Compiler Design (CIS 4930/6930) [Fall 2007]

Programming Assignment III
Objectives
 1. To become familiar with bison (a popular, yacc-compatible parser generator).
 2. To implement a parser for programs written in DJ.

 3. To practice writing context-free grammars (CFGs) by specifying DJ’s grammar.
Due Date: Sunday, October 14, 2007 (at 11:59pm).
Machine Details
Complete this assignment by yourself on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (Room 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your program executes properly on these machines.

Assignment Description
This assignment asks you to implement a basic parser for our dj2dism compiler. You will use bison (which Section 5.5 of the textbook describes well) to generate the parser.
First, download this CFG-less dj.y: http://www.cse.usf.edu/~ligatti/compilers-07/as3/dj.y
Modify that dj.y by declaring appropriate precedence directives in the first section and a correct CFG for DJ in the second section. For this assignment, leave the actions in your CFG empty, except for the {return 0;} action for the CFG’s starting symbol (Assignment IV will ask you to fill in the CFG actions to build an AST).
For full credit, your parser must have no conflicts (shift/reduce or reduce/reduce).
Hints

You may find it helpful to study the format of the empty-action CFG for DISM posted at: http://www.cse.usf.edu/~ligatti/compilers-07/as3/dism-cfg.y
My DJ parser declares a CFG with the following nonterminals: pgm (program), cdl (class-declaration list), c (class declaration), vdl (variable-declaration list), mdl (method-declaration list), t (type name), id (identifier name), el (expression list), e (expression), and f (fully qualified identifier).
To make it easier for you to complete Assignment IV in the future, you may want (but are not required) to declare your DJ grammar rules to be right recursive.
Precedence and Associativity of Operators

A primary challenge of this assignment is to declare precedence directives correctly and only in ways that immediately make sense to outside readers of your code.
Consider the following DJ expression (from file good11.dj):
n = n>6+3 && !2+3 && n = !c.n*!3 && 1+3==4
A correct and complete DJ parser (as yours should be after you complete Assignment IV) would produce the following AST for the expression above:

[image: image1]
A correct declaration of precedence directives (%left, %nonassoc, %right) in this assignment will help produce these groupings. Notice, for instance that the DOT operator has the highest precedence, while the (right-associative) ASSIGN operator has the lowest precedence. The (left-associative) PLUS and MINUS operators should have equal precedences. The (nonassociative) EQUALITY and GREATER operators should also have equal precedences, though their precedences differ from those of PLUS and MINUS. Although the NOT operator is unary (i.e., only has one operand), you can declare it to be right associative for the sake of ordering its precedence.
Use of a Lexer

Your DJ parser needs input from a DJ lexer. You have two options: use the DJ lexer you implemented in Assignment II (highly recommended), or use the DJ lexer provided at:

http://www.cse.usf.edu/~ligatti/compilers-07/as3/lex.yy.c
It is highly recommended that you build a DJ parser on top of your own lexer for three reasons: (1) You will have accomplished an impressive feat if at the end of the semester you have implemented dj2dism entirely by yourself. (2) Even if you scored highly on Assignment II, you may discover and fix bugs in your lexer by extending it. (3) Using a lexer that you understand and control may make it easier for you to debug your parser.

To help motivate you to implement the entire compiler from scratch (without using any “solution code”), undergraduate students will receive +20% extra credit on the final assignment, and graduate students will receive +10% extra credit on the final assignment, if you submit the full source code to a complete, working dj2dism compiler that you alone have implemented.

Compilation of the Parser
If you are using your own lexer, first use flex to generate a file lex.yy.c from your dj.l.
> flex dj.l
Once you have a lex.yy.c lexer for DJ (either by running the previous command or by downloading the provided lex.yy.c file), run the following commands to create and compile your DJ parser as a program called dj-parse.
> bison –v dj.y

> gcc dj.tab.c –lfl –o dj-parse
Example Executions
Many new test programs appear in the DJ directory for Assignment I (http://www.cse.usf.edu/~ligatti/compilers-07/as1/dj/). However, we will test your parser on code that has not been distributed to the class.
When given one of the syntactically valid DJ programs, your parser should print nothing.
> ./dj-parse good1.dj
> ./dj-parse good11.dj
> ./dj-parse bad2.dj
>
On the other hand, when given a syntactically invalid DJ program (e.g., bad1.dj, bad6.dj, bad13.dj, or bad33.dj), your parser should print at least one accurate error message before exiting.
> ./dj-parse bad6.dj

Syntax error on line 4 at token var

(This version of the compiler exits after finding the first syntax error.)
>
Submission Notes
· Type the following pledge as an initial comment in your dj.y file: “I pledge my Honor that I have not cheated on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· Upload and submit your dj.y file into the digital dropbox in Blackboard. You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.
· For every day that your assignment is late, your grade reduces 10%.

· For this assignment, you do not have to add any comments to your program besides the honor pledge.
NAT_LITERAL_EXPR(1)

NAT_LITERAL_EXPR(3)

PLUS_EXPR

AST_ID(n)

AST_ID(c)

FULL_ID_EXPR

NOT_EXPR

NOT_EXPR

EQUALITY_EXPR

TIMES_EXPR

AND_EXPR

NOT_EXPR

NAT_LITERAL_EXPR(3)

NAT_LITERAL_EXPR(2)

NAT_LITERAL_EXPR(4)

NAT_LITERAL_EXPR(3)

NAT_LITERAL_EXPR(3)

NAT_LITERAL_EXPR(6)

PLUS_EXPR

AST_ID(n)

FULL_ID_EXPR

PLUS_EXPR

GREATER_THAN_EXPR

AST_ID(n)

FULL_ID_EXPR

AND_EXPR

AST_ID(n)

FULL_ID_EXPR

ASSIGN_EXPR

ASSIGN_EXPR

AND_EXPR

1

