Compiler Design (CIS 4930/6930) [Fall 2007]

Programming Assignment V
Objectives
 1. To learn basic typing rules (i.e., static semantics) for object-oriented languages with inheritance and subtyping.
 2. To implement an enhanced symbol table for Diminished Java (DJ) programs.
 3. To implement a type checker for DJ programs.
Due Date: Sunday, November 18, 2007 (at 11:59pm).
Machine Details
Complete this assignment by yourself on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (Room 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your program executes properly on these machines.

Assignment Description
This assignment asks you to extend your dj2dism compiler with type checking (i.e., semantic analysis). The type checker will rely on symbol-table data structures.
Begin by downloading and studying the header files for the symbol-table module (in file symtbl.h) and the type-checking module (in file typecheck.h). These files are posted at http://www.cse.usf.edu/~ligatti/compilers-07/as5.

Implement the typecheckProgram method (which is declared in typecheck.h) in a new file called typecheck.c. For extra credit, you may also implement the setupSymbolTables method (which is declared in symtbl.h) in a new file called symtbl.c.
If you are completing this assignment by extending your Assignment IV implementation (as is recommended), you will also have to make a few minor modifications to your dj.y:

1. The symtbl.h and typecheck.h header files need to be included.

2. The main method in dj.y, which is the main method of the entire compiler, needs to invoke setupSymbolTables and typecheckProgram so that the compiler actually performs the type checking.

3. Once you are confident that your compiler produces correct ASTs, you will no longer want your compiler to print ASTs during normal operation (users generally do not want to see which ASTs their compilers build). Therefore, remove the call to printAST from dj.y.
Notes on Typing DJ Programs
Beyond the typing rules given in the Definition of DJ for Assignment I, please note that:

· A list of expressions has the same type as the final expression in the list.

· A DJ method M may “redeclare” variable names locally or in its parameter that are already defined as class variables. In this case, the local/parameter declaration punctures the scope of the class variable, so any use of the variable in M refers to the local/parameter rather than the class variable.

· A subclass may override a superclass method only when the overriding and overridden methods have identical parameter and return types.
· The expression null has type “any object”, which is a subtype of every class.

· An equality expression E1==E2 is well typed (with type nat) exactly when (1) E1 has valid type T1, (2) E2 has valid type T2, and (3) either T1 is a subtype of T2 or T2 is a subtype of T1.

· An if-then-else expression is well typed exactly when its if-expression has nat type and either (1) the then- and else-expression-lists both have nat type or (2) the then- and else-expression-lists both have an object type. In case (1), the type of the entire if-then-else expression is nat. In case (2), the type of the entire if-then-else expression is the join of the types of the then- and else-expression-lists. For example, assuming the variable b has type Object, the expression if(0) then{null;} else{b;} has type Object because the join of “any-object” type and Object is Object.

· A while-loop expression is well typed (with a nat type) exactly when its loop-test expression has nat type and its loop-body expression-list is well typed (the body may have any type, but it must be well typed).

· A method that expects a parameter of type C may be passed any parameter that is a subtype of C.

· A method M, declared to return a value of type T, may return any value whose type is a subtype of T. In any case, the method’s return type is still considered to be its declared return type T.

· The assignment expression F=E (where F is a fully qualified identifier and E is an expression) is well typed (with whatever type F has) exactly when (1) F is a well-typed variable and (2) E’s type is a subtype of F’s type.

· The expression new C has type C.

· The class hierarchy declared in a DJ program may not contain cycles (e.g., we cannot have C1 a subclass of C2, C2 a subclass of C3, and C3 a subclass of C1). Similarly, no class may be its own superclass.

· The main block of a DJ program must be well typed (though it may have any type).

· Of course, all variables must be declared prior to use.

The examples at http://www.cse.usf.edu/~ligatti/compilers-07/as1/dj/examples/bad/ are intended to illustrate all the high-level sorts of typing errors that are possible in DJ programs. Although more typing errors are possible, the additional possibilities should be simple variations on errors illustrated in the posted examples. (For example, bad19.dj illustrates a typing error in which the second operand in a conjunction expression has non-nat type; obviously your type checker needs to ensure that both operands in a conjunction have nat type.)
Hints on Implementing the Enhanced Symbol Tables (in symtbl.c)
You may find it helpful to organize your symtbl.c such that it implements the following methods (in addition to the setupSymbolTables method):
/* Return the number of children an AST node has.

 Note: Children with NULL data are not counted.
*/

int countChildren(ASTree *parent)

/* Returns the number for a given type name.

 Returns: -4 if type does not exist, -1 for nat, 0 for Object,

 1 for first class declared in program,

 2 for 2nd class declared in program, etc.

 (-3 and -2 are reserved for "no object" and "any object" types)
*/

int typeNameToNumber(char *typeName)

/* Build a variable symbol table from a VAR_DECL_LIST AST. */

VarDecl *buildVarST(ASTree *decls)

/* Build a local symbol table for a method from its VAR_DECL_LIST.

 Include the method's parameter in the table.
*/

VarDecl *buildLocalST4Method(ASTree *decls, char *paramName,

 int paramLine, int paramType)

/* Build a method symbol table from a METHOD_DECL_LIST AST. */

MethodDecl *buildMethodST(ASTree *decls)

/* Set the global count of the number of declared classes, and

 set the global classesST (an array of ClassDecl structs).

*/

void buildClassEntries()

/* Set the mainExprs, numMainBlockLocals, and mainBlockST global

 variables.
*/

void buildMainST()
Hints on Implementing the Type Checker (in typecheck.c)
You may find it helpful to organize your typecheck.c such that it implements the following methods (in addition to the typecheckProgram method):
/* Returns nonzero iff sub is a subtype of super */

int isSubtype(int sub, int super)

/* Return the join (i.e., least upper bound) of two object types.

 Assumes each parameter is either -2 (for "any-object" type)

 or at least 0 (for regular object types).
*/

int join(int t1, int t2)

/* Return the type of a FULL_ID_EXPR AST in the given context (i.e.,

 with the given local symbol table defined in localST and numLocals).

 This method also checks for and reports errors in the ID expression.

 If classContainingExpr < 0 then this expression is in the main block
 of the program; otherwise the expression is in the given class. The
 isMethod parameter should be nonzero iff the ID refers to a method.

 If the dot-separated ID is a method, then returnType and paramType

 (parameters passed by reference) are set, and -4 is returned.

 Otherwise, the dot-separated ID is a variable, so that variable's

 type is returned and returnType and paramType are unchanged.
*/

int typeFullID(ASTree *t, int classContainingExpr, int isMethod,

 VarDecl *localST, int numLocals,

 int *returnType, int *paramType)
/* Returns the type of the expression AST in the given context.

 If classContainingExpr < 0 then this expression is in the main block
 of the program; otherwise the expression is in the given class.
 (This method requires access to classContainingExpr so it can

 properly type fully qualified identifiers.)
*/

int typeExpr(ASTree *t, int classContainingExpr,

 VarDecl *localST, int numLocals)

/* Returns the type of the EXPR_LIST AST in the given context. */

int typeExprs(ASTree *t, int classContainingExpr,

 VarDecl *localST, int numLocals)

More Hints
My symtbl.c file is 322 lines of code (73 of which are comments/whitespace), while my typecheck.c file is 497 lines of code (71 of which are comments/whitespace). This is a relatively challenging assignment, requiring you to write several hundred lines of code. Please budget your time accordingly.
Many examples of valid and invalid DJ files, on which you can test your type checker, are posted at http://www.cse.usf.edu/~ligatti/compilers-07/as1/dj/examples. A complete solution to this assignment will detect an error in every one of the “bad” example DJ programs. As usual, though, we will grade your type checker’s performance on DJ programs that have not been distributed to the class.
Grading

Your grade on this assignment is determined by the level to which you implement the desired functionality:

· Level I: typecheckProgram correctly typechecks all DJ programs that contain no classes and no local variables (hence you do not ever even need to use the symbol tables).

· Level II: typecheckProgram correctly typechecks all DJ programs that contain no classes but do use (nat-type) local variables in the main block.

· Level III: typecheckProgram correctly typechecks all DJ programs.
Undergraduate students will earn: 80% credit for reaching Level I, 100% credit for reaching Level II, and 115% credit for reaching Level III.

Graduate students will earn: 65% credit for reaching Level I, 85% credit for reaching Level II, and 100% credit for reaching Level III.

All students will receive +15% extra credit for a correct implementation of the setupSymbolTables method in a file called symtbl.c
Compilation of the Type Checker
To compile your type checker from scratch, use the following sequence of commands.

> flex dj.l

> bison –v dj.y

> gcc dj.tab.c ast.c symtbl.c typecheck.c –lfl –o dj-tc
Alternatively, you may download (typically by right-clicking and selecting “Save as”) a working version of the lexer and parser as object-code file dj.tab.o at http://www.cse.usf.edu/~ligatti/compilers-07/as5. Also at that URL you will find object-code files ast.o (the AST module) and symtbl.o (which can be used if you decide not to implement symtbl.c). These object-code files are executable on the C4 lab’s Linux machines.
If you have downloaded dj.tab.o, ast.o, and symtbl.o (in addition to the header files ast.h, symtbl.h, and typecheck.h), compile your type checker with:

> gcc dj.tab.o ast.o symtbl.o typecheck.c –lfl –o dj-tc

Please remember that it is recommended for you to try to build a full dj2dism compiler from scratch, and you will receive extra credit on the final assignment for doing so.

Example Executions
As with Assignments III and IV, your type checker should first report lexical and syntactic errors before exiting. Assuming there are no lexical or syntactic errors, your compiler performs type checking.
If the input DJ program is well typed, your type checker should output nothing.
> ./dj-tc good1.dj
> ./dj-tc good2.dj

> ./dj-tc good3.dj

> ./dj-tc good4.dj

Otherwise, your type checker must report at least one error before exiting. Errors must be reported with (1) reasonably accurate and helpful error messages and (2) the line numbers on which the errors occur.

For example:
> ./dj-tc bad2.dj

Semantic analysis error on line 4:

 Variable declared multiple times

> ./dj-tc bad3.dj

Semantic analysis error on line 7:

 Var declared multiple times (here and in a superclass)

> ./dj-tc bad7.dj

Semantic analysis error on line 2:

 Invalid declared parameter type

> ./dj-tc bad8.dj

Semantic analysis error on line 2:

 Invalid variable type

> ./dj-tc bad9.dj

Semantic analysis error on line 3:

 Invalid declared return type

> ./dj-tc bad14.dj

Semantic analysis error on line 9:

 non-nat type in printNat

> ./dj-tc bad18.dj

Semantic analysis error on line 10:

 types of 'then' and 'else' branches mismatch

> ./dj-tc bad26.dj

Semantic analysis error on line 10:

 Cyclic class declaration

> ./dj-tc bad28.dj

Semantic analysis error on line 20:

 Parameter type mismatch

> ./dj-tc bad29.dj

Semantic analysis error on line 20:

 Assignment-type mismatch

> ./dj-tc bad31.dj

Semantic analysis error on line 10:

 Method's declared and actual return types mismatch

> ./dj-tc bad32.dj

Semantic analysis error on line 5:

 Unknown identifier

> ./dj-tc bad37.dj

Semantic analysis error on line 2:

 This class is already declared.
Your type checker’s output does not have to be identical to the above, but it should convey the same meanings (possibly with even more accurate error messages).

Submission Notes
· Type the following pledge as an initial comment in your typecheck.c and (optional) symtbl.c files: “I pledge my Honor that I have not cheated on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· Upload and submit your typecheck.c and (optional) symtbl.c files into the digital dropbox in Blackboard. You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.
· For every day that your assignment is late, your grade reduces 10%.

· Your code must be commented appropriately.

5

