Preventing Variadic Function Attacks Through
Argument Width Counting

Brennan Ward”, Kevin Dennis”, Gabriel Laverghetta, Parisa Momeni, and Jay
Ligatti

Abstract Variadic-function attacks and format-string attacks continue to threaten
modern C/C++ software applications. When successfully executed, attackers are
able to read, write, or execute arbitrary program memory. To address the problem of
variadic-function attacks, this paper proposes Argument Width Counting (AWC),
a new memory access-control policy that, when enforced, mitigates all observed
variadic-function attacks, including format-string attacks, by tracking the initial size
of variadic arguments on the stack and limiting requests to this number of bytes. A
prototype for AWC has been implemented and evaluated on LLVM’s Clang C/C++
compiler and the accompanying libc++ standard library. The implementation mod-
ifies the compiler’s function-generation code to store variadic argument widths and
to validate these values later when variadic arguments are accessed. The prototype’s
performance overhead was tested and compared to existing solutions. The prototype
incurs low overhead and outperforms the existing solutions. Microbenchmarking
AWC returns around 22% overhead for O to 16 arguments. The overhead is less than
1% when benchmarked on real-world programs.

Key words: Variadic functions, format-string attacks, memory safety

Brennan Ward
University of South Florida, Tampa, FL, USA, e-mail: bward7864@gmail.com

Kevin Dennis
University of South Florida, Tampa, FL, USA, e-mail: kevindennis@usf.edu

Gabriel Laverghetta
University of South Florida, Tampa, FL, USA, e-mail: glaverghettaQusf.edu

Parisa Momeni
University of South Florida, Tampa, FL, USA, e-mail: parisamomeni@usf.edu

Jay Ligatti
University of South Florida, Tampa, FL, USA, e-mail: 1igatti@usf.edu

* The first two authors contributed equally to this work.

1 Introduction

Variadic functions, or functions that take a variable number of arguments, are sus-
ceptible to attack due to the lack of bounds checking when accessing variadic argu-
ments in the C and C++ programming languages.

Format-string attacks, a subclass of variadic-function attacks, endure as a seri-
ous cybersecurity threat and continue to be reported in the CVE [16] every year.
These attacks pose significant risks, including privilege escalation, remote code ex-
ecution, and unauthorized data disclosure, equating their severity to that of buffer
overflows [1,3,7,9,16,18]. Given their persistent occurrence, and their high severity,
the imperative for further mitigations is evident.

Numerous countermeasures and mitigation techniques have been proposed, rang-
ing from simple compiler warnings to type checking for variadic functions. These
solutions seek to mitigate attacks without significantly compromising performance
and usability. Unfortunately, only compiler warnings have been widely adopted.
While the exact reason such techniques have not been more widely adopted is un-
clear, it may be due to the performance cost: more precise solutions may be too
costly to implement, and less precise solutions, while more performant, may not
mitigate enough attacks to justify even the smaller cost.

This paper presents Argument Width Counting (AWC), a new memory access
control policy that, when enforced, prevents all observed types of variadic-function
attacks, including format-string attacks. Unlike existing mitigations, AWC restricts
argument access to the intended region of memory by calculating the sizes of ar-
guments and tracking the consumption of memory. Once a variadic function has
requested all of the bytes that have been allocated, subsequent attempts to access
variadic arguments will be treated as a policy violation and will result in program
termination (or, depending on implementation, a raised exception for C++).

AWC can be efficiently enforced at runtime with no major compiler modifica-
tions; AWC requires no changes to a target program’s source code. The necessary
calculations to enforce AWC are not computationally expensive, and a prototype
implementation of AWC for Clang, a C compiler built on the LLVM code genera-
tor and optimizer [15], was found to incur low overhead and outperform the exist-
ing lightweight solutions. The prototype implementation and benchmarking suite is
available on GitHub [4, 5].

This paper is organized as follows. Section 2 reviews the necessary background
information and defenses against format-string and variadic-function attacks that are
present in the literature. Section 3 introduces and describes Argument Width Count-
ing. Section 4 describes a successful implementation of AWC for Clang. Section 5
presents the results of an empirical analysis run on the implementation. Section 6
discusses the results of the empirical evaluation and our attempt to add AWC to
GCC. Section 7 concludes and explores areas of future work.

2 Background and Related Work

A vast number of C programs are compiled for the x86 architecture, and the behav-
ior of the stack plays an important role in allowing variadic-function attacks to take
place. When a function call begins, a portion of the stack space, known as a stack
frame, is allocated on the stack. The stack frame holds all of the locally relevant data
for the function such as the arguments and local variables. Other calling conventions
may be adapted to this work with minor adjustments (e.g., accounting for optimiza-
tions like placing the first several arguments in registers). When a function call takes
place, the caller prepares the stack by pushing, in order, the function arguments (in
reverse order from right to left) and the return address. Once the stack setup has
concluded, program execution is transferred to the callee, which will store the cur-
rent value of EBP (a register holding the stack base pointer) and allocate space for
any local variables. Figure 1 shows an example of a prepared stack frame using the
cdecl calling convention [8]. Upon conclusion of the function, the stack frame is
discarded and execution returns to the caller.

Caller’s Stack Frame Higher Address |

Variadic Argument N

Variadic Argument 1

Non-Variadic Argument M

Non-Variadic Argument 1

Return Address
Saved EBP (Caller’s EBP) [«<— EBP

Local Variables Lower Address l

Fig. 1: An example stack frame, with data that may be accessed by va_arg in white

While the ISO C standard provides a standard interface for accessing variadic
arguments, it does not provide a specific implementation or mechanism for the
macros [14]. The underlying implementation is dependent on both the platform and
compiler as each platform has slightly different calling conventions (although in
practice the differences between compilers are likely negligible). The standard re-
quires variadic arguments to be accessed through a struct called va_1ist and a set
of macros. The va_list struct records data about the next variadic argument to be
accessed. The struct internals do not need to be manipulated to enforce AWC and
are thus omitted, but a well-detailed description of their implementation in GCC can
be found in [1]. In general, the purpose of each macro is as follows.

* va_start is responsible for populating the initial state of the va_list.

* va_arg retrieves the next stack argument (of a type specified by the caller).
¢ va_copy makes a clone of the va_list.

e and va_end performs any necessary maintenance when concluded.

In most C compilers, va_arg does not verify that the next argument being ac-
cessed belongs to the callee function’s variadic argument list; instead, the next re-
gion of memory is accessed regardless. Variadic-function attacks are possible be-
cause this boundary check is omitted. A function should be restricted to accessing
certain data in its own stack frame, but variadic-function attacks can be used to by-
pass this restriction, defeat Address Space Layout Randomization, and take control
of the program by manipulating return addresses [10].

Format-string attacks, a subset of variadic-function attacks that were first discov-
ered in 1999 [2], have garnered a great deal of attention. Formatting functions like
printf and fprintf receive a format string containing a series of format spec-
ifiers as input. The format specifiers indicate the location and presentation of data
that should be inserted into the format string, and each specifier corresponds to a
variadic argument. These functions do not verify their arguments, nor do they en-
sure that the number of format specifiers matches the number of variadic arguments.
Even if an argument is of an incorrect type or does not exist, data will be accessed
from the stack and output in accordance with the specifier’s rules. An attacker can
use these specifiers to leak data and addresses from the stack and, in the case of the
%$n specifier, write arbitrary data to memory [6]. For example, the following C code
which prints user output using print £ can be exploited to leak a return address.

void vuln(char =user){ printf(user); }

Numerous defenses against format-string attacks have been proposed. One solu-
tion is to switch to a type-safe language, but developers often eschew such a time-
consuming solution requiring rewriting the codebase. Alternatively, many C and
C++ compilers include warnings that alert programs to potentially variadic function
vulnerabilities; an example of such a warning is the ~-Wformat GCC option [12].
It is up to the programmer to use these warnings and correct any issues found by the
compiler.

More sophisticated defenses have also been developed. An early example is For-
matGuard [3], which uses argument counting to abort programs that pass too many
arguments to print f-like functions. The authors of FormatGuard note that it fails
when attackers can achieve their goals without exceeding the passed number of ar-
guments, if the variadic function call is indirect, or if the called function takes a
va_list directly. These drawbacks yield two failures amongst the tested programs
in [3]; format attacks against wu-ftp and gftp still succeed even when protected
by FormatGuard. The microbenchmark overhead of FormatGuard was found to be
37%, while the macrobenchmark overhead was 1.3%. Therefore, FormatGuard pays
a very low performance cost to mitigate a reasonable portion of format-string at-
tacks.

HexVasan [1] implements type-checking for variadic functions by ensuring that
calls to va_arg match the real argument types passed to function calls. This strict

type checking violates two rules set by the ISO C standard. First, an object of in-
teger type may be retrieved by specifying either the corresponding integer type or
the unsigned integer type, if the value of said integer may be represented in both
types. Second, an object of type void+ may be retrieved by specifying charx,
and vice versa [6]. HexVasan may also substantially increase the execution time
of variadic functions, possibly without significantly affecting the execution time of
entire programs. The microbenchmark overhead of HexVasan was found to be 400-
600%, while the macrobenchmark overhead was only 0.1-1.2%. Clearly, the mac-
robenchmarks chosen have a significant impact on the measured overheads, as For-
matGuard has a much lower per-variadic-function (microbenchmark) overhead than
HexVasan, yet HexVasan reported a much lower per-program (macrobenchmark)
overhead. We therefore believe microbenchmarks to more accurately reflect the per-
formance of variadic-function protection mechanisms, but perform both benchmark-
ing strategies to measure our prototype in Section 5.

The LibSafe [18] software package for the GNU C standard library (glibc) in-
tercepts unsafe variadic function calls and replaces them with safe alternatives. The
article on LibSafe does not provide performance metrics. Another tool, Lisbon [7],
rewrites Win32 binaries to harden them against format-string attacks. Lisbon ac-
complishes this without needing access to the original source code. However, Lisbon
requires debug registers to be available to perform the bounds checking, assumes
that variadic arguments are not skipped, and assumes that the va_1ist passed as
an argument to vprintf-like functions is located on the stack as part of an upstream
caller function. There is also the White-Listing [9] technique, which permits writes
only to valid addresses by creating a dynamic range of addresses that may be modi-
fied by the $n format specifier. Enforcement is then achieved by modifying print £
to compare the provided address to the list of allowed addresses when using the $n
format specifier.

It should be noted that the _-FORTIFY_SOURCE option in GCC does not in-
clude protection for variadic arguments. While the fortify optimization does pre-
vent many out-of-bounds issues, the variadic macros are not listed as protected.
While the print f£-like functions are protected, this protection does not extend to
the variadic arguments. This can be observed by compiling a simple call such as
printf ("$d%d%d") with the fortify optimization at the highest level. However,
this option does provide some protection against format-string attacks by requiring
that %n specifiers appear in read-only memory (an attack is expected to occur in
writable memory space) and disallowing type assumptions for positional arguments
in glibc, effectively preventing out of order positional specifiers for attacks.

In summary, a large and diverse array of solutions has been developed to pro-
tect software from variadic function vulnerabilities, and each solution has its own
strengths and weaknesses. Table 1 summarizes and compares these prior works with
the new technique presented here (AWC). Only the incomplete solution of adding
compiler warnings has been widely adopted.

Table 1: A comparative analysis of defensive mechanisms against variadic-function
attacks

i i L Failure C-Spec .)
Product |Attack Type| Inject Via Conditions | Compliant Micro Perf |Macro Perf
FormatGuard | Format str. | Recompilation vprlnt. £-like Yes 37% <=13%
functions
HexVASAN | Variadic | Recompilation | 0 K1OWn No | 400-600% | 0.1-1.2%
failures
LibSafe 2.0 | Format str. | Lib. Replace ghbucsésdnot Yes Unknown | Unknown
Lisbon Format str. | Instrumentation No flebug Yes 217.70% 0.3-2%
registers
White-Listing | Format str. | Recompilation | PZ2EE 0T 1 yeg 10-75% | 0.3-1.6%
%n is not used
AWC Variadic | Recompilation | VHSWPIng Yes |17.8-36.1%| 0.1-1%
attacks

3 Argument Width Counting

Each argument in a function call, when dynamically pushed onto the stack, con-
sumes a predictable number of bytes in memory; the size of this memory space
is an argument’s width. The callee function should be limited to the allocated re-
gion of memory for arguments when accessing the function arguments. By counting
the width of variadic arguments that were placed on the stack at the call site, and
then tracking the number of bytes consumed by the callee, we can effectively track
whether there has been illegal access to stack memory. We refer to this memory
access-control policy as Argument Width Counting (AWC). AWC is enforceable
because the width of the arguments can be reliably calculated at runtime, and invo-
cations to va_arg provide the number of bytes being accessed.

When a function call begins, each argument is pushed to the stack in reverse
order, as shown in Figure 1. Before the last variadic argument is pushed onto the
stack (i.e., ESP in Figure 1 points to the entry marked ’Saved EBP”’), AWC records
the value of the stack pointer, and after the first variadic argument is pushed (i.e.,
ESP points to the entry marked ~Variadic Argument 1””), AWC subtracts the current
stack pointer from the recorded value. The result of this subtraction gives AWC the
sum of the widths of all variadic arguments. This total width can then be tracked
and decremented each time va_arg is called, and an error can be emitted if the
total width is bypassed.

As an optimization, it is often unnecessary to perform the subtraction dynami-
cally (to compute the total width of function arguments), because the widths of the
arguments are likely to be known statically by the compiler. In this case, we can
store the statically known total width of arguments at compile time; our prototype
implementation takes advantage of this optimization.

The exact mechanism implemented to enforce the AWC policy may vary, but can
generally be split into two parts: 1) storing the remaining width, and 2) validating the

va_arg call during execution. One potential storage mechanism may be similar to
HexVASAN’s, where the recorded width sums are kept in a thread-local map keyed
by va_list pointers, placing the sum into the map via va_start, and decrement-
ing the sum via va_arg. Depending on the level of control the compiler has, a new
tracking field may instead be added directly to the va_1ist struct at compile time.
We use this technique in our prototype mechanism due to the performance advan-
tages. This optimization is possible as the va_11ist struct is not well defined by the
C standard, and thus is implementation dependent [14, 17]. Fortunately, the macros
that manage va_list are also implementation dependent, and validation checks
can be added to abort the program if va_arg is invoked invalidly without breaking
from the C specification, as it is undefined behavior [17]. Our implementation emits
these changes during compilation, but other implementations could, for example, be
developed to add them to an existing binary.

AWC is capable of mitigating all known attacks in which the attacker uses
va_arg to escape the stack space of variadic arguments to gain access to other pro-
gram memory on the stack, which composes the vast majority of observed attacks
against variadic functions. AWC is however less comprehensive than HexVASAN,
as it does not enforce that the arguments are of a specific type, but this limitation of
AWC may not be of great practical significance because previous work has observed
no attacks that are based strictly on mistyping variadic arguments [3]. Additionally,
AWC’s lack of strict type enforcement allows for full compliance with the C stan-
dard, in contrast to HexVASAN (as explained in the preceding paragraph). Finally,
AWC’s simplified mechanism enables it to achieve performance overheads superior
to HexVASAN.

Unlike FormatGuard, which counts and validates the number of arguments pro-
vided to the print f function, AWC’s more generalized approach can be applied to
all uses of the va_arg function, which provides additional security to all programs
that use variadic functions, not just those that use print £. AWC’s protection en-
compasses other features that FormatGuard could not protect, such as indirect calls
and calls to vsprintf (or similar functions) that take a va_1ist directly. Our
AWC implementation accomplishes this by storing the data in the va_1ist struct,
allowing the verification to be performed wherever va_arg is called; other imple-
mentations such as those mentioned earlier can achieve similar effects. Despite this
additional protection, AWC achieves low overhead comparable to FormatGuard,
discussed further in Section 5.

We therefore believe that AWC strikes a good balance between security and per-
formance while complying with the C standard.

4 Efficiently Adding AWC to Compilers

A prototype AWC mechanism was implemented using Clang, a C/C++ compiler
built upon the LLVM code generator and optimizer [15]. The implementation is

publicly available on GitHub, including a detailed write-up, build scripts, a compre-
hensive set of test cases, and benchmarking programs [4, 5].

While AWC can be achieved in a variety of ways, as discussed in Section 3, we
believe the simplest and most efficient method is to add AWC during compilation.
In order to accommodate AWC, a compiler must satisfy four requirements. In the
unlikely case that any one criterion is not satisfied, AWC will be difficult or impos-
sible to fully implement using the techniques described in this section and another
technique would be needed instead. The four requirements are:

an entry point for function call code generation;

the ability to determine if a function call is variadic or not;

knowing the number of bytes that function parameters take up on the stack;
and the ability to modify the variadic macros and va_list struct.

Ll .

Clang meets all of these requirements and all of the necessary modifications are
available and described in detail on Github [4]. The authors are unaware of any
C/C++ compiler that would be unable to meet these requirements. While some
compilers may need larger modifications than others, all of the required informa-
tion and features would be necessary to fully implement a C compiler that meets the
C standard. GCC’s ability to meet these requirements is described in more detail in
Section 6.

4.1 Implementing AWC in Clang

When a function call is generated, our modified Clang implementation will now in-
ject the variadic argument width into the argument list between the last non-variadic
argument and the first variadic argument. This can be done simply by tracking the
number of arguments that have been generated; if there are N non-variadic argu-
ments, then the width should be generated as an argument after N arguments have
been generated. While Clang does determine if a function is variadic or not, it does
not directly calculate the number of non-variadic and variadic arguments. However,
Clang does need to iterate over every argument to determine and validate the ar-
gument type. Non-variadic argument types are checked first, as they come directly
from the function declaration. All of the remaining arguments are variadic and their
types are determined afterwards based on the argument expression type. As the types
are stored in a vector, the number of non-variadic arguments can be determined by
checking the size of the vector between these two steps. Finally, the total width of
the variadic arguments can also be determined while iterating over their types by
summing the memory size of each type. The addition to Clang to accomplish this
is shown in Figure 2; note that the width of each argument is shown in bits, so the
value is divided by 8 to convert to bytes.

With the argument width injected, the next step is locating it on the stack when
va_start is called. Clang (or, more precisely, the LLVM x86-64 backend) does

size_t numNonVariadic = ArgTypes.size ();
uint64_t varArgsSize = 0;
for (auto =A:1lvm:: drop_begin (ArgRange, ArgTypes.size ()))

{

varArgsSize += getContext().getTypeSize (argType)/8;

Fig. 2: Calculating the sum of widths during a function call in Clang

not use the traditional cdecl call style discussed earlier. Instead, a register-first call-
ing convention is implemented, which places some arguments into registers rather
than on the stack. Note that this calling convention and the terminology are not as
standardized as cdecl; while the high-level implementation will be similar, there
may be variations depending on the compiler and operating system (e.g., number
of registers and the assumptions about the contents of those registers). Clang places
the first 6 integral arguments and the first 6 floating pointing arguments in registers.
The variadic function implementation is designed to account for this by copying the
registers onto the stack when the variadic function begins. This means that there are
now two locations where the variadic width can be found: either in the register store
area copied onto the stack or in the normal stack location above the return address
where they are normally found.

To determine which location the width has been stored, it is necessary to un-
derstand how va_arg retrieves the next variadic argument. The layout for Clang
and the relevant va_1ist values are visualized in Figure 3. The va_list struct
contains the reg_save_area pointer, which is the address of the first register ar-
gument stored on the stack. The five arguments (or a O if the argument is non-
variadic) are stored between reg_save_area and reg_save_area+40. When
va_start is executed, gp_offset in the va_list is initialized to the corre-
sponding offset for the first entry with a variadic argument, or 48 if all six argu-
ments were non-variadic. Thus, each call to va_arg retrieves reg_save_area
+ gp-offset and then increments gp_offset by 8. Once gp_offset is
48, all of the variadic arguments in the register area have been consumed, and
overflow_arg._area, which points to the next variadic argument on the stack,
is retrieved and incremented instead. Note that the same process is done for the
floating-point arguments that were stored in registers, using fp_offset as the off-
set instead.

Our Clang implementation must perform this lookup when running va_start.
In the worst-case scenario, it is equivalent to running va_arg an additional time.
Some optimizations can be made, however, since the width will always be the first
variadic argument. In Clang’s implementation, the calculation could be entirely per-
formed at compile time, since calls to va_start are entirely inlined and the lo-
cation could be determined based on the number of non-variadic arguments passed

Caller’s Stack Frame |Higher Address |
Overflow Var. Argument N |Lower Address |

Overflow Var. Argument 1 < overflow_arg_area
Overflow Argument M

Overflow Argument 1
Return Address

Saved EBP (Caller’s EBP) < EBP

Local Variables

3 «— ESP
Floating Point Register 7 |« reg_save_area + 160

Floating Point Register 0 |« reg_save_area + 48

General Register 5 < reg_save_area + 40

General Register 0 < reg_save_area + 0

Fig. 3: Layout of the x86 stack with Clang during a variadic function call

to the function (i.e., if six non-variadic arguments are passed, then use the overflow
pointer rather than the register save area). However, as this code is generated as part
of LLVM’s x86 backend implementation for va_start, access to the function pro-
totype was not previously necessary and is not available. An additional argument
could be added to LLVM’s code generation call for va_start with the number of
non-variadic arguments, but this would require changing LLVM’s lowering struc-
ture. This is undesirable for our prototype, as the intention is to limit large changes
to Clang/LLVM, so instead our prototype generates a call to va_arg at the end of
va_start to retrieve the value.

The final modification is to check and decrement the remaining width during
va_arg. This is achieved by taking advantage of the Clang code builder API, which
builds an execution chain processed by LLVM. The binary AND operation with the
value 0x8000000000000000 is equivalent to remaining < O butis used in-
stead of a standard comparison as this operation can be executed faster.

5 Empirical Analysis of AWC

The performance cost of AWC was evaluated by conducting a microbenchmark of
the Clang compiler; that is, a stress test was performed that focused specifically
on the execution of the impacted variadic functions. In addition, Clang was mac-

robenchmarked on the man2html program [11] as this was used by existing work for
benchmarking. The following subsections present the benchmarking processes and
the results, comparing the standard compilers to their AWC-enabled alternatives.
All of the testing files and scripts are available in the public GitHub repository [5].

5.1 Microbenchmarking AWC

A test program that stresses the variadic functions was developed to benchmark per-
formance with and without the addition of AWC. The benchmark program, with
the relevant function shown in Figure 4, takes a number of integers as variadic ar-
guments and returns the sum of those integers. The number of arguments to be
summed, n, is passed as the first argument, followed by all of the integers to be
summed as variadic arguments. This function has one invocation of va_start and
va_end, and n invocations of va_arg (where the relatively expensive check is per-
formed). The function is concise, providing enough complexity to evaluate the over-
head of the variadic arguments, but without being overshadowed by other potentially
expensive or volatile computations (e.g., the output of a function like printf).

int sumN(int n, ...){
va_list args; int sum = O;
va_start(args, n);
for(int i = 0; i < n; i++)
sum += va_arg(args, int);
return sum;

}

Fig. 4: A variadic summation function used for benchmarking AWC-enabled com-
pilers

The C standard function clock () was used to measure the runtime of the sumN
function. A small wrapper function records the start time, performs one million in-
vocations of sumN () , and then concludes by recording the final end time. The CPU
time consumed was calculated by dividing the difference between the end and start
times by the C standard CLOCKS_PER_SEC constant. The benchmarking was per-
formed with an increasing number of arguments to determine how the performance
scaled with the number of arguments provided to a variadic function. The bench-
mark program was run 1000 times per case, and the final recorded time was the
average of those runs. Thus, each of the 1000 runs yielded the cost of one million
invocations of sumN; a total of 1 billion invocations for each of the given number
of arguments. For all cases, the system was a Ubuntu 22.04.3 LTS desktop (under
the Windows Subsystem for Linux on Windows 11) utilizing an Intel i7-1355U pro-

cessor and 32 GB of RAM. The results of the benchmark for Clang are recorded in
Table 2.

Table 2: Microbenchmark results for Clang with AWC

of Args Time Time |Overhead|Overhead
(ms) |w/ AWC| (ms) (%)

0| 2.435 2993 0.558 22.935

3| 5.610 6.816 1.206 21.507

16| 28.886 34.024 5.137 17.785
100({117.971 160.528 42.557 36.074

These benchmark results show the performance impacts of AWC on a simple
variadic function. When provided between 0-16 arguments, AWC performs at about
a fairly consistent 20% overhead, before scaling up to 36% at 100 arguments. We be-
lieve this scaling is due to the different calculations that occur based on the location
of the next variadic argument to retrieve. The first 6 arguments all require additional
calculations to locate their position, while arguments beyond that are located im-
mediately by a direct pointer. The AWC-enabled compiler, however, has an extra
calculation to perform regardless, and this accumulates in a noticeable performance
difference when scaled up to a large number of variadic arguments. Thus, AWC
exhibits a nonlinear time increase with respect to the number of variadic arguments.

5.2 Macrobenchmarking Clang with AWC

In addition to the microbenchmarking, the modified Clang compiler was also bench-
marked using a real-world program, man2html. The man2html program, which con-
verts Linux man pages into an HTML document, was chosen as it makes frequent
use of variadic functions (printf and print f-like functions), is modified infre-
quently, and was also used for benchmarking by two of the existing mechanisms
described in Section 2.

Man2html was compiled twice, once with the original Clang compiler, and once
with the modified, AWC-enabled version. The man2html program was then run on
four man pages available by default on Ubuntu 22, chosen by size: rbash at 161
bytes (smallest), modify_1dt at 5636 bytes (median), dpkg-buildpackage at
27,782 bytes (mean), and x86_64-1inux—-gnu-gcc at 1,407,155 bytes (largest).
Each case was run 10,000,000 times, and the average time taken was calculated. The
results of the benchmarking can be found in Table 3.

Reviewing the results, the performance differences in man2html compiled with
and without AWC are insignificant, just below 1% in the worst-performing case.
Such differences are only noticeable when averaged over such a large scale and are
indistinguishable from environmental factors on an individual basis; smaller-scale
tests will regularly show AWC outperforming the non-AWC version.

Table 3: Benchmarking Clang with AWC on man2html

Time | Time [Overhead|Overhead
(ms) |w/ AWC| (ms) (%)
rbash| 1.367 1.378 0.011 0.830
modify_ldt| 1.483 1.485 0.002 0.121
dpkg| 1.909 1.928 0.019 0.984
gcc|29.532 29.673 0.140 0.473

Program

6 Discussion

Enforcing AWC mitigates all observed variadic-function attacks without limiting
or otherwise invalidating any intended functionality. AWC’s protection extends to
va_copy, passing va_list variables as function arguments, and complex use
cases such as those seen in print £. This protection is extended to the positional
parameters supported in glibc as these function by repeatedly calling va_arg [5].
Protection is not extended to the va_list structs themselves; programs that ac-
cess and manipulate the underlying data structures directly could still be exploited.
However, such code would need to be specific to the compiler implementation and
would violate the defined standard.

AWC can be easily implemented in a compiler without the need to modify the
source program. There are no unintended side effects from enforcing AWC with our
prototype implementation; all C programs that avoid undefined behavior according
to the C standard specification will be compiled into an output program that is func-
tionally equivalent to the output program without AWC protections (excluding, of
course, the intended termination of the program when making an out-of-bounds
va-arg call). Programs that violate the C standard (e.g., by making compiler-
specific assumptions) will function equivalently as long as va_start is used to
initialize all va_1ist variables, as this will account for the width argument be-
ing stored as the first variadic argument; even manually implementing va_arg will
work equivalently, since the necessary calculations for va_arg are unchanged after
va_start is called.

The AWC policy is quite flexible as the assumptions or requirements to enforce
the policy are minor. For example, moving the variadic arguments or the va_list
from the stack to the heap or to a different location on the stack would require, at
most, trivial changes to the AWC implementation. This flexibility is possible as only
existing compiler features and variadic macros are used to implement the runtime
monitor (specifically, the existing function to add variadic arguments and va_arg).
Some of the proposed runtime improvements may make such assumptions about the
layout, but the current prototype makes no such assumptions.

The prototype AWC mechanism also shows promising performance results when
compared to prior solutions. FormatGuard imposes a consistent 37% overhead on
calls to print £, which is higher than the cost incurred by AWC, though it does
not scale with the number of arguments [3]. Interestingly, FormatGuard was re-
benchmarked and shown to have argument-scaling performance costs on sprintf,

hitting 38% at just two %$n specifiers (versus 7.5% with no arguments) [7]. Hex-
VASAN incurs 4-6 times the overhead on variadic function calls, which is an order
of magnitude higher than AWC’s performance impact [1]. Libsafe does not provide
any performance metrics, so it is impossible to compare the cost of that implemen-
tation with AWC [18]. Lisbon shows performance costs in the 1.5 to 3 times range,
incurring the highest percentage overhead when zero arguments are present. White-
Listing incurred a performance cost ranging from 10% to 75%, based on the specific
function being called, the number of arguments, and the type of format specifiers
present.

The AWC-enabled Clang prototype outperforms, or is on par, with each of
these prior implementations. With AWC achieving a microbenchmarked overhead
of around 20-30%, only White-Listing outperforms AWC in some scenarios. White-
Listing, however, only applies to print f-like functions and only protects against
attacks that use $n modifiers. When macrobenchmarked on the man2html pro-
gram, AWC achieves an overhead between 0.1% to 0.98%, again performing on
par or better than the other solutions. AWC still has potential room for improvement
as well. By performing the va_arg calculation at compile time, the performance
can be improved even further as the added instructions are reduced down to three
store/load instructions, with no branching conditionals necessary. While the modi-
fications were not fully tested, as they would require changes to LLVM’s lowering
structure API for the variadic functions, a preliminary version achieved less than
5% overhead when passing 0 variadic arguments in the microbenchmark program.

We first investigated the possibility of adding AWC to GCC (instead of Clang)
using the same technique described in Section 4. While GCC does, strictly speaking,
meet the four requirements, the variadic macros and va_list struct are written in
a builtin and stored directly as pre-generated intermediate code, rather than C/C++
code. An engineer wishing to edit them would need to identify their locations in
the code and understand the machine-independent language called Register Trans-
fer Language Expressions (RTX). While RTX is documented, GCC considers the
variadic macros internal. This designation means that GCC provides no documenta-
tion on them, their operations, or their locations [13]. Modification of these macros
requires extensive knowledge of GCC and is beyond the scope of this work. For this
reason, Clang was instead chosen as the various variadic functions are implemented
in C++ as part of the LLVM backend. As the change would consist of only a single
conditional check, we speculate that a software engineer with some familiarity with
GCC and RTX could quickly implement this step.

6.1 Bypassing AWC Protection

As with other safeguards added to the C programming language, AWC is not in-
fallible. There are two situations where the authors foresee an attacker potentially
bypassing the protection from AWC: corrupting the remaining value in the
va_list or mistyping the variadic arguments. Fortunately, the authors predict sit-

uations where these are likely to occur and also be of value to an attacker are rare,
as discussed below.

The first attack is straightforward; if an attacker can modify the remaining
value, then they can increase the value to allow for out-of-bounds reads by caus-
ing va_arg to be called too many times. However, this modification must occur
between the call to va_start and the malicious va_arg call; the remaining
value will not be available to modify before va_start, and the program will ter-
minate if the malicious va_arg call is made before remaining is increased. This
means such an attack is likely impossible against print f unless some new vulner-
ability is discovered in the print f implementation that allows for remaining to
be modified.

One major complication with using a buffer overflow to perform such an attack is
that remainingis located at the end of the va_11ist (putting it at a higher address
on the stack) and requires the attacker to overwrite all of the other values in the struct
before overwriting remaining. This means that the attacker must replace these
values or the va_arg call will segfault and crash the program; thus, this requires
the attacker to leak the stack addresses to perform this attack. Considering a typical
use case for a variadic function attack is to leak stack addresses to use in another
attack, such an attack might not grant the attacker any new capabilities.

Finally, properly ordering local variables on the stack so buffer overflows can-
not overwrite non-buffer local variables (a technique automatically implemented by
default during compilation with GCC) greatly reduces the threat of such an attack
occurring as well. More complicated techniques that allow for arbitrary writes to
memory would also succeed in bypassing AWC, but if an attacker can successfully
perform such an attack, they most likely do not even need to manipulate the variadic
arguments to achieve their goals.

The second attack, where a variadic argument is mistyped, was previously de-
scribed in Section 2. AWC is not designed to prevent such an attack. In addition to
the reasons described in the previous section (i.e., lack of natural occurrence and
compliance with the C standard), this attack is not a consequence of the variadic
argument implementation and is instead due to C lacking type checking at runtime.
While the most logical place to find such mistyping attacks is in combination with
a variadic function attack, they are possible in other scenarios and are not caused
by the variadic functions. These mistyping attacks will be possible anywhere an at-
tacker can control a variable’s content and the type it is processed as. Such attacks
are unlikely to be observed naturally, however, as they require functions to be used
in contrived ways, such as printf (user_input, user_input2), where the
user input supplies both the format string and the first argument.

7 Conclusions

Variadic-function attacks (and by extension, format-string attacks) can be just as
severe as buffer overflow attacks and present an ongoing threat to software ap-

plications. Despite numerous proposed mitigations, ranging from simple argument
counting via wrapper functions to a full type-checking system for variadic functions,
widespread adoption has remained elusive. AWC is a new solution for mitigating
variadic function attacks by ensuring variadic functions cannot misuse invalid mem-
ory as function arguments. AWC is effective, low cost, and can be applied to com-
pilers, providing universal protection across all generated programs. Once applied
to a compiler, all emitted programs will benefit from variadic attack mitigations.
The empirical evidence presented in Section 5 shows AWC is at least as effective as
the best-known real-world attack mitigation solution, HexVASAN, and manages to
outperform the most lightweight solutions like FormatGuard and White-Listing.

This significant performance uplift is achieved by leveraging the fact that the C
specification does not define how a program should access variadic arguments, al-
lowing for changes to be made without becoming incompliant with the spec. Prior
attempts have not made direct changes to this mechanism, instead applying modifi-
cations to usage sites, if at all [1,3,7,9, 18]. The change made by AWC does change
the size of the compiler-internal struct va_1ist and changes the operations done
by the compiler-internal macros va_start, va_arg, and va_end, which could
potentially be a problem if a program was relying on implementation details. How-
ever, these are builtins, and as such are not public API, so programs that are relying
on implementation details of these builtins are doing so at their own risk, as they
could change at any time [13].

Future work could prioritize the integration of AWC into other prominent op-
timizing compilers like GCC, including its inclusion in future upstream releases.
Fine-tuning is essential, especially to enable mixed AWC and non-AWC program
execution, but this level of compatibility could be achieved with minimal difficulty
at the cost of introducing some security considerations for non-AWC-enabled pro-
grams. Alternatively, future work could focus on determining if the mechanism
utilized here is the most efficient for enforcing AWC. Such alternative mecha-
nisms may differ in how they calculate or pass the argument width through the call
site, track the consumption of arguments, or optimize the check done from within
va_arg (e.g., implementing directly in assembly).

References

1. Biswas, P., Federico, A.D., Carr, S.A., Rajasekaran, P., Volckaert, S., Na, Y., Franz, M.,
Payer, M.: Venerable variadic vulnerabilities vanquished. In: 26th USENIX Security
Symposium (USENIX Security 17), pp. 186—-198. USENIX Association, Vancouver, BC
(2017). URL https://www.usenix.org/conference/usenixsecurityl?7/
technical-sessions/presentation/biswas

2. Common Weakness Enumeration: Cwe-134: Use of externally-controlled format string.
https://cwe.mitre.org/data/definitions/134.html (2023). Retrieved
September 7, 2023

3. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., Lok-
ier, J.: FormatGuard: Automatic protection from printf format string vulner-
abilities. In: 10th USENIX Security Symposium (USENIX Security 01).

10.

11.

12.

13.

14.

15.

16.

17.

18.

USENIX Association, Washington, D.C. (2001). URL https://www.
usenix.org/conference/10th-usenix-security-symposium/
formatguard-automatic-protection-printf-format-string

. Dennis, K.: argwidthcounting/awc-clang: Clang compiler with AWC. https://github.

com/Ktrio3/awc-clang (2024). Retrieved January 29, 2024

. Dennis, K.: argwidthcounting/awc-test-suite: Testing suite for AWC. https://github.

com/Ktrio3/awc-test-suite (2024). Retrieved January 29, 2024

. International Standards Organization: ISO/IEC:9899:TC2 (programming languages -

C) (2005). URL \url{https://www.open-std.org/jtcl/sc22/wgld/www/
docs/nll24.pdf}. Retrieved September 9, 2023

. Li, W,, Chiueh, T.c.: Automated format string attack prevention for win32/x86 binaries. In:

Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), pp. 398—
409 (2007). DOI 10.1109/ACSAC.2007.23

. Microsoft: _cdecl. https://learn.microsoft.com/en-us/cpp/cpp/cdecl?

view=msvc-170 (2021). Retrieved September 9, 2023

. Ringenburg, M.F., Grossman, D.: Preventing format-string attacks via automatic and efficient

dynamic checking. In: Proceedings of the 12th ACM Conference on Computer and Commu-
nications Security, CCS °05, p. 354-363. Association for Computing Machinery, New York,
NY, USA (2005). DOI 10.1145/1102120.1102166. URL https://doi.org/10.1145/
1102120.1102166

Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming: Sys-
tems, languages, and applications. ACM Trans. Inf. Syst. Secur. 15(1) (2012). DOI
10.1145/2133375.2133377. URL https://doi.org/10.1145/2133375.2133377
snapshot.debian.org: man2html - debian snapshot. https://snapshot.debian.org/
archive/debian/20110109T212222%/pool/main/m/man2html (2024). Re-
trieved January 29, 2024

The GNU Project: 3.8 options to request or suppress warnings. https://gcc.gnu.org/
onlinedocs/gcc/Warning-Options.html (2023). Retrieved September 9, 2023
The GNU Project: 6.59 other built-in functions provided by gcc. https://gcc.gnu.
org/onlinedocs/gcc/Other-Builtins.html (2023). Retrieved September 10,
2023

The GNU Project: A.2 variadic functions. https://www.gnu.org/software/libc/
manual/html_node/Variadic-Functions.html (2023). Retrieved September
10, 2023

The LLVM Organization: The llvm compiler infrastructure. https://github.com/
1llvm/1llvm-project (2024). Retrieved January 29, 2024

The MITRE Corporation: Cve search results for ‘format string’. https://cve.
mitre.org/cgi-bin/cvekey.cgi?keyword=format$20string (2023). Re-
trieved September 10, 2023

The Open Group: stdarg.h. https://pubs.opengroup.org/onlinepubs/
007904975/basedefs/stdarg.h.html (2021). Retrieved September 10, 2023

Tsai, T., Singh, N.: Libsafe 2.0: Detection of format string vulnerability exploits. Tech. rep.,
Avaya Labs, Murray Hill, NJ (2001)

