

1

Compilers

Programming Assignment VI

Objectives

 1. To learn basic rules for generating RISC-style machine code equivalent to high-level

abstract-syntax trees (ASTs).

 2. To implement a code generator that converts Diminished Java (DJ) ASTs into

Diminished Instruction Set Machine (DISM) programs.

 3. To test a complete djc.

Due Date: Wednesday, April 26, 2023 (at 11:59pm).

Machine Details

Complete this assignment by yourself on the cselx##.csee.usf.edu computers. You are

responsible for ensuring that your programs compile and execute properly on these

machines.

Assignment Description

This assignment asks you to complete djc by implementing the code-generation phase of

compilation.

Begin by downloading and studying the header file for the code-generation module. This

file, codegen.h, is posted at http://www.cse.usf.edu/~ligatti/compilers/23/a6. Then

implement the generateDISM method, which is declared in codegen.h, in a new file

called codegen.c.

If you are completing this assignment by extending your Assignment V implementation

(as is recommended), you will also have to make a few minor modifications to your dj.y:

1. The codegen.h header file needs to be included.

2. The main method in dj.y, which is the main method of the entire compiler, should

now enforce that the compiler is invoked with the command “djc s.dj”, where “s.dj”

is the source-program filename and “s” can be any string.

3. After typechecking the input file “s.dj”, the main method of dj.y should open the

file “s.dism”, into which the target program will be output. (If “s.dism” already

exists, your compiler should overwrite the existing “s.dism” file.)

4. Having opened and obtained a file pointer for “s.dism”, the main method of dj.y

should invoke the code generator by calling the generateDISM method.

5. Before exiting, the main method of dj.y should close the “s.dism” target-code file.

Notes on Code Generation in djc
1. Your generated DISM-code file must contain exactly one instruction per line. This

will make it easy to find the precise instruction at which your program halts. (The

sim-dism virtual machine reports the instruction number at which the DISM program

halted; if sim-dism reports that the program halted at instruction n and the code file

contains exactly one instruction per line, then we can find the halting instruction at

code-file line number n+1.)

http://www.cse.usf.edu/~ligatti/compilers/23/a6

2

2. In order to satisfy the constraint that every line of the generated “.dism” file must

contain exactly one DISM instruction, you may sometimes find it convenient to write

instructions of the form “#LABEL: mov 0 0” or “mov 0 0 ; comment”. In such

instructions, the “mov 0 0” is used as an empty operation (i.e., a no-op) so that we can

output a DISM label and/or a comment on an otherwise empty line of code.

3. Your code generator must implement the conjunction operator (&&) in the standard

short-circuit style. File good6.dj illustrates this operator’s dynamic semantics.

4. Your code generator must check and halt before dereferencing null-valued objects.

Files good20.dj, good21.dj, and good22.dj illustrate the required behavior.

Hints on Organizing the Code Generator

You may find it helpful to organize your codegen.c such that it contains the following (in

addition to the definition of the generateDISM method declared in codegen.h):

#define MAX_DISM_ADDR 65535

/* Global for the DISM output file */

FILE *fout;

/* Global to remember the next unique label number to use */

unsigned int labelNumber = 0;

/* Declare mutually recursive functions (defs and docs appear below) */

void codeGenExpr(ASTree *t, int classNumber, int methodNumber);

void codeGenExprs(ASTree *expList, int classNumber, int methodNumber);

/* Print a message and exit under an exceptional condition */

void internalCGerror(char *msg)

/* Using the global classesST, calculate the total number of fields,

 including inherited fields, in an object of the given type */

int getNumObjectFields(int type)

/* Generate code that increments the stack pointer */

void incSP()

/* Generate code that decrements the stack pointer */

void decSP()

/* Output code to check for a null value at the top of the stack.

 If the top stack value (at M[SP+1]) is null (0), the DISM code

 output will halt. */

void checkNullDereference()

/* Generate DISM code for the given single expression, which appears

 in the given class and method (or main block).

 If classNumber < 0 then methodNumber may be anything and we assume

 we are generating code for the program's main block. */

void codeGenExpr(ASTree *t, int classNumber, int methodNumber)

/* Generate DISM code for an expression list, which appears in

 the given class and method (or main block).

 If classNumber < 0 then methodNumber may be anything and we assume

3

 we are generating code for the program's main block. */

void codeGenExprs(ASTree *expList, int classNumber, int methodNumber)

/* Generate DISM code as the prologue to the given method or main

 block. If classNumber < 0 then methodNumber may be anything and we

 assume we are generating code for the program's main block. */

void genPrologue(int classNumber, int methodNumber)

/* Generate DISM code as the epilogue to the given method or main

 block. If classNumber < 0 then methodNumber may be anything and we

 assume we are generating code for the program's main block. */

void genEpilogue(int classNumber, int methodNumber)

/* Generate DISM code for the given method or main block.

 If classNumber < 0 then methodNumber may be anything and we assume

 we are generating code for the program's main block. */

void genBody(int classNumber, int methodNumber)

/* Map a given (1) static class number, (2) a method number defined

 in that class, and (3) a dynamic object's type to:

 (a) the dynamic class number and (b) the dynamic method number that

 actually get called when an object of type (3) dynamically invokes

 method (2).

 This method assumes that dynamicType is a subtype of staticClass. */

void getDynamicMethodInfo(int staticClass, int staticMethod,

 int dynamicType, int *dynamicClassToCall, int *dynamicMethodToCall)

/* Emit code for the program's vtable, beginning at label #VTABLE.

 The vtable jumps (i.e., dispatches) to code based on

 (1) the number of arguments on the stack (at M[SP+1]),

 (2) the dynamic calling object's address (at M[SP+4+numArguments]),

 (3) the calling object's static type (at M[SP+3+numArguments]), and

 (4) the static method number (at M[SP+2+numArguments]). */

void genVTable()

More Hints

My codegen.c file is 659 lines of code (100 of which are comments/whitespace). As with

Assignment V, this is a relatively challenging assignment, requiring you to write several

hundred lines of code. Please budget your time accordingly.

Many examples of valid DJ programs, on which you can test your compiler, are posted at

http://www.cse.usf.edu/~ligatti/compilers/23/a1/dj/examples/good/. A complete solution

to this assignment will correctly compile all of the valid DJ programs into equivalent,

valid DISM code that can be executed in the sim-dism virtual machine. As usual, though,

we will grade your compiler’s performance on DJ programs that have not been

distributed to the class.

Grading

Your grade on this assignment is determined by the level to which you implement the

desired functionality:

 Level I: generateDISM correctly generates DISM code for all DJ programs that

(1) declare no classes and (2) declare no local variables. Expect to write about

http://www.cse.usf.edu/~ligatti/compilers/23/a1/dj/examples/good/

4

250-300 lines of code for this level (or about 200-250 without counting comments

and whitespace).

 Level II: generateDISM correctly generates DISM code for all DJ programs that

declare no classes. For this level, expect to write about 70 lines of code beyond

that of Level I.

 Level III: generateDISM correctly generates DISM code for all DJ programs.

Undergraduate students will earn: 80% credit for reaching Level I, 100% credit for

reaching Level II, and 110% credit for reaching Level III.

Graduate students will earn: 60% credit for reaching Level I, 75% credit for reaching

Level II, and 100% credit for reaching Level III.

Undergraduate students will earn +20% extra credit for having implemented a complete

Level-III djc from scratch (i.e., without using any of the provided object-code files)

during this semester. Graduate students will earn +15% for the same.

Compilation of the Compiler

Use the following commands to compile the complete djc from scratch:
> flex dj.l

> bison -v dj.y

> sed -i '/extern YYSTYPE yylval/d' dj.tab.c

> gcc dj.tab.c ast.c symtbl.c typecheck.c codegen.c -o djc

Alternatively, you can download working versions of the lexer, parser, AST, symbol-

table, and type-checker modules as object-code files dj.tab.o, ast.o, symtbl.o, and

typecheck.o from http://www.cse.usf.edu/~ligatti/compilers/23/a6/. With these object-

code files, and the header files ast.h, symtbl.h, typecheck.h, and codegen.h, you can

compile djc with:

> gcc dj.tab.o ast.o symtbl.o typecheck.o codegen.c -o djc

Example Executions

Your compiler should continue to report lexical, syntactic, and semantic errors in the

source program before exiting. As with previous assignments, you need not report

multiple errors. If there are no lexical, syntactic, or semantic errors, your compiler

generates DISM code.

Your compiler should enforce that the given source-program filename ends in “.dj”:
> ./djc

Usage: djc file.dj

> ./djc good99.dj

ERROR: could not open file good99.dj

> ./djc good1.dism

Error: Input filename does not match *.dj

The compiler produces no output (besides the target-code file) when compiling a valid DJ

program:
> ./djc good1.dj

>

http://www.cse.usf.edu/~ligatti/compilers/23/a6/

5

After compiling good1.dj, we can find the djc-generated code in file good1.dism:
 mov 7 65535 ; initialize FP

 mov 6 65535 ; initialize SP

 mov 5 1 ; initialize HP

 mov 0 0 ; ALLOCATE STACK SPACE FOR MAIN LOCALS

 mov 0 0 ; BEGIN METHOD/MAIN-BLOCK BODY

 mov 1 0

 str 6 0 1 ; M[SP] <- R[r1] (a nat literal)

 mov 1 1

 sub 6 6 1 ; SP--

 bgt 6 5 #0 ; branch if SP>HP

 mov 1 77 ; error code 77 => out of stack memory

 hlt 1 ; out of stack memory! (HP >= SP)

#0: mov 0 0

 hlt 0 ; NORMAL TERMINATION AT END OF MAIN BLOCK

(Of course, the DISM files your compiler generates must only be functionally

equivalent—rather than identical to—the DISM files my compiler generates. Regarding

the codes that DISM halts with, my compiler uses the codes shown above, plus error code

66 to indicate that insufficient heap memory exists for a new object, 88 to indicate a null-

pointer dereference, and 99 to indicate that a vtable entry wasn’t found).

Debugging Hint: When trying to understand and correct the behavior of the DISM code

your compiler generates, you may find it helpful to insert ptn instructions into the

generated DISM code. For example, to see the address to which the SP refers at some

point, you could insert lod 4 6 0 and ptn 4 at that point. You may also find it helpful to

execute some of your DISM programs in sim-dism with the debug-mode turned on.

As expected, we can execute file good1.dism in the sim-dism virtual machine:
> ./sim-dism good1.dism

Simulation completed with code 0 at PC=13.

Of all the provided good*.dj files, my djc generates the most DISM code for good9.
> ./djc good9.dj

> ./sim-dism good9.dism

1

2

4

5

6

1

2

4

4

0

33

Simulation completed with code 0 at PC=2214.

6

We’ve waited all semester to compile and run our div.dj programs from Assignment I.
> ./djc div.dj

> ./sim-dism div.dism

Enter a natural number: 7

Enter a natural number: 2

Enter a natural number: 0

Enter a natural number: 1

Enter a natural number: 0

3

1

Simulation completed with code 0 at PC=228.

Notice how much smaller—and more efficient—our hand-written div.disms were! My

hand-written div.dism is 19 instructions, but my compiled div.dism is 1044 instructions.

Submission Notes

 Type the following pledge as an initial comment in your codegen.c file: “I pledge my

Honor that I have not cheated, and will not cheat, on this assignment.” Type your

name after the pledge. Not including this pledge will lower your grade 50%.

 Upload and submit your codegen.c file in Canvas, or if you’ve implemented the entire

Level-III compiler by yourself, upload the full compiler as a zip or tar file.

 You may submit your assignment in Canvas as many times as you like; we’ll grade

your latest submission.

 When submitting your code in Canvas, include with your submission a comment

indicating at which level we should grade your assignment: I, II, or III. If you don’t

indicate a level, we’ll grade your submission as a Level-III submission.

 For every day that your assignment is late (up to 2 days), your grade reduces 10%.

 To make it easier for our teaching assistant to read and evaluate your code, use spaces

rather than tabs in your code and avoid long lines of code (I try to limit lines to 80

characters in width).

 Your programs will be graded on both correctness and style, so include good

comments, well-chosen variable names, etc. in your programs.

 codegen.c—and the DISM code it outputs—must be well commented and formatted.

