 

3.3 Arbitration requesting 

 

Arbitration requests in SFP are not 10-bit tokens as used in IEEE 1394b, but rather are 

distinct packets of information. For every data packet a node wishes to transmit, it must 

broadcast a request packet claiming access to the shared data line. Each request packet 

contains the following fields of information: 

• Source id: Address of the node from which the data packet originates. Nodes are 

addressed 1 to N, N being the number of nodes in the network  

• Destination id: Address of the node to which a data packet is destined. 

• Packet phase: Phase of arbitration. Can be Current or Next. The arbitration phase 

ensures fairness among like priority nodes. 

• Packet size: Size (in bytes) of the data packet for which the request is made.  

• Priority: Priority of the data packet for which the request is made. SFP supports 

three priority classes High, Medium, and Low.   

Arbitration request packets are transmitted on the request line (TPB). Since TPB operates 

in a half-duplex mode there is a need for controlled access to it to prevent packet 

collisions. This is accomplished by the synchronous request transfer mechanism.  

 

 30



 

Synchronous request transfer: It is assumed that all nodes in an SFP network are 

synchronized to a common clock. This synchronization takes place during the network 

configuration phase before the normal network operations begin. It is expected that each 

node run an arbitration cycle master whose time cycle continuously alternates between 

even and odd request intervals. Since the nodes are synchronized, the cycle changes occur 

in all nodes at the same time. At the start of an even request interval, even numbered 

(addressed) nodes can transmit newly received request packets (if any) to their right and 

left neighbors. At the start of an odd request interval, odd numbered nodes can transmit 

newly received request packets to their neighbors. Every node caches the request it 

receives and also retransmits it to the neighbors in the appropriate request interval. Nodes 

do not retransmit an incoming request that is already present in their cache. It can be 

observed that at any point in time a node may have a maximum of three new request 

packets to transmit (its own request packet and the packets from its left and right 

neighbors). So, the duration of a request interval (even and odd) must be long enough to 

accommodate three request packet transmissions. Request interval length also depends 

upon the worst-case hop delay in the network.  The duration of a request interval, Treq, is, 

                                                    prop
req

req TD
R

L
max3 +








=T .                                             (1) 

In (1), Lreq is the size of a request packet in bits, R is the bandwidth of the SFP link in bits 

per second, Dmax is the maximum internode distance in meters, and T is the 

propagation delay of electrical signals (5 nanoseconds per meter). In SFP, arbitration 

requesting is never blocked by data traffic and occurs continuously and independent of 

data transmissions. Nodes can transmit a request packet and a data packet concurrently on 

prop
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their respective lines. Figure 18 shows arbitration requesting in SFP. Nodes 2, 4, and 6 

transmit their request packets at cycle n (even request interval). Nodes 1,3, and 5 transmit 

their request packets at cycle n+1 (odd request interval). A more sophisticated approach 

could be employed for request transfer between nodes. However, the basic idea is to 

support unblocked arbitration that is overlapped with data transmission.  The continuous 

nature of arbitration combined with the request caching enables the bus owner to have a 

global knowledge of all arbitrating nodes. This knowledge is necessary to make an 

“intelligent” arbitration decision. The arbitration decision procedure is described in 

section 3.4. 
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Figure 18. Arbitration requesting in SFP 

 

3.3.1 Support for priority traffic  

 

In SFP, every data packet is prioritized and the bus owner ensures expedited bus access to 

high priority packets. SFP provides support for three priority classes, High, Medium, and 

Low. Each node implements three priority queues (transmit buffers) corresponding to the 

three classes of priority. Nodes enqueue packets to be transmitted in appropriate buffers 
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based on priority. This work assumes infinite capacity for all three transmit buffers and 

hence no buffer overflows. However, in a real environment buffers may be limited in size 

and new transmit packets may be dropped due to buffer overflow.  

 

Arbitration requesting can be done for only one buffered data packet at a time (i.e. for the 

head-of-line packet in the highest non-empty priority queue). After a node arbitrates for 

the bus it cannot send another request packet (for an additional data packet) until the 

previous packet transmission is triggered (started). However arbitration for a Low / 

Medium priority packet may be preempted if a higher priority data packet is enqueued. If 

arbitration is preempted, a new request packet corresponding to the higher priority data 

packet is sent out. A new request overrides the old (lower priority) cache entry. Figure 19 

illustrates the arbitration scheduler algorithm executed in every SFP node. The statement 

WAIT (“event”) specifies that the arbitration scheduler holds (or performs no action) 

until the appropriate event is detected. The first IF block (lines 2-5) describes the High 

priority arbitration. It can be seen that after a High priority arbitration is done, the next 

arbitration is put on hold until a grant is received and the High priority packet transmit is 

triggered. The second (lines 6-10) and the third (lines 11-15) ELSE IF blocks describe the 

Medium and Low priority arbitrations, respectively. It can be seen that Medium/Low 

priority arbitrations result in a packet transmit (if a grant is received) or a new arbitration 

(if a higher priority packet is enqueued). 
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ALGORITHM Arbitration Scheduler  

1. While (TRUE) do 

2.      If (High priority transmit buffer has packets) then         

3.          Send request packet with priority field = High     

4.          WAIT (until a grant for the request is received) 

5.          Trigger packet transmit 

6.      Else if (Medium priority transmit buffer has packets) then         

7.          Send request packet with priority field = Medium   

8.          WAIT (until a grant for the request is received or a High priority packet is enqueued) 

9.           If (grant for the request is received) then 

10.            Trigger packet transmit 

11.    Else if (Low priority transmit buffer has packets) then        

12.        Send request packet with priority field = Low   

13.        WAIT (until a grant for the request is received or a High/Medium priority packet is          

              enqueued) 

14.         If (grant for the request is received) then 

15.             Trigger packet transmit 

 

Figure 19. Arbitration scheduler algorithm 

 

3.3.2 Fair sharing of bandwidth 

 

Arbitration requesting in SFP alternates between Current and Next arbitration phases. 

The arbitration phase ensures fairness among nodes of the same priority class. Every 

node that has transmitted a packet (of any priority) in the Current phase can arbitrate only 

for the Next phase. Arbitration phase is independent of packet priority. Each node 

implements an Arbitration_status flag. If this flag is set to TRUE, Current phase 

requesting is done and if set to FALSE, Next phase requesting is done. To start all nodes 

have Arbitration_status flag set to TRUE. As soon as a node transmits a data packet it 

sets Arbitration_status flag to FALSE. This flag is again set to TRUE when the bus 
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owner indicates arbitration reset (i.e. changes the phase of arbitration). The change of 

phase information is included in the grant packet that the bus owner broadcasts. The bus 

owner performs an arbitration reset when it sees no requests for the Current phase. When 

the bus owner performs an arbitration reset, the old requests that are already present in 

the cache automatically get updated to the Current phase. Nodes are not required to send 

a new request packet to update the change of arbitration phase. Among requests of the 

same priority class, bus owner provides higher precedence (in bus access) to Current 

requests than to Next requests.   

 

3.4 Bus owner 

 

The bus owner is responsible for making the arbitration decision. The Bus owner is not a 

fixed node. SFP nodes take turns in playing the role of bus owner and there is always an 

active (only one) bus owner. After taking the arbitration decision, the present bus owner 

explicitly relays control to a node that will be its successor in the network. The transfer of 

control information (address of the next bus owner) is included in the grant packet that it 

broadcasts. In the absence of new requests, the bus owner retains its control. In case of 

unexpected network conditions (like loss of a grant packet carrying the transfer of control 

message) the root node assumes the role of bus owner after detecting a specific amount 

of network idle time. Immediately after the network configuration the root node is 

initially assigned the role of the bus owner.  
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3.4.1 Grouping compatible transactions  

 

The bus owner arbitration decision is the core of the arbitration process in SFP. In simple 

terms, arbitration decision is nothing but “selecting” a group of arbitrating nodes that can 

be granted simultaneous access to the bus. The bus owner has a global knowledge about 

arbitrating nodes, and the properties (size, priority, etc.) of packet transactions that 

arbitration is done for. For better understanding of the bus owner arbitration decision 

process, it is necessary to study a few design issues.  

 

Figure 20 shows an indexed line that illustrates an SFP topology where each index 

represents a node. The end of the topology that has node “1” is called the left end, and the 

other end that has node “N” is called the right end. A connection (dashed line) between 

any two nodes, A and B, indicates that a data packet transaction (or simply “transaction”) 

needs to be established between them (i.e. A wishes to transmit a packet to B, or vice 

versa). Figure 20 shows several connections, indicating many possible transactions, 

placed over several rows. Any two transactions that overlap (incompatible) must be 

placed in different rows (i.e. one above and one below). Non-overlapping (compatible) 

transactions can be placed in the same row. Compatible data transactions can occur 

concurrently (i.e. the paths between the corresponding source and destination nodes do 

not overlap and packet collisions will not occur). In Figure 20, transactions ‘a’ and ‘d’ are 

incompatible and transactions ‘b’ and ‘c’ are compatible. Since each request packet 

defines the source and the destination addresses of nodes involved in a transaction, the 

bus owner is able to envision information as shown in Figure 20.  
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Figure 20. Grouping compatible requests 

 

It is assumed that all data transactions take a fixed duration of transmit time, Tdata (i.e. all 

packets are of a same fixed size). Since compatible transactions occur concurrently, the 

time taken for all transactions in the same row to complete is Tdata.  If Nrows denotes the 

number of rows it takes to accommodate a total of Ntrans transactions, then the total time 

duration (total transmit time) taken for completing all data transactions, Ttotal is equal 

to . Throughput is defined as the number of data transactions completed in 

unit time and is equivalent to  (total number of transactions divided by the 

total transmit time).  It can be observed that a minimum value of T

datarows T  N ×

totaltrans T / N

total can be obtained by 

accommodating all transactions in the minimum possible Nrows as shown in Figure 20. 
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This will maximize the throughput of the SFP network. This observation is true only if all 

data transactions take the same time duration (i.e. all data packets are of a same fixed 

size). Finding an optimal minimum value of Ttotal for a group of transactions with 

different time durations (i.e. different packet sizes) is difficult. Moreover, in an SFP 

network new requests continue to arrive in a random fashion. At any point in time it is 

not possible to predict future requests. So this problem is essentially an online-scheduling 

problem. Applying a greedy strategy at any given time to minimize Ttotal will not 

necessarily guarantee a total minimum transmit time (and maximize the throughput). 

However, the bus owner arbitration decision algorithm employs a similar strategy for 

grouping compatible transactions into minimal number of sets (or rows). The design of 

the request cache enables this grouping to be done in linear time (in a single memory 

sweep). After grouping compatible transactions into sets, one of the sets is selected such 

that packet priority and fairness properties are respected. All source nodes corresponding 

to the transactions in the selected set are issued a grant. Before presenting the bus owner 

arbitration decision algorithm, the design of the request cache is studied. 

 

3.4.2 Request cache 

 

Each SFP node implements a request cache. A request cache is structured as a two-

dimensional source address pool (i.e. there are N slots each holding an N element array of 

source addresses). N represents the maximum number of nodes the SFP network may 

support. Each array element is associated with a one-bit flag. In addition, a request cache 

has three independent N element arrays called packet size array, packet phase array, and 
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packet priority array. Each array respectively stores the values of the packet size field, 

packet phase field and packet priority field of the received requests. Each received 

request is identified by its source address field. The source address of a request serves as 

its unique “signature”. Figure 21 shows a request cache. The following example 

illustrates how the cache is updated when a request is received. Assume that a request 

with the following field values is received:  

• Source address – 2,  

• Destination address – 8,  

• Packet Phase – Current,  

• Packet length – 1500 bytes, and  

• Packet priority – High 

For every request, its signature is updated in the slots indexed by its source and 

destination addresses. Since the source address of this request is 2 its signature is 2. In 

this example, the signature entry should be made in the slots “2’ and “8” corresponding to 

the source and the destination addresses. Source and destination addresses are classified 

as either left address or right address based on their closeness to the left end or right end 

of the topology. In other words the smaller of source or destination addresses is left 

address and the other is right address. In this example the source address is left address 

and the destination address is right address. Signature “2” is entered in the array (in the 

next non-empty position) of slot “2” and its associated one-bit flag is set to 0 (since 

source address is left address). Signature “2” is entered in the array of slot “8” 

(corresponding to the destination address) and its associated one-bit flag is set to 1 (since 

destination address is right address). The other arrays are updated as: 
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• Packet phase array [signature] = Current  

• Packet size array [signature] = 1500 

• Packet priority array [signature] = High 

There is also a request counter that stores the number of requests present in the cache. 

The request cache can be implemented using content addressable memory (CAM). A 

CAM-based design for a request cache helps SFP nodes in easy update and removal of 

cache entries and enables the bus owner to make a fast arbitration decision. 
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Figure 21. Request cache 
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3.4.3 Bus owner arbitration decision algorithm 

 

The bus owner arbitration decision algorithm has two tasks. The first task is to group the 

requests into minimum number of sets as shown in Figure 20. The second task is to select 

a set such that packet priority and fairness properties are respected. Grouping of requests 

can be done by two methods. The first method involves sorting of requests based on their 

left address. This method is shown in Figure 22. Initially there is just one empty set 

(designated as Set1). Each request of the sorted list is assigned to the lowest possible set if 

it is compatible with the other request in it. If it is not possible to assign the request to any 

set, then a new set is created and the request is assigned to it. 

 

ALGORITHM Grouping of Requests – Method 1  

1. For (each request of the sorted list) do       

2.     For (each set Seti, i from 1 to current number of sets) do 

3.          If (the request is compatible with all requests in Seti ) then 

4.               Assign the request to Seti 

5.          Else  

6.               Create a new set Seti +1 and assign the request to it 

 

Figure 22. Grouping of requests – method 1 

 

If there are n requests, then sorting takes O(nlogn) time and grouping of requests takes 

O(n2) time. So the time complexity of this method is O(n2). Grouping of requests takes 

O(n2) time because every request is compared to every set and in the worst case (all 

transactions to the head end) the number of sets can be proportional to n2. 
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The second method is based on the observation that two requests can be placed in the 

same set if the left address of one request is greater than or equal to the right address of 

the other. The second method requires that requests be sorted based on their left and right 

addresses and scanned in that order. A request cache can ensure that requests are kept in a 

sorted order (based on their left and right addresses). So the time for sorting is saved. A 

new stack data structure that stores the signature of requests is created. The requests are 

scanned in order (i.e the left address of a request is encountered before the right address). 

Whenever the right address of a request is encountered its signature is pushed onto the 

stack. Whenever the left address of a request is encountered the stack is checked. If the 

stack is non-empty then the request is assigned to the same set as the request in the stack 

top. If the stack is empty then the request is placed in a new set. The use of stack data 

structure eliminates the need for scanning every already created set. The use of a stack to 

group requests in this way is adopted from the work [28]. Reference [28] presents a linear 

time left edge algorithm for channel routing in VLSI circuits. This second method does 

not involve sorting of requests and requests are grouped in a single sweep of the request 

cache. The time complexity of the second method is O(n). The SFP bus owner arbitration 

decision algorithm follows the second method for grouping requests.  

 

The bus owner arbitration decision algorithm is presented in Figure 23. Lines 1-12 of the 

algorithm deal with partitioning the requests in the cache into a minimal number of sets 

of compatible requests. This is similar to the grouping of compatible transactions in 

minimum possible rows as seen in Figure 20. The request cache is scanned from slot 1 to 

slot N so that requests are scanned in a sorted order (based on their left and right 
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addresses). For each slot, whenever a request signature with the associated flag set to 1 

(indicating right address) is encountered it is pushed onto a stack. For each slot, when a 

request signature with the associated flag set to 0 (indicating left address) is encountered, 

it is placed in the same set as the request found in the top of the stack or it is placed in a 

new set if the stack is empty. Grouping requests in this way ensures that they are 

compacted into a minimal number of sets. In the algorithm, Ri denotes the signature of 

any request i, where i ranges from 1 to the number of requests in a slot. Index represents 

the identification of a set, and is initialized to zero. Sindex denotes a set with identification 

index, and j is a loop counter. In lines 13 – 17 a set of requests is selected for grant to bus 

access. A set that has the maximum number of requests is selected such that it has one or 

more of the highest priority level requests present at that time. The three priority classes 

in SFP and the two phases of arbitration combine to provide six levels of priority as 

illustrated in Table 2. After selecting a set, the bus owner issues a grant to all the requests 

(i.e. the corresponding source nodes) in the selected set. The granted source node that is 

expected to complete its packet transmission in the end will be assigned the role of the 

next bus owner. The bus owner broadcasts a grant packet with information about the 

granted nodes and the next bus owner. Arbitration granting is explained in the next 

section. 
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ALGORITHM Bus Owner Arbitration Decision  

1. For (each slot of the request cache) do              

2.     For (i=1 to number of requests for this slot) do 

3.         If (Ri has associated flag set to 1) then 

4.              Push Ri on the stack 

5.     For (i=1 to number of requests for this slot) do 

6.         If (Ri has associated flag set to 0) then 

7.     If (stack is empty) then 

8.          index = index + 1                               

9.          Assign Ri to the set Sindex 

10.            Else 

11.          Pop R from stack 

12.          Assign Ri to the same set as R 

13. For (j = 1 to number of priority levels) do 

14.     If (There are any priority j requests) then 

15.         Select a set containing the maximum requests and at least one priority j request            

16.         Issue a grant to all requests in the selected set 

17.         Exit from this algorithm 

 

Figure 23. Bus owner arbitration decision algorithm   

  

Table 2. Priority levels in SFP 

 
Priority class Arbitration phase Priority level 

Current 1 (highest) High 
Next 2 

Current 3 Medium 
Next 4 

Current 5 Low 
Next 6 (lowest) 
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3.5 Arbitration granting 

 

After making the arbitration decision, the bus owner broadcasts a grant packet. The grant 

packet is transmitted in the data line. Since the bus owner is the last node to complete its 

data transmission (among a group of transmitting nodes) it is ensured that the grant 

packet will not collide with other data packets. Every node makes a local copy of the 

grant packet and repeats it to the neighbor. The grant packet includes several fields of 

information whose significance is described below: 

• Granted address list: This list contains the address of all source nodes 

(corresponding to the requests in the selected set) granted by the bus owner. The 

listed nodes can transmit their data packet immediately on receiving the grant. 

Based on the granted address list, nodes clear cache entries corresponding to the 

granted requests. 

• Destination address list: This list contains address of all destination nodes whose 

corresponding source nodes are granted bus access. This knowledge comes from 

the request packets. Nodes operate in blocking mode when their address is 

included in this list (it is implied that the next data packet is destined to the listed 

node).  

• Reset status: This field indicates the status of arbitration reset.  When the bus 

owner sees no Current phase requests it performs an arbitration reset by setting 

this field value to TRUE. If bus owner sees one or more Current phase requests 

then this field is set to FALSE. When this field is set to TRUE, nodes update their 
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Arbitration_reset flag to TRUE and hence can start arbitrating for the Current 

phase again. 

• Bus owner: This field identifies the address of next bus owner. One of the granted 

nodes that identifies its address in this field, must take control of the bus owner 

operation at the end of its data transmission. For each granted source node the 

present bus owner computes a drain time, Tdrain, 

                                          propnrepeathops
pkt

drain TDTN
R

L
++=T .                                  (2) 

In (2), Lpkt denotes the size (in bits) of the data packet arbitration is done for.  

Nhops is the number of intermediate nodes between the present bus owner and the 

granted node, Dn is the rough distance estimate between the present bus owner 

and the granted node, and T  is the repeat path delay per node. The granted 

node, which has the maximum value of drain time, is the next bus owner and its 

address is included in the bus owner field of the grant packet. Figure 24 illustrates 

a typical arbitration sequence in SFP.  

repeat

 
 

 

 46



 

= Asynchronous stream transaction

Arbitration sequence

Arbitration requesting  is overlapped with data transmission.

= Arbitration grant overhead

Concurrent 

packet 

transmit

= Asynchronous stream transaction

Arbitration sequence

Arbitration requesting  is overlapped with data transmission.

= Arbitration grant overhead
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Figure 24. Arbitration sequence in SFP 

 

3.6 Traffic classes in SFP 

 

All data transmissions in SFP are packet based and SFP supports variable sized packets. 

SFP supports two types of data transactions described as follows: 

• Asynchronous transactions: These are unicast transactions that provide reliable 

data delivery. Each asynchronous packet requires an acknowledgement from the 

receiver. In FireWire, an acknowledgement packet does not require arbitration 

and can be transmitted by any node immediately on the receipt of an 

asynchronous packet. However, acknowledgement packets may or may not 

require arbitration in SFP. The performance study of tradeoffs between the two 

methods is left for future study. Asynchronous packets may be assigned to 

different priority classes and fairness among nodes may be ensured by the SFP 

fairness mechanism.  
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• Asynchronous streaming: This work focuses on asynchronous streaming, which is 

suitable for carrying video and other real-time traffic.  These transactions may be 

unicast or multicast. The scope of this work is limited to unicast asynchronous 

streaming. Asynchronous streaming is an unreliable service and packets do not 

require an acknowledgement from the receiver. SFP does not provide support for 

isochronous service as seen in FireWire. QoS support for time critical 

applications, such as voice and video, is provided by mapping individual 

asynchronous stream packets to the different priority classes supported by SFP. 

 

3.7 Summary 
 

The following summarizes the SFP design principles:  
 

• SFP proposes a new physical layer data transmission interface that uses the 

existing FireWire cable. A communication link uses two twisted pairs (TPA, or 

data line and TPB, or request line) that operate as two independent half duplex 

lines. Synchronous request transfer mechanism permits unblocked, overlapped 

arbitration with data transmission.  

• Request packets are informative; containing source address, destination address, 

packet phase, packet size, and packet priority fields. Caching of request packets 

enables the bus owner too see multiple requests at the same time and make an 

intelligent arbitration decision. The request cache has an efficient design 

permitting easy look-up of requests and quick response time (processing time) for 

the bus owner.  
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• SFP preserves the simple repeat path functionality of FireWire and still achieves 

destination stripping of packets. A data packet does not require destination 

address look-up (involving a delay overhead) at each node. A grant packet 

explicitly informs destination nodes to operate in blocking mode. 

• SFP supports three priority classes and arbitration ensures fair sharing of 

bandwidth among like priority nodes. Isochronous service is not supported.  Data 

transactions are asynchronous or asynchronous streaming. 
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CHAPTER 4 
 

PERFORMANCE EVALUATION OF SFP 

 

Using simulation, the queuing delay and the throughput performance of SFP, IEEE 1394b 

and IEEE 1394a are evaluated. Discrete-event queuing simulation models of the three 

protocols were built using the CSIM18 function library.  All models include T  (5 

nanoseconds per meter) and T (144 nanoseconds) delays. A response delay (i.e. time 

to make an arbitration decision and broadcast a grant) of 244 nanoseconds for the bus 

owner is included. These delay values are based on the IEEE 1394b FireWire standard. 

Packetized video transmission is done using asynchronous stream packets. 

prop

repeat

 

4.1 Traffic models for simulation experiments  

 

Two traffic models are used to evaluate performance.  The first traffic model is based on 

MPEG-2 frame length traces from the 1996 Olympic games [18].  Each trace was for 40 

minutes of a sporting event and a total of 20 traces were available.  The MPEG-2 frame 

traces were converted into packet sizes with 48 bytes of overhead (representing LAN, IP, 

UDP, and RTP headers) per packet.  Fragmentation of MPEG-2 frames into Ethernet 

packets was assumed to occur in zero time. The MPEG-2 video rate is 25 frames per 

second with a mean data rate of about 5 Mbps. For the simulation evaluation, frame 
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traces from 20 different Olympic events were used. When the number of simulated nodes 

is greater than 20, copies of the available frame traces are randomly assigned between 

nodes. For the 20 MPEG-2 sources, the mean packet length was 1459.7 bytes and the 

total offered packet load was 101.5 Mbps.  The frames from multiple sources were not 

synchronized. The second traffic model was Poisson arrivals of fixed length packets.  The 

packet length used was the mean packet length of the MPEG-2 video sources unless 

otherwise specified. This traffic model was synthetically generated with no limit on the 

number of nodes. MPEG-4 frame length traces are used for a single experiment. Each 

MPEG-4 trace was for 60 minutes of a movie sequence and a total of 20 traces were 

available [10]. The mean data rate of all MPEG-4 sources is 0.67 Mbps and video rate is 

25 frames per second. The same packetization method as applied to the MPEG-2 traces is 

used for the MPEG-4 traces. 

 

4.2 The simulated configuration  
 

The three simulation models (SFP, IEEE 1394b, and IEEE 1394a) were designed to 

model a daisy-chained network configuration as shown in Figure 16. Each node is an 

independent traffic source. Each IEEE 1394b and IEEE 1394a node is assumed to have 

an infinite capacity buffer for packets being sent on the link. Each SFP node is assumed 

to have three infinite capacity buffers (corresponding to the three priority classes). The 

distance between any of pair nodes is equal and fixed at 10 meters. All internode links 

have equal bandwidth capacity, which is varied between the experiments. Source-

destination traffic distributions between the nodes are based on four models as described 
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below. Each model is characterized by a distinct value of spatial reuse factor; S. The 

value of S represents the average number of concurrent packet transmissions that can 

occur in the network. The performance of SFP is expected to vary for the different traffic 

distribution models. However, IEEE 1394b and IEEE 1394a will offer similar 

performance for all the four models because no spatial reuse is permitted in them.  

• Spatial_min: All packets (of all nodes) are destined to the head end, which acts as 

the sensor fusion node. Since no concurrent packet transmissions are possible S 

for this model equals 1 (minimum possible). 

• Spatial_average: For every packet, a source node uniformly selects a destination 

node, which can be any other node in the network. S for this model is equivalent 

to the total number of nodes divided by the average distance between two nodes 

(in node count), and can be given as 
2/N

N . So the value of S is 2.  

• Spatial_video: For 90% of the time nodes send packets to their right or left 

neighbors (45% of time to right neighbor and 45% of time to left neighbor). For 

10% of the time packets are destined to the head end. It is expected that traffic 

distribution in a typical video surveillance system will be similar. In a video 

surveillance system most of the traffic will occur between peer cameras (to track a 

profiled individual or notify significant events). A communication with the head 

end is established only for control messages and/or for recording data.   S for this 

model is given as 

                                                  S                                            (3) PPi 1i
adj

Ni

1i
head

−
=

=
∑ ××=
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In (3), Phead is the probability that packets are destined to the head end (0.1 here), 

and  is the probability that packets are destined to adjacent nodes (0.9 here).  Padj

• Spatial_max: All nodes send packets to their right neighbors. The Nth node in the 

network is assumed to have a dummy right neighbor. S for this model is N 

(maximum possible).  

 

4.3 Description of simulation experiments 

 

Seven experiments are defined to evaluate the performance of existing FireWire 

protocols and SFP. The first two preliminary experiments evaluate the performance of 

IEEE 1394a and IEEE 1394b. The other five experiments evaluate the performance of 

SFP. To achieve a target offered packet load (the control variable for experiments) for 

MPEG-2 sources, the link rate (R) is varied as the total bandwidth of sources divided by 

the target offered load. For Poisson sources packet arrival rate (λ) is varied to achieve a 

target load. When the control variable is node count, packet size, or priority ratios the 

load is not maintained at any fixed value. Unless otherwise specified, all packet 

transactions are asynchronous stream based, Low in priority and follow the Spatial_min 

traffic distribution. SFP request packets are assumed to be 10 bytes and SFP grant 

packets 100 bytes in length.  

 

Preliminary experiment #1: This experiment evaluates the performance of IEEE 1394b 

and IEEE 1394a. The response variable is queuing delay (mean) and the control variable 

is the offered packet load on the link, which is increased from 10% to 97%.  The number 
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of nodes is fixed at 20.  This experiment is performed for Poisson and MPEG-2 sources. 

For Poisson sources, the link bandwidth is fixed at 100 Mbps. 

 

Preliminary experiment #2: This experiment evaluates the performance of IEEE 1394b 

for isochronous and asynchronous packet streams. The response variable is queuing delay 

(mean) and control variable is number of nodes, which is increased from 2 to 19. For 

isochronous streams, the entire 125-microsecond arbitration cycle is allocated for packet 

transactions and bandwidth is shared equally among the isochronous nodes. There is no 

cycle start overhead. Link bandwidth is fixed at 100 Mbps. This experiment is performed 

for MPEG-2 and MPEG-4 sources. 

 

Load experiment: This experiment evaluates the performance of SFP and IEEE 1394b for 

different traffic distribution models. The response variable is queuing delay (mean and 

99%) and the control variable is the offered packet load (throughput) on the link, which is 

increased from 10% to as high as 4500%. The number of nodes is fixed at 60 and the link 

bandwidth at 400 Mbps. This experiment is performed for Poisson sources. 

 

Node count experiment: This experiment evaluates the performance of SFP for different 

traffic distribution models. The response variable is queuing delay (mean and 99%) and 

the control variable is the number of nodes, which is increased from 4 to 1000. The link 

bandwidth is fixed at 100 Mbps. This experiment is performed for Poisson sources. The 

packet arrival rate (λ) is adjusted so that each node is a 5 Mbps traffic source. 
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Packet size experiment: This experiment evaluates the throughput performance of SFP 

for different packet sizes. The response variable is the maximum offered throughput on 

the link (in factors) and the control variable is the fixed packet size of Poisson sources, 

which is increased from 100 to 20,000 bytes. The number of nodes is fixed at 100 and the 

link bandwidth at 400 Mbps. The traffic distribution model used is Spatial_video. This 

experiment is performed for Poisson sources. 

 

Priority experiment: This experiment evaluates the performance of SFP for different 

priority traffic. The response variable is queuing delay (mean and 99%) and the control 

variable is the offered load on the link, which is increased from 10% to 165%. The 

number of nodes is fixed at 60. Packets are prioritized such that 20% of the packets are 

High priority, 30% are Medium priority, and 50% are Low priority. This experiment is 

performed for MPEG-2 and Poisson sources. The traffic distribution model used is 

Spatial_average. 

 

Packet priority ratio (PPR) experiment: This experiment evaluates the performance of 

SFP for different PPR. The response variable is the maximum offered throughput (in %) 

on the link and control variable is PPR. PPR is the ratio of Low to Medium to High 

priority traffic. The number of nodes is fixed at 60. This experiment is performed for 

Poisson sources. The traffic distribution model used is Spatial_average. 
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4.4 Results from the simulation experiments 

 
 
Figures 25 and 26 show the preliminary experiment #1 results for Poisson and MPEG-2 

traffic sources, respectively.  In IEEE 1394b and IEEE 1394a mean queuing delays 

increase with the load. For Poisson sources, IEEE 1394b delay is always a magnitude less 

than the IEEE 1394a delay. IEEE 1394a reaches the maximum tolerable delay (delay 

exceeds the tolerance of human response time of 100 milliseconds) at about 92% load. At 

97% load IEEE 1394b delay is around 3 milliseconds. IEEE 1394b reaches a bottleneck 

at about 99% load (not shown in graph). For MPEG-2 sources, the queuing delay trend is 

similar. However, the IEEE 1394b delay is only slightly lesser than the IEEE 1394a delay 

until about 90% load.  IEEE 1394a delay exceeds 100 milliseconds at 92% load. At 97% 

load IEEE 1394b delay is 15 milliseconds. 
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Figure 25. Preliminary experiment #1 results for Poisson source 
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Figure 26. Preliminary experiment #1 results for MPEG-2 source 

 

Figures 27 and 28 show the preliminary experiment#2 results for MPEG-2 and MPEG-4 

traffic sources, respectively. For both traffic sources, the asynchronous delay is always a 

magnitude less than the isochronous delay and increases at an exponential rate. For both 

traffic sources, isochronous delay increases at a constant rate. For MPEG-2 traffic, 

asynchronous delay is 8 milliseconds at 18 nodes, which is one-eighth the corresponding 

isochronous delay. For MPEG-2 traffic, isochronous delay exceeds the maximum 

tolerable delay at 19 nodes and asynchronous delay at 20 nodes. Maximum tolerable 

delay is reached since the total offered bandwidth of the 20 MPEG-2 sources (100 Mbps) 

is equal to the link capacity (saturated network condition). For MPEG-4 traffic, both 

isochronous and asynchronous delays stay within 5 milliseconds, even for 20 nodes. This 

is because the bandwidth of MPEG-4 sources is very small (roughly 8 times less) 

compared to MPEG-2 sources, and the offered load at 20 nodes is just 13%. 

 57



 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20
 Number of nodes

D
el

ay
 (m

s)
1394b Asynchronous

1394b Isochronous

Figure 27. Preliminary experiment #2 results for MPEG-2 source 
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Figure 28. Preliminary experiment #2 results for MPEG-4 source 
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Figures 29 and 30 show the load experiment results. Queuing delay increases 

exponentially with the offered network load. The queuing delay trends of SFP with 

spatial_min traffic model and IEEE 1394b are very similar and the lines are not 

distinguishable for mean and 99% results. Both reach a throughput maximum at 98% 

load. Maximum throughput is implied when queuing delay increases at a large rate and is 

much higher than the bottleneck value (100 milliseconds). IEEE 1394b offers identical 

performance for all four traffic models because it does not support spatial reuse. SFP 

offers no spatial reuse for Spatial_min traffic model, and hence, its performance is similar 

to IEEE 1394b.  SFP reaches a maximum throughput at 165%, 650% and 4250% loads 

for Spatial_average, Spatial_video and Spatial_max traffic models, respectively. The 

maximum possible throughput is, 

                                               
)TT(D

R
L

S
R
L

proprepeatboss

max

++







=ρ                                         (4) 

where L is the average packet length in bits (11677 bits here) and Dboss is the average hop 

count between consecutive bus owner nodes. The value of Dboss is 1, N/2, N, and N for 

Spatial_min, Spatial_average, Spatial_video and Spatial_max traffic patterns, 

respectively. The only delay bottleneck in SFP arbitration is the arbitration granting 

overhead and is equivalent to )TT(D proprepeatboss + . Substituting all parameters, the values 

of ρmax obtained from the equation are 168%, 700% and 4289% for Spatial_average, 

Spatial_video and Spatial_max models, respectively. For Spatial_average and 

Spatial_max models, the variation between experimental and theoretical results for 

maximum throughput is less than 1.8%. For Spatial_video model the variation is nearly 

 59



 

7%. Variation is higher because, the Spatial_video model is unbalanced (i.e. the traffic 

load is not uniformly distributed across the network). This model requires that every node 

send packets to the head end 10% of the time. Nodes far from the head end will 

experience a higher delay because their traffic is interfered by many intermediate nodes. 

The delay experienced by each node grows proportionally with the number of 

intermediate nodes between the node and the head end. It can be seen that 99% delay for 

Spatial_video model exceeds the maximum tolerable delay at 580% load while mean 

delay exceeds the maximum tolerable delay at 655% load. This is due to the unbalanced 

nature of traffic distribution. It is very difficult to present a precise delay analysis for this 

traffic distribution. Spatial-min, Spatial_average and Spatial_max models are balanced 

and 99% and mean delays exceed the maximum tolerable delay at approximately the 

same load. 
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Figure 29. Load experiment results (mean delay) 
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Figure 30. Load experiment results (99% delay) 

 

Figures 31 and 32 show the node count experiment results. Queuing delay increases 

exponentially with the node count. It is seen that mean delay of Spatial_min traffic is less 

than 3 milliseconds, and 99% delay is less than 10 milliseconds up to 19 nodes, and at 20 

nodes both exceed 100 milliseconds (reach bottleneck). For the Spatial_average model 

the bottleneck is reached at 35 nodes (for mean and 99% results). For the Spatial_video 

model the mean delay is less than 13 milliseconds for 160 nodes and exceeds 100 

milliseconds at 165 nodes.  For Spatial_video, 99% delay exceeds the maximum tolerable 

delay at 145 nodes itself. This is due to the unbalanced nature of Spatial_video model. 

For Spatial_max model mean and 99% delay are less than 3 milliseconds even for 1000 

nodes. It is seen that SFP is able to support 19, 34, 145 and more than 1000 nodes for 
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Spatial_min, Spatial_average, Spatial_video and Spatial_max, traffic models 

respectively. The maximum node capacity is, 

                                           
)TT(N

R
L

SLRN
proprepeatmax

nodemax

++

×
≤ .                                   (5) 

where Nmax is the maximum number of nodes and Rnode is the average data rate of a node 

in bits per second (5Mbps here). Substituting all parameters, the values of Nmax obtained 

are, 19, 37, 158, and more than 1000 nodes for Spatial_min, Spatial_average, 

Spatial_video and Spatial_max, traffic models respectively. The theoretical and 

experimental results match closely for Spatial_min and Spatial_average (variation less 

than 5%). For Spatial_video, variation between theoretical and experimental maximum 

nodecount is 10%. This is again due to the unbalanced nature of traffic distribution in 

Spatial_video. 
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Figure 31. Node count experiment results (mean delay) 
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Figure 32. Node count experiment results (99% delay) 

 

Figure 33 shows the results for packet size experiment. It is seen that throughput 

increases with the packet size. However the rate of increase dampens with the increase in 

packet size, and throughput gradually reaches a constant value for large packet sizes. For 

100 byte packets, throughput is 0.94 (or 94%). This is similar to the throughput of IEEE 

1394b. Throughput is 6 (or 600%) and 960% for 1500 and 20,000 byte packets, 

respectively. After 20,000 bytes the increase in throughput is negligible. 
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Figure 33. Packet size experiment results 

 

Figures 34, 35, 36 and 37 show the priority experiment results. At low loads the queuing 

delays of High, Medium, and Low priority traffic are alike. Queuing delay increases with 

load, however the rate of increase of Low priority delay (mean and 99%) is many 

magnitudes higher than that of High priority delay. Medium priority delay falls between 

the High and Low priority delays. For Poisson sources, at 160% load the mean delays are 

0.08, 0.3, and 240 milliseconds and 99% delays are 0.18, 1.3 and 2000 milliseconds for 

High, Medium and Low priority traffic, respectively. For MPEG-2 sources at the same 

load, the mean delays are 4, 9 and 190 milliseconds and 99% delays are 8, 30, and 2000 

milliseconds for High, Medium and Low priority traffic, respectively. 
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Figure 34. Priority experiment results for Poisson source (mean delay) 
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Figure 35. Priority experiment results for Poisson source (99% delay) 
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Figure 36. Priority experiment results for MPEG-2 source (mean delay) 
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Figure 37. Priority experiment results for MPEG-2 source (99% delay) 
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Figure 38 shows the results for packet priority ratio (PPR) experiment. PPR is the ratio of 

Low to Medium to High priority traffic. It is seen that throughput changes with PPR 

(different combinations of priority traffic), but the variations are a very small factor. 

Maximum throughput is 162%, seen at PPR of 1.0:0.0:0.0 (Low:Medium:High), 

0.0:1.0:0.0 and 0.0:0.0:1.0. Minimum throughput is 154.1% seen at 0.2:0.4:0.4. It is seen 

that, throughput variations are always lesser than 5% of the maximum value.    
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Figure 38. Packet priority ratio experiment results 
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4.5 Discussion of results 
 

IEEE 1394b exhibits considerably less queuing delay than IEEE 1394a. The difference is 

especially visible at higher loads (over 90% load).  The better performance of IEEE 

1394b can be attributed to the overlapping of arbitration and data transmission, and the 

complete elimination of idle arbitration gaps. IEEE 1394b asynchronous stream 

transactions offer a better delay performance than isochronous transactions for packet-

based MPEG-2 and MPEG-4 video transmissions. For a saturated (fully loaded) network 

the queuing delay of asynchronous stream packets is nearly 15 times less than the 

queuing delay of isochronous packets. This is a motivation for completely eliminating the 

isochronous service in SFP.  

 

SFP improves the throughput of IEEE 1394b by a factor of 1.7, 6.8, and 43.9 for 

Spatial_average, Spatial_video and Spatial_max traffic patterns, respectively. For the 

Spatial_min traffic pattern (a restricted case that permits no spatial reuse), SFP and IEEE 

1394b offer similar performance. A similar improvement is seen in the node capacity of 

SFP at saturated network conditions. The better performance of SFP can be attributed to 

the spatial reuse of bandwidth. From the packet size experiment it is clear that SFP offers 

better throughput for large (mean) packet sizes (greater than 1500 bytes). SFP throughput 

increases with packet size because the percentage of overhead (arbitration granting 

overhead) per packet transaction decreases with the increase in packet size. From the 

results, it is clear that SFP priority arbitration distinctly separates the three priority classes 

in delay performance. High priority packets offer nearly 6 times lower queuing delay than 
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Medium priority packets, whose delay is more than 100 times lower than Low priority 

delay. Asynchronous stream packets mapped to the different priority classes can provide 

a flexible service for MPEG-2 and MPEG-4 video. It is seen that for different 

combinations of priority traffic the throughput variations are not much and fall within 5% 

of the maximum value. This makes it clear that SFP does not compromise in 

(maximizing) throughput while providing service for priority traffic and strikes a good 

balance. 
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CHAPTER 5 
 

CONCLUSION 
 

This thesis presented the Spatial reuse FireWire Protocol (SFP), a novel bus arbitration 

protocol architected for an acyclic daisy-chained topology. Shared-medium daisy-chained 

network technologies are necessary to support economical installation of large-scale 

video surveillance systems. SFP is based upon the IEEE 1394b FireWire architecture and 

preserves the simple repeat path functionality of FireWire. SFP improves the effective 

throughput of FireWire by spatial reuse of bandwidth and QoS support for packet video 

by a real-time priority based bus access mechanism.    

 

5.1 Summary of contributions 

 

This thesis investigated new communication protocols suitable for video surveillance 

systems, in particular at the medium access control level (bus arbitration) and physical 

layer. The main contributions of this work are: 

• A comprehensive study of the evolution of networks for video surveillance 

systems was made. FireWire was identified as a potential low-cost technology for 

video surveillance systems.  
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• IEEE 1394b FireWire was investigated as a candidate technology for video 

surveillance. Performance limitations in FireWire, such as lack of spatial reuse 

and lack of support for priority traffic, were identified. Simulation results 

demonstrate that FireWire asynchronous stream transactions offer a better delay 

performance than isochronous transactions for widely used variable bit-rate video 

like MPEG-2 and MPEG-4. This result motivates the elimination of isochronous 

service in SFP. 

• Designed and evaluated the performance of Spatial reuse FireWire Protocol 

(SFP). SFP improves the throughput of IEEE 1394b by a factor of seven for a 

video surveillance traffic pattern and a factor of two for a homogeneous traffic 

pattern. SFP provides support for variable size packets, asynchronous stream and 

asynchronous transactions, three classes of priority, and ensures fairness among 

like priority nodes. 

 

5.2 Future research 

 

In SFP arbitration requesting is overlapped with data transmission. However, arbitration 

granting overhead (which depends upon the propagation and the repeat path delays) 

increases with node count. At a high node count, arbitration granting overhead can 

become considerable. One possible way to minimize this overhead is for the bus owner to 

issue grants to multiple sets of requests at the same time. Data transmission between 

consecutive sets must be properly synchronized and the next bus owner should be one of 

the nodes from the last transmitting set of nodes.  Another approach is to have multiple 
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operational bus owner nodes at the same time, each taking care of a certain small portion 

of the network. For data traffic between distinct portions, the bus owners should carefully 

synchronize among themselves.  

 

Future research directions include; extension of SFP to accommodate multicast traffic, 

extension of SFP to support a tree topology network where every node can have two or 

more ports for branching, improving the robustness of SFP to handle packet losses 

(especially arbitration request and grant packets), and performance evaluation of higher 

layer protocols (such as TCP/IP) over SFP.  
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