

1

Compilers [Spring 2025]
Programming Assignment I

Objectives
 1. To understand the definitions of DJ and DISM, which will serve as source and target

languages for a compiler built in future assignments.

 2. To implement small DJ and DISM programs.

 3. To become familiar with and able to use a DISM simulator.

Due Date: Sunday, January 26, 2025 (at 11:59pm).

Machine Details
Complete this assignment by yourself on the cselx##.cse.usf.edu computers. You are

responsible for ensuring that your programs compile and execute properly on these

machines.

Assignment Description
For this assignment, you will acquaint yourself with the DJ and DISM languages by

implementing one small program in each language. You will write a DJ program in a file

called adjacency.dj and a DISM program in a file called adjacency.dism.

Both programs should input a sequence of directed edges in a 120-node graph and then

output all the nodes reachable in one step from given source nodes. Nodes are numbered

from 1 to 120. The user enters a sequence of edges as pairs of natural numbers; the first

number in each pair denotes the source node, and the second number denotes the

target/destination node. Self-loops are allowed, so for example, (4,4) is a valid edge.

The user indicates that all edges have been input by entering a 0 as a source or destination

node. After entering that first 0, the user may enter a sequence of node numbers; for each

such number n, a list of all the nodes reachable in one step from node n must be output,

with the nodes output in ascending order without repeating numbers. The user may

terminate this entry of a sequence of node numbers by entering a second 0. The user may

also terminate execution at any time by entering a number greater than 120.

The following page shows four examples of the desired functionality. Each example is a

trace of running the program in sim-dism, so each example ends with a statement

indicating that the simulation has completed. Your code does not need to end with the

same PC value.

In all cases, your programs must be reasonably efficient—there should never be a long,

noticeable pause during execution.

2

Examples of Desired Behavior:

Enter a natural number: 4

Enter a natural number: 4

Enter a natural number: 3

Enter a natural number: 4

Enter a natural number: 3

Enter a natural number: 3

Enter a natural number: 2

Enter a natural number: 4

Enter a natural number: 2

Enter a natural number: 3

Enter a natural number: 2

Enter a natural number: 2

Enter a natural number: 1

Enter a natural number: 4

Enter a natural number: 1

Enter a natural number: 3

Enter a natural number: 1

Enter a natural number: 2

Enter a natural number: 1

Enter a natural number: 1

Enter a natural number: 0

Enter a natural number: 1

1

2

3

4

Enter a natural number: 2

2

3

4

Enter a natural number: 3

3

4

Enter a natural number: 4

4

Enter a natural number: 0

Simulation completed with code 0 at PC=24.

Enter a natural number: 0

Enter a natural number: 1

Enter a natural number: 0

Simulation completed with code 0 at PC=24.

Enter a natural number: 1

Enter a natural number: 0

Enter a natural number: 1

Enter a natural number: 0

Simulation completed with code 0 at PC=24.

Enter a natural number: 4

Enter a natural number: 121

Simulation completed with code 0 at PC=24.

3

Hints

Whenever a DJ or DISM program attempts to read a natural number, the prompts of

“Enter a natural number: ” get printed automatically. Hence, you don’t need to worry

about outputting those prompts. DJ and DISM programs can only input and output

natural numbers (using the readNat and printNat calls in DJ, and the rdn and ptn

instructions in DISM).

DJ’s assert expression can be used to terminate execution in arbitrary locations.

To give a rough idea of the effort involved: It took me about 3 hours to do this

assignment, for which I wrote 70 lines of DJ and 25 lines of DISM (not counting

whitespace/comments). If you find yourself spending significantly more time (like over

12 hours), please consider asking the TA for help with whatever is slowing you down.

Testing Your DISM Program

Please use the DISM simulator, sim-dism, to test your DISM program. When your DISM

program halts, it may halt with any code.

Testing Your DJ Program

Because you’re writing a program in a new language for which no compiler yet exists,

you can’t test your program by executing it! This situation is unpleasant but realistic.

You’ll have to ensure by hand that your DJ program is valid and would behave correctly

if executed. You could, however, modify it into a valid Java program (e.g., using Java’s

Scanner class to mimic readNat), and then test that Java program.

Formatting, Grading, and Submission Notes

 To make it easier for our TAs to read and grade code files, use spaces rather than tabs

in your code and avoid long lines of code (I try to limit lines to 80 characters).

 Your programs will be graded on both correctness and style, so include good

comments, well-chosen variable names, etc. For full credit, your code must not be

significantly more complicated than necessary.

 The TA will test submissions on inputs not shown in the examples above.

 Upload and submit both of your files for Assignment 1 in Canvas. You may submit

your assignment as many times as you like; we will grade your latest submission.

