
Through the Lens of Code Granularity: A Unified
Approach to Security Policy Enforcement

Shamaria Engram Jay Ligatti
Department of Computer Science and Engineering

University of South Florida
Tampa, FL, USA

Email: {sengram,ligatti}@usf.edu

Abstract—A common way to characterize security enforcement
mechanisms is based on the time at which they operate. Mecha-
nisms operating before a program’s execution are static mecha-
nisms, and mechanisms operating during a program’s execution
are dynamic mechanisms. This paper introduces a different
perspective and classifies mechanisms based on the granularity
of program code that they monitor. Classifying mechanisms in
this way provides a unified view of security mechanisms and
shows that all security mechanisms can be encoded as dynamic
mechanisms that operate at different levels of program code
granularity. The practicality of the approach is demonstrated
through a prototype implementation of a framework for enforcing
security policies at various levels of code granularity on Java
bytecode applications.

Index Terms—security mechanisms, enforcement, policies

I. INTRODUCTION

Security mechanisms enforce policies on untrusted pro-
grams and are traditionally classified based on whether they
operate statically or dynamically. Some policies, such as
type safety, can be enforced either way. However, important
tradeoffs exist between static and dynamic enforcement.

Static mechanisms (e.g., static type checkers or virus scan-
ners) analyze all of a program’s source [1], intermediate
(e.g., [2]), or binary code (e.g., [3]) before its execution. Such
mechanisms allow policy violations to be caught before code
is put into production without inhibiting a program’s runtime
performance. However, it is undecidable to determine statically
whether an arbitrary program satisfies a nontrivial policy [4].
Consequently, static code analzyers typically enforce policies
conservatively and sometimes report false positives [1].

Dynamic, or runtime, mechanisms (e.g., firewalls or oper-
ating systems) monitor program events during a program’s
execution and intervene as necessary. These mechanisms can
enforce some policies more precisely than static mechanisms
because of available runtime information. However, mecha-
nisms that only monitor the current execution are limited in
the types of policies they can enforce [5]. Other runtime mech-
anisms [6] can enforce a larger class of policies when they
can access auxiliary program information (e.g., results of a
static analyzer). Nevertheless, dynamic mechanisms generally
sacrifice runtime performance for precision.

Hybrid mechanisms combine a static and dynamic approach
to policy enforcement and can enforce policies that are difficult

to enforce by just a static or dynamic mechanism alone. Some
program rewriters—mechanisms that modify programs prior
to their execution to ensure policy satisfaction [7]—can be
viewed as a particular type of hybrid that is able to perform
static code analysis and inline checks to enforce policy-specific
constraints at runtime for statically undecidable policies.

The static-dynamic view of security mechanisms is impor-
tant for providing a foundation for characterizing the class of
policies enforceable by both static and dynamic mechanisms.
However, this perspective presents a problem in addressing
two research questions:

1) Which policies are precisely enforceable by hybrid
mechanisms? A precise characterization of the class
of policies enforceable by such mechanisms has been
difficult to derive because different proof techniques are
used for the static and dynamic components [8].

2) Do additional mechanisms exist, beyond: static code
analyzers, runtime mechanisms, and hybrids?

A first step to answering these questions might be to reason
about security mechanisms more uniformly by casting existing
mechanisms into a single framework. This paper introduces
an alternative perspective for classifying security mechanisms
based on the granularity of code that they monitor. The
approach unifies existing classes of security mechanisms by
encoding them as runtime mechanisms that operate at one or
more levels of code granularity. The contributions of this paper
are as follows:

1) We present a general model of security mechanisms
parameterized by the granularity of program code that
they analyze and show that this model unifies existing
classes of security mechanisms (Section III).

2) We demonstrate the practicality of the model with a
prototype implementation for enforcing security policies
on Java bytecode applications. The implementation is
based on a Java library, called JaBRO, that we have
developed to enable runtime code analysis at various
levels of code granularity (Section IV).

3) We evaluate the effectiveness and efficiency of the
implementation by enforcing security policies on two
popular, open-source applications at various levels of
code granularity (Section V).



II. RELATED WORK

Prior work on the unification of security mechanisms within
a single framework is limited. Nonuniform runtime mech-
anisms, introduced in [6], have auxiliary knowledge about
a program, such as the results of a static code analyzer
that guarantees whether certain program events will occur.
Formal characterizations of the class of policies enforceable
by nonuniform mechanisms, with various capabilities, were
presented in [9], [10], [11]. Such mechanisms can enforce
policies that uniform runtime mechanisms—mechanisms that
only monitor the current execution and have no a priori
knowledge about the program—cannot enforce. However, the
nonuniform runtime mechanism model is not general enough
to capture all existing classes of security mechanisms because
they do not have access to a program’s code.

It was shown in [7] that any statically enforceable policy
is enforceable by a runtime mechanism if code analysis
can be performed immediately after the program is loaded.
However, [7] did not explore the implications of this claim
or whether runtime mechanisms can improve the precision at
which statically undecidable policies may be enforced.

Hence, we conclude from prior work that runtime mecha-
nisms can be viewed as generalizations of static mechanisms
when runtime mechanisms can access a program’s code, thus
providing a basis for a unified approach to policy enforcement.

III. A UNIFIED APPROACH

This paper encodes all security mechanisms as runtime
mechanisms that operate at one or more levels of program
code granularity, where the granularity is determined by well-
defined, modular program constructs. This section presents a
general model of runtime mechanisms and defines levels of
granularites at which mechanisms may operate.

A. Mechanisms

Mechanisms in this paper are runtime mechanisms that
enforce policies by intercepting security-relevant events just
before they are about to execute. To capture realistic behaviors
of security mechanisms, we model them as automata that can
permit, deny [5], modify [7], suppress, or insert [12] program
events based on the rules of a policy.

Definition. A security mechanism is an automaton
M = (I,O,Q,Q0, δ), where I is the set of possible
inputs to the mechanism, O is the set of possible outputs from
the mechanism, Q is a countable set of automaton states,
Q0 ⊆ Q is a countable set of initial automaton states, and
δ is a deterministic or nondeterministic transition function.
A deterministic δ is a function δ : Q × I → Q × O, and a
nondeterministic δ is a function δ : Q× I → 2Q×O.

An input i ∈ I to or an output o ∈ O from a mechanism can
be any well-defined program construct. For example, Figure 1
shows how an example Java program consists of different
granular program constructs. At the coarsest granularity are
whole programs, which decompose into packages, packages

Input Program Code

Program

Packages

Classes

Methods

Instructions

In
cr

ea
si

ng
G

ra
nu

la
ri

ty

Mechanism

Output Program Code

Program

Packages

Classes

Methods

Instructions

Fig. 1: A general security mechanism capable of inputting and
outputting program code at any level of granularity.

decompose into classes, classes decompose into methods, and
methods decompose into fine-grained program instructions.

B. Fine-Grained Policy Enforcement

Program instructions and values are at the finest level of
granularity. Instructions might be low-level assembly or micro-
code instructions, or high-level language program statements
(e.g., method invocations or assignment statements). Values
can be primitive or reference types or a collection of values
stored in a data structure.

A fine-grained policy can be enforced at runtime by moni-
toring individual events as they are attempted by the target pro-
gram and do not require mechanisms to access the program’s
code. For example, consider the policy that prevents target
programs from writing to files using FileWriter.write()

after reading from files using FileReader.read(). A run-
time mechanism enforcing this policy can monitor the method
invocations attempted by the target program. If the program
attempts to execute FileWriter.write() after executing
FileReader.read(), the mechanism can enforce such a pol-
icy by outputting System.exit(1) to halt the target program.
It is important to note that the mechanism only monitors the
invocations of the read() and write() methods and does
not analyze the code body of these methods; therefore, a
mechanism enforcing such a policy in this way operates at
a fine-grained level.

Fine-grained policy enforcement is beneficial when satis-
faction of the policy depends on runtime values. For example,
consider the above policy except programs can now write
to files after a file read if and only if the name of the file
being written to is log.txt. Assuming the file name is only
available at runtime, the policy can be enforced at a fine-
grained level because a mechanism only needs to examine
the value of the object instance invoking the write method
(i.e., the name of the file bound to the FileWriter object).

Mechanisms operating at this level cannot, in general,
precisely enforce hyperproperties [13], which are policies that
may require relationships to hold between different executions
of a program. This limitation of fine-grained mechanisms
exists because such mechanisms have no knowledge of other



possible program executions when only monitoring program
events as they are attempted during the current execution.

C. Medium-Grained Policy Enforcement

Medium-grained policies exclusively capture all well-
defined, modular language constructs in between fine-grained
program statements and whole programs, and can be enforced
by analyzing the code body of such constructs at runtime. For
example, consider an application-specific policy that states “if
a resource is acquired within an application-defined method
then the resource must be released before the end of the
method’s execution” [14]. This policy can be enforced stati-
cally by analyzing every method’s code body, but it can also be
enforced at runtime by: 1) intercepting the invocation of every
application-defined method, 2) fetching its associated class
file, in the case of Java, and 3) performing code analysis on the
method’s body. The benefit of enforcing this policy at runtime
over enforcing the policy statically is to more accurately
determine the potential execution paths of the program. For
example, consider the following method:

public void writeSubString(int index,String s){
FileWriter writer = null;
try{

writer = new FileWriter(
new File("substrings.txt"));

if(index < 10){
String newS = s.substring(0,index);
writer.write(newS);
writer.close();

} else{
String newS = s.substring(index);
writer.write(newS);

}
} catch(IOException e){

if(writer != null){writer.close();}
}

}

In this method, the FileWriter object is not closed in the
else branch. A sound static analyzer will take into account
all possible executions of this method and report that the
FileWriter object may not be closed. Assuming that the
source code cannot be simply edited, because it’s not available,
the policy may be enforced more precisely at runtime if the
mechanism can determine which branch will be taken.

Suppose writeSubString(5,"Hello, World!") is at-
tempted by the program. Knowledge of the runtime values
allows a medium-grained mechanism to determine that the
if branch may be taken and, if so, the FileWriter object
will be closed; therefore, the method can proceed to execute.
Now assuming writeSubString(10, "Hello, World!")

is attempted, the mechanism can then determine that the else
branch may be taken and that the FileWriter object may not
be closed. The mechanism can still allow the method to pro-
ceed but, if needed, insert an event to close the FileWriter

object just before the method returns.
Runtime code analysis allows for more precise policy

enforcement—as opposed to static code analysis—by security
mechanisms when they can determine probable execution
paths based on runtime values. However, to enforce policies at

this level of granularity, policy writers must be familiar with
low-level code when source code is not available.

D. Coarse-Grained Policy Enforcement

Coarse-grained policies can be enforced by performing
code analysis on a whole program’s source, intermediate, or bi-
nary code at runtime. Static code analyzers also analyze whole
programs but cannot take into account runtime information.

Static code analyzers can be encoded as runtime mecha-
nisms by implementing them to intercept program execution
at a program’s entry point. For example, in many high-level
languages (e.g., Java, C/C++, and Rust) the entry point is at
the main method. If a program takes command line arguments,
these arguments may be used to predict the execution paths
of the program. If the arguments can be used to rule out a
number of execution paths, then coarse-grained mechanisms
can be more precise than statically operating mechanisms.

E. Hybrid Policy Enforcement

Hybrid policies take into account code at two or more
levels of granularity. Traditional hybrid mechanisms combine
static code analysis and runtime enforcement. These types of
mechanisms can be encoded as pure runtime mechanisms by
monitoring coarse- and fine-grained program events. However,
our approach to hybrid policy enforcement is more general
because arbitrarily many levels can be combined.

Mechanisms that enforce policies exclusively at coarse- or
medium-grained levels may not always be able to precisely
predict control flow when medium-grained events are deeply
nested within coarse- and other medium-grained events (e.g.,
nested method calls). However, hybrid runtime mechanisms
can overcome this limitation by refining policy enforcement
during a program’s execution. For example, program rewriters
can be encoded as hybrid runtime mechanisms by intervening
at a program’s entry point for coarse-grained code analysis.
If code modification or inlined checks are necessary, the
mechanism can output a new version of the program with
the necessary modifications. A mechanism operating in this
way is similar to runtime mechanisms that replace unsafe
library function calls with safe versions (e.g., [15]), except the
hybrid runtime mechanism outputs a coarser-grained program
event, namely a safe program, with inlined checks for medium-
or fine-grained events. If the mechanism cannot decide how
to respond when a medium-grained event is reached during
execution, perhaps due to nested method calls depending on
runtime information, the mechanism can further refine policy
enforcement by outputting a new medium-grained event with
inlined checks to collect runtime information when the nested
method calls are reached.

IV. IMPLEMENTATION

This section presents details about our implementation and
explains how granular policies are enforced at runtime.



TABLE I: Possible policy granularities enforceable at each
AspectJ join point type.

AspectJ join point type Coarse Medium Fine
Main method execution

Non-main method execution
Method call

Constructor call
Static-initializer execution
Object pre-initialization

Object initialization
Handler execution
Advice execution
Field reference

Field assignment

A. Architecture
The implementation is composed of 3 core components:

AspectJ, a code analyzer, and JaBRO. AspectJ is an aspect-
oriented Java language extension that allows policy writers to
define aspects [16], similar to Java classes. Aspects contain
pointcuts, which capture one or more join points, and advice.
“Join points are well-defined points in the execution of the
program” [16, p. 329]. Table I lists the join point types allowed
by AspectJ and the possible policy granularities enforceable
at each join point. The main method execution is the only
join point that can be used to enforce a coarse-grained policy
because it is the entry point of the program. Any join point
that has a body of code provides the capability for enforcing
medium-grained policies, and every join point provides the
capability for enforcing fine-grained policies, because fine-
grained policies do not require code analysis. Advice is a block
of code to be executed before, after, or instead of a pointcut.

The code analyzer is code written by the policy writer to
analyze Java class files (e.g., data or control flow analysis).
This analysis ensures that a body of code adheres to the
security policy in question.

JaBRO (Java Bytecode Rewriter and Optimizer) is a library
that we have developed to extend the functionality of AspectJ
to enable code analysis on optimized bytecode at runtime. It is
composed of Javassist [17] and Soot [18], which are tools for
altering and optimizing Java bytecode, respectively. We have
made JaBRO available online [19].

B. Policy Enforcement
Coarse- and medium-grained policies are composed of an

aspect, JaBRO, and a code analyzer. Fine-grained policies only
consist of an aspect because they do not require code analysis.
To monitor the target program, the AspectJ compiler is used
to weave the policy into the target program, producing a self-
monitoring program as shown in Figure 2.

Figure 3a illustrates how coarse- and medium-grained poli-
cies are enforced during a monitored program’s execution:

1) A security-relevant event is intercepted by a pointcut.
2) Event context information, which includes the event

name, its enclosing class name, and runtime arguments,
and the program’s dependencies are input to JaBRO,
which is invoked from inside of the advice.

Target 
Program

Policy

Aspect

JaBRO

Monitored 
Program

Code 
Analyzer

AspectJ 
Compiler

Fig. 2: Weaving a policy into a target program.

• AspectJ provides the capability to obtain the event
context information through the join point construct.

• The program’s dependencies are needed to resolve
type information during the optimization process.

JaBRO uses the event’s context information to obtain the
class file that the event is declared in from the system
search path. JaBRO then rewrites the event to include
its runtime arguments within the event’s code body. If
the policy is coarse grained, JaBRO optimizes all of the
program’s class files. If the policy is medium grained,
JaBRO only optimizes the class file that the event is
declared in.

3) Code analysis is performed on the optimized class file(s),
and an analysis result is output.

4) The policy decision point decides to execute, suppress,
or insert an event based on the analysis result.

To illustrate the importance of JaBRO, consider the
writeSubString(5,"Hello, World!") method call pre-
sented in Section III. After obtaining writeSubString’s
enclosing class file, JaBRO first rewrites the method in the
following way:

public void writeSubString(int index, String s){
int index = 5;
String s = "Hello, World!";
FileWriter writer = null;
try{

writer = new FileWriter(
new File("substrings.txt"));

if(index < 10){
String newS = s.substring(0,index);
writer.write(newS);
writer.close();

} else{
String newS = s.substring(index);
writer.write(newS);

}
} catch(IOException e){

if(writer != null){writer.close();}
}

}

After rewriting, JaBRO propagates the arguments through-
out the method and optimizes it in the following way:

public void writeSubString(int index, String s){
FileWriter writer = null;
try{

writer = new FileWriter(
new File("substrings.txt"));

String newS = "Hello, World!"
.substring(0,5);

writer.write(newS);



Event 
context,
program
dependencies

Optimized 
class file(s)

JaBRO
Policy 

Decision 
Point

Underlying 
Executing 

System

Security-
relevant 
event

Analysis 
result(s)

Execute, 
insert, or 
suppress 
event

Aspect

Po
in

tc
ut

Advice

Monitored 
Program

Code 
Analyzer

(a) Coarse- or medium-grained policy

Event 
context

Policy 
Decision 

Point

Underlying 
Executing 

System

Security-
relevant 
event

Execute, 
insert, or 
suppress 
event

Aspect

Po
in

tc
ut

Advice

Monitored 
Program

(b) Fine-grained policy

Fig. 3: Runtime policy enforcement

writer.close();
} catch(IOException e){

if(writer != null){writer.close();}
}

}

Given the runtime values, JaBRO is able to eliminate the
else branch. A policy stipulating that file resources acquired
in a method be released before the end of the method’s
execution can be enforced more precisely by performing code
analysis on the optimized method rather than on the original.

Figure 3b illustrates how policies can be enforced at a fine-
grained level. Similar to coarse- and medium-grained policies,
security-relevant events are intercepted by pointcuts defined
in the aspect. The policy decision point can then make an
enforcement decision based on event context information.

V. EMPIRICAL EVALUATION

To evaluate the effectiveness of the implementation, we
enforced three security policies on two popular, open-source
Java applications. The first application was the US National
Archives and Resource Administration’s (NARA) file analyzer
and metadata harvester [20], which analyzes and collects meta-
data on files. The second application was JPlag [21], which is a
software plagiarism detection tool. Both applications conduct
operations on files and have the ability to access potentially
sensitive information on a system, which permitted us to
express practical policies.

We implemented policies to cover each level of granularity
(i.e, coarse, medium, and fine). The coarse-grained policy
disallowed network connections by prohibiting the use of
java.net.Socket to ensure that neither application could
exfiltrate sensitive information over the network. The medium-
grained policy required file resources acquired within a method
to be released before the end of the method’s execution [14].
This policy was enforced to ensure that the applications could

not deplete system resources. The fine-grained policy required
files containing sensitive information to be hidden from the
applications. This policy was enforced by checking whether
the values of file operations (i.e., file names) were contained
in a sensitive file list.

To evaluate the overhead introduced by the implementation,
we measured the average time to weave and enforce each
policy. Results are shown in Table II. The AspectJ compiler
was used to weave each policy into each target application
as shown in Figure 2. The average execution time of each
program event was measured without enforcing the policy,
indicated by the columns labeled unmonitored, and with en-
forcing the policy, indicated by the columns labeled monitored.
The NARA file analyzer and metadata harvester application
required user interaction; therefore, instead of measuring the
total execution time of the application, we measured the
time to enforce the coarse-grained policy, for the monitored
column, and the time to start-up the application, for the
unmonitored column. Each policy was enforced separately on
each application. Each experiment was conducted 100 times
on a MacBook Pro laptop with a 2.9 GHz Quad-Core Intel
Core i7 processor and 16 GB of RAM.

Summary of Results

Each policy was successfully enforced on both applications.
The results in Table II indicate that the applications’ execution
times were significantly impacted by the enforcement of the
coarse- and medium-grained policies, which is due to the
execution time of JaBRO and the code analyzer. At a coarse-
grained level, the entire application must be traversed twice:
first, JaBRO must rewrite the main method and optimize
the entire application, and second, code analysis must be
conducted on the entire optimized application. The overhead
introduced by coarse-grained policy enforcement is likely
unacceptable for time-sensitive applications. However, for



TABLE II: Average experimental performance results of 100 runs.

2.29 11.35 33.54 2.91 0.26 1.01 2.91 0.10 0.11

2.59 392.01 32.55 3.58 0.39 1.69 2.52 0.02 0.03

AspectJ 
weaving 

(s) (ms) (s)

AspectJ 
weaving 

(s) (ms) (s)

AspectJ 
weaving

(s) (ms) (ms)

Coarse Medium Fine

Policy

Application
Unmonitored Monitored MonitoredUnmonitored Unmonitored Monitored

NARA File Analyzer and
Metadata Harvester

JPlag
(v2.11.8)

security-critical applications where runtime performance is not
a concern and static analysis is too conservative, the approach
may be advantageous. The overhead introduced by medium-
grained policy enforcment may be more acceptable due to
the smaller code fragment traversed by JaBRO and the code
analyzer. The fine-grained policy only added 0.01 ms to the
execution time of the fine-grained event for both applications.

We expected coarse-grained policies to be weaved signifi-
cantly faster than medium- and fine-grained policies because
the policy only needs to be weaved at a single point (i.e.,
the main method); however, the AspectJ compiler cannot
differentiate between policy granularities and thus searched
through the entire application looking for all possible matches
to the main join point. The weaving time for coarse-grained
policies may be improved by implementing a custom bytecode
rewriter tailored for weaving coarse-grained policies.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a unified approach to security pol-
icy enforcement by encoding existing classes of security
mechanisms as runtime mechanisms that operate at one or
more levels of code granularity. A new taxonomy of security
policies was presented based on the granularity of code that
mechanisms analyze to enforce policies. The practicality of
the unified approach was demonstrated through a prototype
implementation that extends the AspectJ language extension
with our JaBRO library, which enables runtime code analysis
on optimized bytecode at various levels of code granularity.

Possible directions for future work include: 1) an in-depth
theoretical analysis of the class of policies enforceable by
runtime mechanisms operating at one or more levels of code
granularity and 2) domain-specific policy-specification lan-
guages for granular security policies based on various language
constructs, which may enable the synthesis of new kinds of
runtime security mechanisms.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. 1746051 and the Alfred P. Sloan Foundation Uni-
versity Center of Exemplary Mentoring 2013-5-13MPHDT.

REFERENCES

[1] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security
& Privacy, vol. 2, no. 6, pp. 76–79, 2004.

[2] F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P. Suvanpong, and
P. G. de Aledo, “Skink: Static analysis of programs in llvm intermediate
representation,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2017, pp. 380–384.

[3] J. Kinder and H. Veith, “Precise static analysis of untrusted driver
binaries,” in Formal Methods in Computer Aided Design. IEEE, 2010,
pp. 43–50.

[4] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Transactions of the American Mathematical Society, vol. 74,
no. 2, pp. 358–366, 1953.

[5] F. B. Schneider, “Enforceable security policies,” ACM Transactions on
Information and System Security, vol. 3, no. 1, pp. 30–50, 2000.

[6] J. Ligatti, L. Bauer, and D. Walker, “Run-time enforcement of non-
safety policies,” ACM Transactions on Information and System Security,
vol. 12, no. 3, p. 19, 2009.

[7] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Computability classes
for enforcement mechanisms,” ACM Transactions on Programming
Languages and Systems, vol. 28, no. 1, pp. 175–205, 2006.

[8] B. P. Rocha, M. Conti, S. Etalle, and B. Crispo, “Hybrid static-runtime
information flow and declassification enforcement,” IEEE Transactions
on Information Forensics and Security, vol. 8, no. 8, pp. 1294–1305,
2013.

[9] H. Chabot, R. Khoury, and N. Tawbi, “Extending the enforcement power
of truncation monitors using static analysis,” Computers & Security,
vol. 30, no. 4, pp. 194–207, 2011.

[10] Y. Mallios, L. Bauer, D. Kaynar, and J. Ligatti, “Enforcing more
with less: Formalizing target-aware run-time monitors,” in International
Workshop on Security and Trust Management. Springer, 2012, pp.
17–32.

[11] S. Pinisetty, V. Preoteasa, S. Tripakis, T. Jéron, Y. Falcone, and H. Marc-
hand, “Predictive runtime enforcement,” Formal Methods in System
Design, vol. 51, no. 1, pp. 154–199, 2017.

[12] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: Enforcement
mechanisms for run-time security policies,” International Journal of
Information Security, vol. 4, no. 1-2, pp. 2–16, 2005.

[13] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[14] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and
security flaws using pql: a program query language,” in Conference on
Object-Oriented Programming, Systems, Languages and Applications.
ACM, 2005, pp. 365–383.

[15] A. Baratloo, N. Singh, T. K. Tsai et al., “Transparent run-time de-
fense against stack-smashing attacks.” in Annual Technical Conference.
USENIX, 2000, pp. 251–262.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in European Conference on Object-
Oriented Programming. Springer, 2001, pp. 327–354.

[17] S. Chiba, “Javassist: Java bytecode engineering made simple,” Java
Developer’s Journal, vol. 9, no. 1, 2004.

[18] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[19] S. Engram, “JaBRO,” https://github.com/shamaria/JaBRO, 2020.
[20] US National Archives and Resource Administration, “NARA file an-

alyzer and metadata harvester,” https://github.com/usnationalarchives/
File-Analyzer, 2016.

[21] “JPlag - detecting software plagiarism,” https://github.com/jplag/jplag,
2015.


