Compiler Design (CIS 4930/6930) [Fall 2007]

Programming Assignment VI
Objectives
 1. To learn basic rules for generating RISC-style machine code equivalent to high-level abstract-syntax trees (ASTs).
 2. To implement a code generator that converts Diminished Java (DJ) ASTs into Diminished Instruction Set Machine (DISM) programs.
 3. To test a complete dj2dism compiler.
Due Date: Friday, December 7, 2007 (at 11:59pm).
Machine Details
Complete this assignment by yourself on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (Room 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your program executes properly on these machines.

Assignment Description
This assignment asks you to complete your dj2dism compiler by implementing the code-generation phase of compilation.
Begin by downloading and studying the header file for the code-generation module. This file, codegen.h, is posted at http://www.cse.usf.edu/~ligatti/compilers-07/as6. Then implement the generateDISM method, which is declared in codegen.h, in a new file called codegen.c.

If you are completing this assignment by extending your Assignment V implementation (as is recommended), you will also have to make a few minor modifications to your dj.y:

1. The codegen.h header file needs to be included.

2. The main method in dj.y, which is the main method of the entire compiler, should now enforce that the compiler is invoked with the command “dj2dism s.dj”, where “s.dj” is the source-program filename and “s” can be any string.
3. After typechecking the input file “s.dj”, the main method of dj.y should open the file “s.dism”, into which the target program will be output. (If “s.dism” already exists, your compiler should overwrite the existing “s.dism” file.)

4. Having opened and obtained a file pointer for “s.dism”, the main method of dj.y should invoke the code generator by calling the generateDISM method.

5. Before exiting, the main method of dj.y should close the “s.dism” target-code file.
Notes on Code Generation in dj2dism
1. Your generated DISM-code file must contain exactly one instruction per line. This will make it easy to find the precise instruction at which your program halts. (The sim-dism virtual machine only reports the instruction number at which the DISM program halted; if sim-dism reports that the program halted at instruction n and the code file contains exactly one instruction per line, then we can find the halting instruction at code-file line number n+1.)
2. In order to satisfy the constraint that every line of the generated “.dism” file must contain exactly one DISM instruction, you may sometimes find it convenient to write instructions of the form “#LABEL: mov 0 0” or “mov 0 0 ; comment”. In such instructions, the “mov 0 0” is used as an empty operation (i.e., a no-op) so that we can output a DISM label or a comment on an otherwise empty line of code.
3. Your code generator must implement the conjunction operator (&&) in the standard short-circuit style. File good6.dj illustrates this operator’s dynamic semantics.

4. Your code generator must check and halt before dereferencing null-valued objects. Files good20.dj, good21.dj, and good22.dj illustrate the required behavior.
Hints on Organizing the Code Generator
You may find it helpful to organize your codegen.c such that it contains the following (in addition to the definition of the generateDISM method declared in codegen.h):
#define MAX_DISM_ADDR 65535

/* Global for the DISM output file */

FILE *fout;

/* Global to remember the last label number generated */

unsigned int labelNumber = 0;

/* Declare mutually recursive functions (defs and docs appear below) */

void codeGenExpr(ASTree *t, int classNumber, int methodNumber);

void codeGenExprList(ASTree *expList, int classNumber,
 int methodNumber);

/* Print a message and exit under an exceptional condition */

void internalCGerror(char *msg)
/* Returns a new, unique DISM symbolic label */

char *getNewLabel()
/* Using the global classesST, calculate the total number of fields

 (including inherited fields) in an object of the given type. */

int getNumObjectFields(int type)

/* Generate code that increments the stack pointer */

void incSP()
/* Generate code that decrements the stack pointer */

void decSP()
/* Set the (1) field number and (2) field type for a given (a) type of
 object and (b) name of a field in that object.

 NOTE: fields are numbered starting at 1. E.g., if we have

 "class C extends Object{var nat n;} class D extends C{var nat m;}"

 as the only class declarations then:
 getFieldNumberAndType(1, "n", &f, &t) sets f to 1 (and t to -1),
 getFieldNumberAndType(2, "n", &f, &t) sets f to 1, and
 getFieldNumberAndType(2, "m", &f, &t) sets f to 2. */

void getFieldNumberAndType(int staticObjectType, char *fieldName,

 int *fieldNumber, int *fieldType)

/* Generate DISM code for the given fully-qualified-identifier AST.

 If isMethod is nonzero, then this ID refers to a method;

 otherwise it refers to a variable.

 If isMethod is nonzero, the isVarRval parameter is unused;

 otherwise it indicates whether the variable is being used

 as an R-value (as opposed to an L-value).

 The classNumber and methodNumber parameters provide the context

 in which this ID appears. If classNumber<0 then methodNumber may

 be anything and we assume the ID is in the program's main block. */

codeGenID(ASTree *t, int isMethod, int isVarRval, int classNumber,

 int methodNumber)

/* Generate DISM code for the given single expression, which appears

 in the given class and method (or main block).

 If classNumber < 0 then methodNumber may be anything and we assume
 we are generating code for the program's main block. */

void codeGenExpr(ASTree *t, int classNumber, int methodNumber)
/* Generate DISM code for an expression list, which appears in

 the given class and method (or main block).

 If classNumber < 0 then methodNumber may be anything and we assume
 we are generating code for the program's main block. */

void codeGenExprList(ASTree *expList, int classNumber,
 int methodNumber)
/* Generate DISM code as the prologue to the given method or main

 block. If classNumber < 0 then methodNumber may be anything and we

 assume we are generating code for the program's main block. */

void genPrologue(int classNumber, int methodNumber)
/* Generate DISM code as the epilogue to the given method or main
 block. If classNumber < 0 then methodNumber may be anything and we

 assume we are generating code for the program's main block. */

void genEpilogue(int classNumber, int methodNumber)
/* Generate DISM code for the given method or main block.

 If classNumber < 0 then methodNumber may be anything and we assume

 we are generating code for the program's main block. */

void genBody(int classNumber, int methodNumber)
/* Map a given (1) static class number, (2) a method number defined

 in that class, and (3) a dynamic object's type to:

 (a) the dynamic class number and (b) the dynamic method number that

 actually get called when an object of type (3) dynamically invokes

 method (2). This method assumes that dynamicType is a subtype of
 staticType. */

void getDynamicMethodInfo(int staticClass, int staticMethod,
 int dynamicType, int *dynamicClassToCall, int *dynamicMethodToCall)
/* Emit code for the program's vtable, beginning at label #VTABLE.

 The vtable jumps (i.e., dispatches) to code based on

 (1) the dynamic calling object's address (at M[SP+4]),

 (2) the calling object's static type (at M[SP+3]), and

 (3) the static method number (at M[SP+2]).

*/

void genVTable()
More Hints
My codegen.c file is 595 lines of code (100 of which are comments/whitespace). As with Assignment V, this is a relatively challenging assignment, requiring you to write several hundred lines of code. Please budget your time accordingly.
Many examples of valid DJ programs, on which you can test your compiler, are posted at http://www.cse.usf.edu/~ligatti/compilers-07/as1/dj/examples/good/. A complete solution to this assignment will correctly compile all of the valid DJ programs into equivalent, valid DISM code that can be executed in the sim-dism virtual machine. As usual, though, we will grade your compiler’s performance on DJ programs that have not been distributed to the class.
Grading

Your grade on this assignment is determined by the level to which you implement the desired functionality:

· Level I: generateDISM correctly generates DISM code for all DJ programs that contain no classes and no local variables.

· Level II: generateDISM correctly generates DISM code for all DJ programs that contain no classes but do use (nat-type) local variables in the main block.

· Level III: generateDISM correctly generates DISM code for all DJ programs.

Undergraduate students will earn: 80% credit for reaching Level I, 100% credit for reaching Level II, and 115% credit for reaching Level III.

Graduate students will earn: 65% credit for reaching Level I, 85% credit for reaching Level II, and 100% credit for reaching Level III.
If you have implemented the complete dj2dism compiler by yourself, you may also submit its full source code for +20% (for undergraduate students) or +10% (for graduate students) extra credit.
Compilation of the Compiler
Use the following commands to compile the complete dj2dism compiler from scratch:
>flex dj.l

>bison -v dj.y

> gcc dj.tab.c ast.c symtbl.c typecheck.c codegen.c -lfl -o dj2dism
Alternatively, you may download (typically by right-clicking and selecting “Save as”) working versions of the lexer, parser, AST, symbol-table, and type-checker modules as object-code files dj.tab.o, ast.o, symtbl.o, and typecheck.o from http://www.cse.usf.edu/~ligatti/compilers-07/as6/. With these object-code files, and the header files ast.h, symtbl.h, typecheck.h, and codegen.h, you can compile dj2dism with:
> gcc dj.tab.o ast.o symtbl.o typecheck.o codegen.c -lfl -o dj2dism

Example Executions
Your compiler should continue to report lexical, syntactic, and semantic errors in the source program before exiting. As with previous assignments, you need not report multiple errors. If there are no lexical, syntactic, or semantic errors, your compiler generates DISM code.
Your compiler should also enforce that a source-program filename ending in “.dj” has been given:
> ./dj2dism
Usage: dj2dism file.dj
> ./dj2dism good99.dj

ERROR: could not open file good99.dj

> ./dj2dism good1.dism
Error: Input filename does not match *.dj

The compiler produces no output (besides the target-code file) when compiling a valid DJ program:
> ./dj2dism good1.dj
>

After compiling good1.dj, we can find the dj2dism-generated code in file good1.dism:
 mov 7 65535 ; initialize FP

 mov 6 65535 ; initialize SP

 mov 5 1 ; initialize HP

 mov 0 0 ; ALLOCATE STACK SPACE FOR MAIN LOCALS

 mov 0 0 ; BEGIN METHOD/MAIN-BLOCK BODY

 mov 1 0

 str 6 0 1 ; M[SP] <- R[r1] (a nat literal)

 mov 1 1

 sub 6 6 1 ; SP--

 blt 5 6 #0 ; branch if HP<SP

 hlt ; out of stack memory! (HP >= SP)

#0: mov 0 0

 hlt ; NORMAL TERMINATION AT END OF MAIN BLOCK

#VTABLE: lod 1 6 4 ; r1 <- caller's address

 lod 1 1 0 ; r1 <- caller's dynamic type

 lod 2 6 3 ; r2 <- static class containing method

 lod 3 6 2 ; r3 <- static method number

 hlt ; vtable entry not found!

(Of course, the DISM files your compiler generates must only be functionally equivalent—rather than identical to—the DISM files my compiler generates.)
Debugging Hint: When trying to understand and correct the behavior of the DISM code your compiler generates, you may find it helpful to insert ptn instructions into the generated DISM code. For example, to see the address to which the SP refers at some point in the program, you could insert the instructions lod 4 6 0 and ptn 4 at that point.
As expected, we can execute file good1.dism in the sim-dism virtual machine:
> ./sim-dism good1.dism

Simulation complete. Halt instruction reached at PC=12.
>
Of all the provided good*.dj files, my dj2dism compiler generates the most lines of DISM code for good9.dj.
> ./dj2dism good9.dj
> ./sim-dism good9.dism

1

2

4

5

6

1

2

4

4

0

33

Simulation complete. Halt instruction reached at PC=2178.
>
Submission Notes
· Type the following pledge as an initial comment in your codegen.c file: “I pledge my Honor that I have not cheated on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· Upload and submit your codegen.c file into the digital dropbox in Blackboard, or if you have implemented the entire compiler by yourself and would like to submit it for extra-credit consideration, upload the full compiler into the digital dropbox as a zip or tar file.
· As always, you may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.
· For every day that your assignment is late, your grade reduces 10%.

· Both your codegen.c file—and the DISM code generated by your codegen.c—must be commented appropriately.

6

