

1

Compilers

Programming Assignment III

Objectives

 1. To become familiar with bison (a popular, yacc-compatible parser generator).

 2. To implement a parser for programs written in DJ.

 3. To practice writing context-free grammars (CFGs) by specifying DJ’s grammar.

Due Date: Sunday, February 27, 2022 (at 11:59pm).

Machine Details

Complete this assignment by yourself on the cselx##.csee.usf.edu computers. You are

responsible for ensuring that your programs compile and execute properly on these

machines.

Assignment Description

This assignment asks you to implement a basic parser for djc. You will use bison (which

Section 5.5 of the textbook describes well) to generate the parser.

First, download this CFG-less dj.y: http://www.cse.usf.edu/~ligatti/compilers/22/a3/dj.y

Modify that dj.y by declaring appropriate precedence directives in the first section and a

correct CFG for DJ in the second section. For this assignment, leave the actions in your

CFG empty, except that every rule for the CFG’s starting symbol should have the

{return 0;} action (Assignment IV will ask you to fill in the CFG actions to build an

AST).

For full credit on Assignments III and IV, your parser must have no conflicts

(shift/reduce or reduce/reduce) and no right-recursive rules, except that right-recursion is

allowed in the category for “expressions” (right-recursion isn’t a problem in this category

because your precedence directives will guide the parser and ensure that space

inefficiencies are automatically avoided when possible). Using left recursion will also

make Assignment IV easier to complete.

Hints

You may find it helpful to study the format of the empty-action CFG for DISM posted at:

http://www.cse.usf.edu/~ligatti/compilers/22/a3/dism-cfg.y

When you find that your parser has conflicts (like I did on my first attempt at this

assignment), please examine your bison output file to find the cause of the conflict and

then think calmly and carefully about how to modify the CFG to remove the conflict.

Please do not just try to “hack” through the problem! Hacked-up grammars are normally

complicated and hard to understand. Part of your grade on this assignment will be

determined by the simplicity/elegance of your grammar.

Precedence and Associativity of Operators

A key challenge of this assignment is to declare precedence directives correctly and only

in ways that immediately make sense to outside readers of your code.

http://www.cse.usf.edu/~ligatti/compilers/22/a3/dj.y
http://www.cse.usf.edu/~ligatti/compilers/22/a3/dism-cfg.y

2

Consider the following DJ expression (from file good11.dj):
n = n>6+3 || !2+3 || n = !c.n*!3 || 1+3==4

A correct and complete DJ parser (as yours should be after you complete Assignment IV)

would produce the following AST for the good11.dj expression above:

A correct declaration of precedence directives (%left, %nonassoc, %right) in this

assignment will help produce these groupings. Notice, for instance, that the DOT

operator has the highest precedence, while the (right-associative) ASSIGN operator has

the lowest precedence. The (left-associative) PLUS and MINUS operators should have

equal precedences. The (nonassociative) EQUALITY and GREATER operators should

also have equal precedences, though their precedences differ from those of PLUS and

MINUS. Although the NOT operator is unary (i.e., only has one operand), you can

declare it to be right associative for the sake of ordering its precedence.

Use of a Lexer

Your DJ parser needs input from a DJ lexer. You have two options: use the DJ lexer you

implemented in Assignment II (highly recommended), or use the DJ lexer provided at:

http://www.cse.usf.edu/~ligatti/compilers/22/a3/lex.yy.c

It’s highly recommended that you build a DJ parser on top of your own lexer for three

reasons: (1) You will have accomplished an impressive feat if at the end of the semester

you have implemented djc entirely by yourself. (2) Even if you scored highly on

 OR_EXPR

ASSIGN_EXPR

ASSIGN_EXPR

AST_ID(n)

 OR_EXPR

AST_ID(n) GREATER_THAN_EXPR PLUS_EXPR

ID_EXPR

AST_ID(n)

PLUS_EXPR

NAT_LITERAL_EXPR(6) NAT_LITERAL_EXPR(3)

NAT_LITERAL_EXPR(3)

NAT_LITERAL_EXPR(2)

NAT_LITERAL_EXPR(3)

NOT_EXPR

 OR_EXPR

TIMES_EXPR EQUALITY_EXPR

NOT_EXPR NOT_EXPR

DOT_ID_EXPR

ID_EXPR AST_ID(n)

PLUS_EXPR

NAT_LITERAL_EXPR(3) NAT_LITERAL_EXPR(1)

NAT_LITERAL_EXPR(4)

AST_ID(c)

http://www.cse.usf.edu/~ligatti/compilers/22/a3/lex.yy.c

3

Assignment II, you may discover and fix bugs in your lexer by extending it. (3) Using a

lexer that you understand and control may make it easier for you to debug your parser.

To help motivate you to implement the entire compiler from scratch (i.e., without using

any “solution code” I provide, like lex.yy.c), undergraduate students will receive +20%

extra credit on the final assignment, and graduate students will receive +10% extra credit

on the final assignment, if you submit the full source code (including dj.l and dj.y files) to

a complete, working DJ compiler that you alone have implemented.

Compilation of the Parser

If you are using your own lexer, first use flex to generate a file lex.yy.c from your dj.l.
> flex dj.l

Once you have a lex.yy.c lexer for DJ (either by running the previous command or by

downloading the provided lex.yy.c file), run the following commands to create and

compile your DJ parser as a program called dj-parse.
> bison –v dj.y

> gcc dj.tab.c –o dj-parse

Example Executions

Many test programs appear in the DJ directory for Assignment I

(http://www.cse.usf.edu/~ligatti/compilers/22/a1/dj/). However, we will test your parser

on code that has not been distributed to the class.

When given one of the syntactically valid DJ programs, your parser should print nothing.
> ./dj-parse good1.dj

> ./dj-parse bad2.dj

>

To observe this “quiet” behavior while using your own lexer from Assignment I, you

may need to set a flag (e.g. DEBUG_LEX) to 0 in your dj.l file.

When given a syntactically invalid DJ program (e.g., bad1.dj, bad6.dj, bad13.dj, or

bad33.dj), your parser should print at least one accurate error message before exiting.
> ./dj-parse bad6.dj

Syntax error on line 4 at token ;

(This version of the compiler exits after finding the first syntax

error.)

>

Extra Credit

For up to +15% (undergraduate) or +10% (graduate) extra credit, also implement a

recursive-descent parser for DJ in C “by hand” (that is, without using yacc/bison and

without using any C libraries besides stdlib and stdio).

Submission Notes

 Type the following pledge as an initial comment in your dj.y file: “I pledge my Honor

that I have not cheated, and will not cheat, on this assignment.” Type your name after

the pledge. Not including this pledge will lower your grade 50%.

 Upload and submit your dj.y file in Canvas.

http://www.cse.usf.edu/~ligatti/compilers/22/a1/dj/

4

 You may submit your assignment in Canvas as many times as you like; we will grade

your latest submission.

 For every day that your assignment is late (up to 2 days), your grade reduces 10%.

 For full credit, compilation on the cselx## machines should create no warnings or

error messages.

 For this assignment, you do not have to add any comments to your program besides

the honor pledge. Ideally, your grammar and precedence directives will make sense

without further explanation. Formatting requirements are otherwise the same as on

previous assignments (e.g., avoid tabs and overly long lines).

