

 1

Definition of DJ (Diminished Java)
version 1.3 Jay Ligatti

1 Introduction

DJ is a small programming language similar to Java. DJ has been

designed to try to satisfy two opposing goals:

1. DJ is a complete object-oriented programming language (OOPL):
(a) DJ includes all the core features of OOPLs like Java, and

(b) you can express any algorithm in DJ (more precisely, DJ is

Turing complete; any Turing machine can be encoded as a DJ

program).

2. DJ is simple, with only core features included. DJ can

therefore be compiled straightforwardly; we can design and

implement a working (non-optimizing but otherwise complete) DJ

compiler in one semester.

2 An Introductory Example

Here is a valid DJ program:

 // This DJ program outputs the sum 1 + 2 + ... + 100

 class Summer extends Object {

 // This method returns the sum 0 + 1 + .. + n

 nat sum(nat n) {

 nat toReturn;

 // note: nat variables automatically get initialized to 0

 while(0<n) {

 toReturn = toReturn + n;

 n = n - 1;

 };

 toReturn;

 }

 }

 main {

 // create a new object of type Summer

 Summer s;

 s = new Summer();

 // print the sum 0 + 1 + ... + 100

 printNat(s.sum(100));

 }

Many additional examples of valid and invalid DJ programs are

posted at: http://www.cse.usf.edu/~ligatti/compilers/25/a1/dj/.

http://www.cse.usf.edu/~ligatti/compilers/25/a1/dj/

 2

3 Format of DJ Programs

A DJ program must be contained in a single file that begins with

a (possibly empty) sequence of class declarations and then must

have a main block.

A class declaration consists of an optional final keyword, then

the class keyword, then a class name, then the extends keyword,

then a superclass’s name, then an open brace ‘{’, then a

(possibly empty) sequence of variable declarations, then a

(possibly empty) sequence of method declarations, and then a

closing brace ‘}’.

A variable declaration consists of a type name (either nat for a

natural number, or a class name for an object type) followed by a

variable name followed by a semicolon. For example, nat i;

declares a variable named i of type nat.

A method declaration consists of an optional final keyword, then

a return type name, then a method name, then a left parenthesis

‘(’, then a parameter type name, then a parameter name, then a

right parenthesis ‘)’, and then a variable-expression block.

A variable-expression block consists of an open brace ‘{’

followed by a (possibly empty) sequence of variable declarations

followed by a nonempty sequence of expressions (with each

expression followed by a semicolon) followed by a closing brace

‘}’.

A main block consists of the main keyword followed by a variable-

expression block.

An expression can be any of, but only, the following:

 A plus expression (expression1 + expression2).

 A minus expression (expression1 – expression2).

 A times expression (expression1 * expression2).

 An equality test (expression1 == expression2).

 A less-than test (expression1 < expression2).

 An assertion having the form assert expression.

 A not operator (!expression).

 An or operator (expression1 || expression2).

 A natural number (0, 1, 2, ...).

 The keyword null.

 An if-then-else expression having the form if(expression)

{expression-list1} else {expression-list2}, where expression-

list1 and expression-list2 are nonempty sequences of

expressions (with each expression followed by a semicolon).

 3

 A while-loop expression having the form while(expression)

{expression-list}, where again, expression-list is a nonempty

sequence of expressions (with each expression followed by a

semicolon).

 A constructor expression having the form new Classname(). For

example, new Summer() causes memory to be dynamically

allocated and initialized for storing a Summer object.

 A this-object expression. As in Java, the keyword this in a

method m refers to the object on which m was invoked.

 A print-natural-number expression: printNat(expression).

 A read-natural-number expression: readNat().

 An identifier id (e.g., a variable name).

 A dotted identifier having the form expression.id, where id is

a field of whatever object expression evaluates to.

 An undotted assignment having the form id = expression.

 A dotted assignment of the form expression1.id = expression2.

 An undotted method call of the form id(expression).

 A dotted method call of the form expression1.id(expression2).

 An expression inside a pair of parentheses: (expression).

Finally, comments may appear anywhere in a DJ program. A comment

begins with two slashes (//). Anything to the right of the

slashes on the same line is considered a comment and is ignored.

Again, you can find many example DJ programs illustrating this

format at: http://www.cse.usf.edu/~ligatti/compilers/25/a1/dj/

4 Key Differences between DJ and Java Programs:

 In DJ, semicolons must appear after every expression in

expression sequences. Semicolons must even appear after while

loops and if-then-else expressions. The example program above

(in Section 2) illustrates this requirement with a semicolon

after a while loop.

 In DJ, all field declarations in a class must appear before

any method declaration. Similarly, all variable declarations

in a variable-expression block must appear before any

expressions.

 The main block in a DJ program is not a method and cannot be

invoked.

 DJ has no type for Booleans; we use natural numbers (i.e., 0,

1, 2, ...) in place of Booleans in if-then-else expressions.

The natural number 0 gets interpreted as false, and everything

else gets interpreted as true.

 DJ has no explicit return keyword. The example code in

Section 2 illustrates how DJ uses the final expression in a

method body to determine the return value.

http://www.cse.usf.edu/~ligatti/compilers/25/a1/dj/

 4

 All DJ methods must take exactly one argument and return

exactly one result.

 DJ classes have no constructor methods. DJ does have a built-

in new expression, though: calling new C() creates a new

object of type C having default values for all of its fields

(the default value for natural-number fields is 0, and the

default for object fields is null).

 DJ has no explicit void or array types and does not support

type casting. The only types one can explicitly write in DJ

are nat and object types.

 Natural numbers can be input and output using the built-in

readNat and printNat functions.

 DJ requires all if expressions to have both then and else

branches. For example, if(true) {1;} else {2;} is a valid DJ

expression, but if(true) {1;} is not.

 Only classes and methods (not variables) may be declared to be

final in DJ.

 DJ has no notion of super, import, public, private, abstract,

interface, try, catch, throw, static, package, synchronized,

etc. It lacks all these keywords.

 DJ does not allow comments of the style /* */.

5 Additional Notes

Case sensitivity

Keywords and identifiers are case sensitive (i.e., case matters,

so “Class” is not the same as “class”).

Identifiers

Identifiers (which are used for naming classes, fields, methods,

parameters, and local variables) must begin with a letter or an

underscore character and must contain only digits (0-9),

underscores, and ASCII upper- and lower-case English letters.

Natural-number literals

All numbers in DJ programs have nat type and must be natural

numbers (0, 1, 2, ...). Naturals may not have leading zeroes in

DJ; e.g., 0 is a valid nat but 005 is not a valid nat

(technically, 005 would be interpreted as three separate natural

numbers).

The Object Class

A class called Object is always assumed to exist. Class Object

is unique in that it extends no other class. Also, class Object

is empty; it contains no members (neither fields nor methods).

Recursion

Methods and classes may be (mutually) recursive. A class C1 may

define a variable field of type C2, while class C2 defines a

 5

variable field of type C1 (these are called mutually recursive

classes).

Data Initialization

All natural-number variables and fields get initialized to 0, and

all object variables and fields to null.

Inheritance

As in Java, classes inherit all fields and methods in

superclasses. In DJ, subclasses may override non-final methods,

but not variable fields, defined in superclasses. For example,

if class C1 has a variable field v1 and class C2 extends C1, then

C2 may not declare any variable fields named v1.

A subclass may override a superclass’s non-final method only when

the overriding and overridden methods have identical parameter

and return types (though the overriding method’s parameter name

may differ from that of the overridden method). For example, if

class C1 has a method m and class C2 extends C1, then C2 may

declare a method m iff its parameter and return types match those

of method m in class C1.

However, final classes may not be subclassed, and final methods

may not be overridden.

How DJ programs evaluate

DJ programs generally evaluate according to the rules for

evaluating Java programs, with a few differences:

 printNat expressions evaluate to (and return) whatever natural

number gets printed.

 readNat expressions evaluate to (and return) whatever natural

number gets read.

 while loops, upon completion, always evaluate to (and return)

the value 0.

 assert expressions, if successful, evaluate to (and return)

whatever nonzero value was asserted. Unsuccessful assert

expressions (e.g., assert 0) cause the program to terminate.

 When the then branch of an if-then-else expression is taken,

the entire if-then-else expression evaluates to whatever the

then branch evaluates to. Similarly, when the else branch of

an if-then-else expression is taken, the entire if-then-else

expression evaluates to whatever the else branch evaluates to.

 Expression lists evaluate to whatever value the final

expression in the list evaluates to.

Dynamic (i.e., virtual) method calls

As in Java, the exact code that gets executed during a method

invocation depends on the run-time type of the calling object.

For instance, the following DJ program outputs 2 because testObj

has run-time type C2.

 6

class C1 extends Object {

 nat callWhoami(nat unused) {this.whoami(0);}

 nat whoami(nat unused) {printNat(1);}

}

class C2 extends C1 {

 nat whoami(nat unused) {printNat(2);}

}

main {

 C1 testObj;

 testObj = new C2();

 testObj.callWhoami(0);

}

Assignment Expressions

As in Java, DJ programs can make assignments to object-type

variables. For example, the expression obj1=obj2 causes the obj1

variable to alias (i.e., point to the same object as) the obj2

variable.

Typing Rules

The typing rules for DJ also generally match those of Java.

Beyond the normal Java restrictions, DJ requires that:

 The only types available to programmers are nat and object

types.

 All class names must be unique.

 All method and field names within the same class must be

unique. Although a subclass can override superclass methods,

a subclass cannot override superclass variable fields.

 The then and else blocks in an if-then-else expression must

have the same type.

 Boolean tests in the if part of an if-then-else expression

must have nat type (nonzero is used for true and zero is used

for false). Similarly, equality (==), or (||), less-than (<),

and not (!) expressions all have nat (rather than boolean)

type.

 A well-typed while loop has nat type (recall that it evaluates

to 0 upon completion).

 A well-typed assertion expression has nat type because

successful assertions return (nonzero) numbers. Also, only

nat-type expressions can be asserted.

 printNat and readNat expressions have nat type because they

evaluate to whatever number gets printed or read at run time.

