

 1

Definition of DJ (Diminished Java)
version 1.2 Jay Ligatti

1 Introduction

DJ is a small programming language similar to Java. DJ has been

designed to try to satisfy two opposing goals:

1. DJ is a complete object-oriented programming language (OOPL):
(a) DJ includes all the core features of OOPLs like Java, and

(b) you can express any algorithm in DJ (more precisely, DJ is

Turing complete; any Turing machine can be encoded as a DJ

program).

2. DJ is simple, with only core features included. DJ can

therefore be compiled straightforwardly; we can design and

implement a working (non-optimizing but otherwise complete) DJ

compiler in one semester.

2 An Introductory Example

Here is a valid DJ program:

 // This DJ program outputs the sum 1 + 2 + ... + 100

 class Summer extends Object {

 // This method returns the sum 0 + 1 + .. + n

 nat sum(nat n) {

 nat toReturn;

 // note: nat variables automatically get initialized to 0

 for(0; 0<n; n=n-1) { toReturn = toReturn + n; };

 toReturn;

 }

 }

 main {

 // create a new object of type Summer

 Summer s;

 s = new Summer();

 // print the sum 0 + 1 + ... + 100

 printNat(s.sum(100));

 }

Many additional examples of valid and invalid DJ programs are

posted at: http://www.cse.usf.edu/~ligatti/compilers/24/as1/dj/.

http://www.cse.usf.edu/~ligatti/compilers/24/as1/dj/

 2

3 Format of DJ Programs

A DJ program must be contained in a single file that begins with

a (possibly empty) sequence of class declarations and then must

have a main block.

A class declaration consists of the class keyword, then a class

name, then the extends keyword, then a superclass’s name, then an

open brace ‘{’, then a (possibly empty) sequence of static-

variable declarations, then a (possibly empty) sequence of

regular variable declarations, then a (possibly empty) sequence

of method declarations, and then a closing brace ‘}’.

A static-variable declaration consists of the static keyword

followed by a type name (either nat for a natural number, bool

for a boolean, or a class name for an object type), then a

variable name, and then a semicolon. For example, static nat i;

declares a static (i.e., class) variable i of type nat.

A regular variable declaration has the same format as a class-

variable declaration, except without the static keyword.

A method declaration consists of a return type name, then a

method name, then a left parenthesis ‘(’, then a parameter type

name, then a parameter name, then a right parenthesis ‘)’, and

then a variable-expression block.

A variable-expression block consists of an open brace ‘{’

followed by a (possibly empty) sequence of regular variable

declarations followed by a nonempty sequence of expressions (with

each expression followed by a semicolon) followed by a closing

brace ‘}’.

A main block consists of the main keyword followed by a variable-

expression block.

An expression can be any of, but only, the following:

 A plus expression (expression1 + expression2).

 A minus expression (expression1 – expression2).

 A times expression (expression1 * expression2).

 An equality test (expression1 == expression2).

 A less-than test (expression1 < expression2).

 A not operator (!expression1).

 An and operator (expression1 && expression2).

 A natural number (0, 1, 2, ...).

 The keyword true, false, or null.

 An if-then-else expression having the form if(expression1)

{expression-list1} else {expression-list2}, where expression-

list1 and expression-list2 are nonempty sequences of

expressions (with each expression followed by a semicolon).

 3

 A for-loop expression having the form for(expression1;

expression2; expression3) {expression-list}, where again,

expression-list is a nonempty sequence of expressions (with

each expression followed by a semicolon).

 A constructor expression having the form new Classname(). For

example, new Summer() causes memory to be dynamically

allocated and initialized for storing a Summer object.

 A this-object expression. As in Java, the keyword this in a

method m refers to the object on which m was invoked.

 An instanceof expression: expression1 instanceof Classname.

 A print-natural-number expression: printNat(expression1).

 A read-natural-number expression: readNat().

 An identifier id (e.g., a variable name).

 A dotted identifier having the form expression1.id, where id

is a field of whatever object expression1 evaluates to.

 An undotted assignment having the form id = expression1.

 A dotted assignment of the form expression1.id = expression2.

 An undotted method call of the form id(expression1).

 A dotted method call of the form expression1.id(expression2).

 An expression inside a pair of parentheses: (expression1).

Finally, comments may appear anywhere in a DJ program. A comment

begins with two slashes (//). Anything to the right of the

slashes on the same line is considered a comment and is ignored.

Again, you can find many example DJ programs illustrating this

format at: http://www.cse.usf.edu/~ligatti/compilers/24/as1/dj/

4 Key Differences between DJ and Java Programs:

 In DJ, semicolons must appear after every expression in

expression sequences. Semicolons must even appear after for

loops and if-then-else expressions. The example program above

(in Section 2) illustrates this requirement with a semicolon

after a for loop.

 In DJ, all the static variables in a class must be declared

before the non-static variables, which in turn must be

declared before the methods. Similarly, all variable

declarations in a variable-expression block must appear before

any expressions.

 The main block in a DJ program is not a method and cannot be

invoked.

 DJ has no explicit return keyword. The example code in

Section 2 illustrates how DJ uses the final expression in a

method body to determine the return value.

 All DJ methods must take exactly one parameter and return

exactly one result.

http://www.cse.usf.edu/~ligatti/compilers/24/as1/dj/

 4

 DJ classes have no constructor methods. DJ does have a built-

in new expression, though: calling new C() creates a new

object of type C having default values for all of its fields

(the default value for natural-number fields is 0, the default

for boolean fields is false, and the default for object fields

is null).

 DJ has no explicit void or array types and does not support

type casting. The only types one can explicitly write in DJ

are nat, bool, and object types.

 Natural numbers can be input and output using the built-in

readNat and printNat functions.

 In DJ, all for loops must contain three expressions and one

expression list. For example, for(0;true;0) {0;} is a valid

DJ expression, but for(;true;) {0;} is not.

 DJ requires all if expressions to have both then and else

branches. For example, if(true) {1;} else {2;} is a valid DJ

expression, but if(true) {1;} is not.

 Only fields, not methods, may be declared static in DJ.

Moreover, static fields in DJ cannot be referenced by class

names alone. For example, if class C has static field f, DJ

allows expressions like (new C()).f but disallows just C.f

(Java allows both sorts of expressions).

 DJ has no notion of super, import, public, private, abstract,

try, catch, throw, package, synchronized, final, etc. It

lacks all these keywords.

 DJ does not allow comments of the style /* */.

5 Additional Notes

Case sensitivity

Keywords and identifiers are case sensitive (i.e., case matters,

so “Class” is not the same as “class”).

Identifiers

Identifiers (which are used for naming classes, fields, methods,

parameters, and local variables) must begin with a letter and

must contain only digits (0-9) and ASCII upper- and lower-case

English letters.

Natural-number literals

All numbers in DJ programs have nat type and must be natural

numbers (0, 1, 2, ...). Naturals may have leading zeroes; e.g.,

00005 is a valid nat.

The Object Class

A class called Object is always assumed to exist. Class Object

is unique in that it extends no other class. Also, class Object

is empty; it contains no members (neither fields nor methods).

 5

Recursion

Methods and classes may be (mutually) recursive. A class C1 may

define a variable field of type C2, while class C2 defines a

variable field of type C1 (these are called mutually recursive

classes).

Data Initialization

All natural-number variables and fields get initialized to 0, all

boolean variables and fields to false, and all object variables

and fields to null.

Static Fields

As in Java, static fields in DJ are class variables, meaning that

only one copy of a static field exists for the whole class. In

contrast, for non-static fields, one copy exists for every

instance (i.e., object) of the class. Think of DJ’s static

variables as globals; exactly one copy of every static variable

is stored in memory, and all static fields are accessible in any

part of a DJ program (e.g., using the (new C()).f syntax).

Inheritance

As in Java, classes inherit all fields and methods in

superclasses. In DJ, subclasses may override methods, but not

variable fields, defined in superclasses. For example, if class

C1 has a variable field v1 and class C2 extends C1, then C2 may

not declare any variable fields named v1.

A subclass may override a superclass’s method only when the

overriding and overridden methods have identical parameter and

return types (though the overriding method’s parameter name may

differ from that of the overridden method). For example, if

class C1 has a method m and class C2 extends C1, then C2 may

declare a method m iff its parameter and return types match those

of method m in class C1.

How DJ programs evaluate

DJ programs basically evaluate according to the rules for

evaluating Java programs, with a few differences:

 printNat expressions evaluate to (and return) whatever natural

number gets printed.

 readNat expressions evaluate to (and return) whatever natural

number gets read.

 for loops, upon completion, always evaluate to (and return)

the value 0.

 When the then branch of an if-then-else expression is taken,

the entire if-then-else expression evaluates to whatever the

then branch evaluates to. Similarly, when the else branch of

an if-then-else expression is taken, the entire if-then-else

expression evaluates to whatever the else branch evaluates to.

 Expression lists evaluate to whatever value the final

expression in the list evaluates to.

 6

instanceof

Let e be the expression e1 instanceof C. As in Java, e is well

typed iff e1 has an object type and C is a valid class name.

Suppose that e1 evaluates to object o; then e evaluates to true

iff o is a non-null, C-type object (possibly a subclass of C).

Dynamic (i.e., virtual) method calls

As in Java, the exact code that gets executed during a method

invocation depends on the run-time type of the calling object.

For instance, the following DJ program outputs 2 because testObj

has run-time type C2.

class C1 extends Object {

 nat callWhoami(nat unused) {this.whoami(0);}

 nat whoami(nat unused) {printNat(1);}

}

class C2 extends C1 {

 nat whoami(nat unused) {printNat(2);}

}

main {

 C1 testObj;

 testObj = new C2();

 testObj.callWhoami(0);

}

Assignment Expressions

As in Java, DJ programs can make assignments to object-type

variables. For example, the expression obj1=obj2 causes the obj1

variable to alias (i.e., point to the same object as) the obj2

variable.

Typing Rules

The typing rules for DJ also basically match those of Java.

Beyond the normal Java restrictions, DJ requires that:

 The only types available to programmers are nat, bool, and

object types.

 All class names must be unique.

 All method and field names within the same class must be

unique. Although a subclass can override superclass methods,

a subclass cannot override superclass variable fields.

 Static fields must not be referenced by class name; DJ

disallows ClassName.StaticFieldName.

 The then and else blocks in an if-then-else expression must

have the same type.

 A well-typed for loop has nat type (recall that it evaluates

to 0 upon completion).

 printNat and readNat expressions have nat type because they

evaluate to whatever number gets printed or read at run time.

