

1

Compilers [Spring 2024]

Programming Assignment I

Objectives

 1. To understand the definitions of DJ and DISM, which will serve as source and target

languages for a compiler built in future assignments.

 2. To implement small DJ and DISM programs.

 3. To become familiar with and able to use a DISM simulator.

Due Date: Sunday, January 21, 2024 (at 11:59pm).

Machine Details

Complete this assignment by yourself on the cselx##.cse.usf.edu computers. You are

responsible for ensuring that your programs compile and execute properly on these

machines.

Assignment Description

For this assignment, you will acquaint yourself with the DJ and DISM languages by

implementing one small program in each language. You will write a DJ program in a file

called prod.dj and a DISM program in a file called prod.dism.

The desired functionality is for your programs to input pairs of natural numbers as they’re

entered by the user, until the user enters a zero as the first in a pair of numbers. The first

number in each pair indicates a category for the second number. For example, the pair of

numbers 3 4 means that category 3 contains the number 4. After the user enters a

category number of 0, your programs then allow the user to enter natural numbers until

another 0 is entered; for every natural number i entered, your programs must output the

product of all the numbers in category i (or 0 if there are no numbers in that category).

Throughout all these operations, your programs must be reasonably efficient—there

should never be long, noticeable pauses during execution.

Examples of Desired Behavior:
Enter a natural number: 1

Enter a natural number: 2

Enter a natural number: 1

Enter a natural number: 3

Enter a natural number: 1

Enter a natural number: 4

Enter a natural number: 0

Enter a natural number: 1

24

Enter a natural number: 0

(Here category 1 contains 2, 3, and 4, so the product for category 1 is 24)

Enter a natural number: 0

Enter a natural number: 2

0

Enter a natural number: 0

(Here no categories contain numbers, so 0 would be returned for all products)

2

Enter a natural number: 0

Enter a natural number: 0

(Here no numbers are stored and no products are sought)

Enter a natural number: 200000

Enter a natural number: 5

Enter a natural number: 200000

Enter a natural number: 0

Enter a natural number: 0

Enter a natural number: 200000

0

Enter a natural number: 0

(Here category 200000 contains a 0, so 0 is returned for its product)

Hints

 Whenever a DJ or DISM program attempts to read a natural number, the prompts of

“Enter a natural number: ” get printed automatically. Hence, you don’t need to worry

about outputting those prompts. DJ and DISM programs can only input and output

natural numbers (using the readNat and printNat calls in DJ, and the rdn and ptn

instructions in DISM).

 You may assume that the user never categorizes more than 1,000 numbers total.

 My prod.dj is 25 lines of code (not counting whitespace/comments), and my

prod.dism is 28 lines of code.

Testing Your DISM Program: Please use the DISM simulator, sim-dism, to test your

DISM program. When your DISM program halts, it may halt with any code.

Testing Your DJ Program: Because you are writing a program in a new language for

which no compiler yet exists, you cannot test your program by executing it! This

situation is unpleasant but realistic. You will have to ensure by hand that your DJ

program is valid and would behave correctly if executed. You could, however, modify it

into a valid Java program (e.g., using Java’s Scanner class to mimic readNat), and then

test that Java program.

Formatting, Grading, and Submission Notes

 To make it easier for our TA to read and grade code files, use spaces rather than tabs

in your code and avoid long lines of code (I try to limit lines to 80 characters).

 Your programs will be graded on both correctness and style, so include good

comments, well-chosen variable names, etc. For full credit, your code must not be

significantly more complicated than necessary.

 The TA will test submissions on inputs not shown in the examples above.

 Upload and submit both of your files for Assignment 1 in Canvas. You may submit

your assignment in Canvas as many times as you like; we will grade your latest

submission.

