Inline Visualization of Concerns

Nalin Saigal and Jay Ligatti
Department of Computer Science and Engineering
University of South Florida
{nsaigal, ligatti} @cse.usf.edu

Abstract—Code modularization provides benefits throughout
the software life cycle; however, the presence of crosscutting
concerns (CCCs) in software hinders its complete modulariza-
tion. This paper describes IVCon, a tool with a novel approach
for completely modularizing CCCs. IVCon enables users to
create, examine, and modify their code in two different views:
the woven view and the unwoven view. The woven view displays
program code in colors that indicate which CCCs various code
segments implement. The unwoven view displays code in two
panels, one showing the core of the program and the other
showing all the code implementing each concern in an isolated
module. IVCon aims to provide an easy-to-use interface for
conveniently creating, examining, and modifying code in, and
translating between, the woven and unwoven views.

Keywords-code modularization; crosscutting concerns; refac-
toring

I. INTRODUCTION

Code modularization provides many software-engineering
benefits; it makes code easier to write, understand, and
maintain. Conventionally, software engineers try to separate
code segments that are orthogonal in their functionality into
distinct modules. However, in practice, software does not
decompose neatly into modules with distinct, orthogonal
functionality. For example, code that displays a popup
window notifying users about a failed login attempt may be
present in a login module, while (partially) implementing
various other functional concerns such as security, GUI,
and authentication; it may be equally reasonable for the
window-popup code to be located in a security, GUI, or
authentication module, and at various times it may be more
convenient to write, view, or edit the window-popup code
in the context of these other modules. Tarr et al. call this
problem the “tyranny of the dominant decomposition” [1].
Although it is useful to modularize the same code segment
in various ways throughout the software life cycle, current
programming paradigms only allow modularization in fixed
and limited ways (e.g., into functions and objects).

Conversely, functional concerns of software typically re-
quire many lines of code to implement, and that code is
usually scattered throughout several modules. For exam-
ple, code implementing a security concern may be scat-
tered throughout login, logout, and network-socket mod-
ules. Thus, code segments implementing a functional con-
cern may crosscut through other functional concerns of
the program; such code segments implement crosscutting

concerns (CCCs). Modularizing a CCC involves collecting
and displaying in one place all the scattered code im-
plementing that CCC. Isolating concern code in this way
benefits programmers because it relieves them from having
to browse through the whole program to find, study, or
update a single software concern. For example, updating
security code scattered throughout an application is much
more difficult than updating an isolated security module.

This paper describes IVCon, a tool that provides a novel
approach to modularization of CCCs. IVCon users can
switch back and forth between two equivalent views of
their code, the woven view and the unwoven view. The
woven view displays program code in colors that indicate
which concerns various code segments implement (based
on users’ explicit assignments of those code segments to
concerns). The unwoven view displays code in two panels,
one showing the core of the program (i.e., all code not
assigned to any concern) and the other showing all the
modularized concerns, each displayed in isolation. Users can
create, examine, and modify code in both views. The process
of extracting concerns from the main code to produce the
unwoven view is called unweaving, whereas the process of
inlining concerns into the core program to produce the wo-
ven view is called weaving. Although we have implemented,
and this paper discusses, a prototype version of IVCon in
a Java environment, we believe the principles underlying
IVCon apply to software in any language.

IVCon permits many-to-many relationships between con-
cerns and code. That is, users can assign scattered code
segments to the same concern and can assign a single code
segment to multiple concerns. We call code that has been
assigned to multiple concerns multi-concern code.

In addition, IVCon enforces token-level granularity in
concern assignment; code assigned to a concern must begin
at the beginning of a source-language token and end at the
end of a source-language token. Allowing finer granularity in
concern assignment (e.g., character-level granularity) would
be inappropriate because tokens are the core semantic units
of programming languages and of concerns implemented in
those languages. On the other hand, requiring coarser gran-
ularity in concern assignment (e.g., line-level granularity)
would be inappropriate as well. For example, consider the
following code:



Can modify

Allows many-to-many

Can tht Isolates identical relationships Provides Granularity of
Tool code in .
. concerns | concern code between concerns GUI concern assignment
dual views .
in one place and code
Aspect-jEdit [2] vV N - - Line-level
Visualizer [3] - - - Line-level

AspectBrowser [4] - - _

Character-level

SoQueT [5] - - -

Character-level

FEAT [6] : _ -

Character-level

CIDE [7], [8] -

Nodes in ASTs

Hyper/J [9]

e e d<de <

Declaration-level

\/ _
C4 [10] v

- Line-level

IVCon

<<

v v

Token-level

<SS

Figure 1. Comparison of concern-manipulation tools

JOptionPane.showMessageDialog (mainWindow. frame,
"Welcome " + userName +". Current time is " +
format (System.currentTimeMillis()), "Welcome",
JOptionPane.INFORMATION MESSAGE ) ;

Token-level granularity enables assignment of just the
System.currentTimeMillis () code segment to a
SystemCall concern, while coarser concern-assignment
granularities, such as line- or statement-level granular-
ity, lack the precision needed for such a concern as-
signment. With token-level granularity, a user could even
assign just the method name currentTimeMillis to
the SystemCall concern. At the same time, token-level
granularity prevents unreasonable concern assignments pos-
sible with finer (e.g., character-level) granularities, such as
assigning just the ‘i’ in JOpt ionPane to its own concern;
this would be unreasonable because if ‘i’ implements a
concern C, then the rest of the JOpt ionPane token must
implement C' as well (the JOptionPane token has a
semantics in the programming language, while the ‘i’ alone
does not). We consider token-level granularity to be the
perfect balance for assigning code to concerns.

Concern assignments in IVCon can also be thought of
as labels that document the functionality, or other grouping,
of code segments. In this sense, IVCon serves as a code-
documentation tool, with the benefit that software engineers
can view and edit, in one module, all the code documented
as being relevant to any concern.

A. Related Work and Contributions

As a concern-visualization and -management tool, IVCon
contributes features beyond those of existing tools, which
are summarized in Figure 1. Most of the existing research
on concern management restricts users to defining one-
to-many relationships between concerns and code, while
other tools do allow many-to-many relationships but have
line-, statement-, or character-level granularity in concern
assignment and lack IVCon’s support for conveniently mod-
ularizing and isolating concern code. Hence, this paper

contributes a tool design and implementation that does all
of the following:

o Enables programmers to conveniently translate be-
tween, and edit code in, woven and unwoven code
views

« Isolates concern code in the unwoven view

« Enables users to modify all identical concern code in
one place in the unwoven view

« Allows many-to-many relationships between concerns
and code

o Provides a GUI for visualizing and modularizing con-
cerns in software

« Enforces token-level granularity in concern assignment

By providing all these features, IVCon users can flexibly
create, examine, and update code in, and translate between,
woven and unwoven views of software.

Roadmap: The rest of this paper is organized as
follows. Section II describes IVCon’s GUI, Section III
discusses our prototype implementation, Section IV briefly
evaluates the performance of our implementation, and Sec-
tion V concludes.

II. USER INTERFACE

IVCon displays code in two different but equivalent
forms: the woven view (Figure 2) and the unwoven view
(Figure 3). Users can translate their code between the two
views simply by selecting the weave or unweave menu
options, or by pressing <ctrl-w> or <ctrl-u>.

A. Woven View

In the woven view, shown in Figure 2, users can write
code as they normally would in a standard text editor
or development environment. In addition, users can define
concerns, associate a color with each concern, and highlight
and explicitly assign code segments to concerns (by right-
clicking highlighted code and selecting the concern to which
to assign it). Upon assigning a code segment to a concern,



[ €] IVCON - ProtectedFile.ivc

File Edit Wiew Concerns Help

oncern Legend;. Wowven Body ; Concerns at Current Position
audit woid protectedRead() :
security & |1

if {checkCredentialsd
; appen Jout to read from file "+

on - Inline Visualization of Concerns

Figure 2. IVCon’s woven view of the same code shown in Figure 3

[¥] IVCON - ProtectedFile.ivc

File Edit View Concerns Help

Concern Legend : Unwoven Body : Concerns at Current Position
audit vaid protectedRead) -
Security A
oEcEo
read();

Unwoven Concerns

COncern security E
i
subconcern @ hefore_protected_read
Sx
if icheckCredentialsd)
M essLog.append('About to read from file "+
this.toString gy ]
alse {
Ui cessLog.append(*Credential check for file"+ ||
“read failed ™
return,
1
& _
subconcern @ after_protected_read I
S
A ccessLog append(File read complete 24t
«&
1 __|
il

on - Inline Visualization of Concerns

Figure 3. IVCon’s unwoven view of the same code shown in Figure 2



IVCon recolors the assigned code to match the concern
it implements. IVCon displays code assigned to multiple
concerns in white text on a dark background, though users
are free to change this multi-concern background color.
Users can still edit all code after defining concerns; newly
typed code gets assigned to the concern(s) present at the
position where the user started typing.

By highlighting a contiguous code segment and assigning
it to a concern, a user defines a region in the code. Every
region starts at the beginning of code assigned to a concern
and extends as far as the code does that implements that
concern. Multiple concerns can share the same region if code
implementing those concerns begins and ends at exactly
the same positions in the program file. Although IVCon
requires a user-specified name for every unique region a user
defines, it always provides a default name for regions (based
on the name of the concern to which the region is being
assigned). If a previously defined region gets assigned to a
new concern, IVCon simply reuses the existing region name.
Specifying names for regions helps users understand where
subconcerns are implemented, as discussed in Section II-B.

Figure 2 shows the woven-view window divided into three
panels:

o The concerns-legend panel lists all the user-defined
concerns in the current file. IVCon displays the name of
each concern in the color associated with that concern.

« The woven-body panel contains user code displayed in
colors that indicate concern assignments.

o The concerns-at-current-position panel lists the con-
cern(s) implemented by the code at the current cursor
position.

Apart from creating and modifying code, defining con-
cerns, and assigning code to concerns, users can edit concern
names and colors, remove concerns, de-assign code from
concerns, change the multi-concern background, rename
regions, and open, save, and close files in the woven view.

B. Unwoven View

The unwoven view, shown in Figure 3, displays the
program core and each concern in isolation. The unwoven-
view window is the same as the woven-view window, except
that the unwoven view divides the woven-body panel into
two subpanels:

o The unwoven-body panel displays the core of the
program. Code that has been assigned to one or more
concerns is extracted (into the unwoven-concerns panel)
and replaced by holes ([J) of the same color as the
extracted code. Thus, holes indicate extracted concern
code.

o The unwoven-concerns panel displays in isolation each
of the program’s concerns (as extracted from the un-
woven body). Each concern is divided into subcon-
cerns, which are syntactically different code segments

concern audit
{
subconcern @ file_read_granted
s
accesslog appendAhaut to read fram file "+
this taString();

«&
subconcern @ file_read_denied
e
accesslog.append( Credential check for file"+
"read failed.";
&
subconcern @ after_protected_read
Ha
Ui i w JER Uity
t"laccessLug.append(‘ File read complete, ),Is
«§

H

CONCE Security
{
subconcern @ hefore_protected_read
S
if (checkCradentials ()

A cessLog.append("about to read from file "+

this toStringg) ]

else {

M ressLog.append("Credential check for file"+

“read failad U

returmn;
1
«&
subconcern @ after_protected_read
By
i cessLog append(File read complete. ]2
&

Figure 4. Concern-module formatting in IVCon

assigned to the same concern. [IVCon displays subcon-
cerns in two parts: a list of the regions in which the
subconcern appears and then the subconcern code itself.
For example, the unwoven-concerns panel in Figure 3
displays the security and audit concerns in the
format shown in Figure 4. On clicking any region name
in the unwoven-concerns panel, IVCon automatically
focuses the unwoven-body panel to show that region’s
location in the context of the program core.

Code for the
indicates the

security concern in Figure 4
presence of two subconcerns
(at regions before_protected_read and
after_protected_read). The code segments
beginning with if (checkCredentials()) and
implement those subconcerns.
audit concern indicates
the presence of three subconcerns (at regions
file_read_granted, file_read_denied, and
after_protected_read). The unwoven-concerns panel

accessLog.append
Similarly, code for the



Unwoven Body:

if (buffer.getSize() > [O)
buffer.truncate (0J);
if (getTimeElapsed() > [)
JOptionPane.showMessageDialog (frame,
"Request timed out","Error",
JOptionPane.ERROR_MESSAGE) ;

Unwoven Concerns:

concern constant

{
subconcern @ max_buffer_size_0
@ max_buffer_size_1
§>
512
<§
subconcern @ timeout_ms_0
§>
2000
<§

Figure 5. Unwoven view of the code in Figure 6

may also contain constructs called flags (e.g., SCUWrity|
and |Sec‘”ity), which convey information about concern
assignment in multi-concern code segments. Section II-C
provides additional explanation of IVCon flags.

Figure 4 also demonstrates the usefulness of having
descriptive, user-specified names for regions. Descriptive
region names help software engineers quickly understand
where subconcern code exists in relation to the rest of
the program logic. Nonetheless, if a region name provides
insufficient contextual information, the user can always click
on the name to see that region’s context in the unwoven-body
panel.

As another example, please consider Figure 5, which
shows how IVCon groups into one subconcern all syntac-
tically equal code assigned to the same concern. Figure 6
contains the woven view of the same program. In the woven
view, the user has defined a concern named constant and
has assigned the two constants 512 and 2000 to that concern
(IVCon’s token-level granularity in concern assignment en-
ables such operations). Normally, programmers using stan-
dard software-development tools would define these values
in memory declared immutable and would always refer to
the constants’ values with variables like MAXBUFFERSIZE
and TIMEOUTMS. This technique enables the programmers
to make a global change to a constant value by modifying
just one central definition. However, this benefit comes at
the price of not being able to immediately see the values
of constants in the source code. In contrast, IVCon’s dual
woven and unwoven views provide both benefits: users
can update constant values centrally (in the constant
concern of the unwoven-concerns panel) and can view the
constant values directly in the source code (in the woven-
body panel). Actually, IVCon provides the added benefit
that users can see (in the unwoven-concerns panel) a region-
name reference to every use of every constant and can click

Woven Body:

if (buffer.getSize() > 512)
buffer.truncate (512);
if (getTimeElapsed() > 2000)
JOptionPane.showMessageDialog (frame,
"Request timed out","Error",
JOptionPane.ERROR_MESSAGE) ;

Figure 6. Woven view of the code in Figure 5

any of those region names to see the context of that use in
the unwoven-body panel. Of course, this example is just a
special case of the general use of IVCon to provide both a
global (i.e., woven) view of the code and a concern-specific
(i.e., unwoven) view of the same code.

IVCon’s unwoven view allows users to create and edit
core-program code (in the unwoven-body panel) and concern
code (in the unwoven-concerns panel). To avoid ambiguity in
the weaving algorithm, IVCon does not allow users to delete
holes in the unwoven-body panel or to edit non-concern code
(e.g., concern and region names) in the unwoven-concerns
panel. Also, for simplicity, IVCon currently does not allow
users to create concerns or to change concern assignments
in the unwoven view; these restrictions save IVCon from
ever having to simultaneously update noncontiguous code
segments in the unwoven-concerns panel.

C. Display of Multi-concern Code

The woven view displays multi-concern code in white text
over the multi-concern background, while the concerns-at-
current-position panel indicates which concern(s) the code
at the current cursor position implements. Similarly, the
unwoven view displays multi-concern code in the unwoven-
body panel as a hole colored white over the multi-concern
background, while the concerns-at-current-position panel
continues to indicate which concern(s) the hole at the current
cursor position implements.

In addition, the unwoven-concerns panel uses flags to con-
vey information about the concerns associated with multi-
concern code (as mentioned in Section II-B). Flags serve as a
quick reference for visualizing where overlapping concerns
begin and end. To illustrate the use of flags, consider the
code in Figure 3 that implements the security concern
at region before_protected_read. In the woven view
(Figure 2), we assigned this code segment to the security
concern, and we assigned the two nested statements begin-
ning with accessLog.append to the audit concern. As
a result, the unwoven-concerns panel in Figure 3 displays
green flags (*"*]) and red flags(]*"4*) to indicate the
nesting of audit-concern code within the security-
concern code.

Green and red flags within the unwoven-concerns panel
indicate the beginning and ending of overlapping concerns.
Green and red flags do not always appear together within
a subconcern; depending on the overlap between concern



regions, there may be a green flag only, a red flag only, both
green and red flags, or no flags at all within subconcern code.
Also, multiple red and green flags of the same concern, or
multiple flags of various concerns, may be present within a
subconcern.

The syntax of code in IVCon’s unwoven-concerns
panel includes flags, so two subconcerns are syntactically
equal if and only if the text of those two subconcerns—
including flags within the subconcerns—is the same.
Thus, the subconcern accessLog.append('‘File
read complete.’’) is not syntactically equal
to security | s ccessLog.append (* ‘File read
complete.’’) |Sec“rity. This distinction matters
because, as described in Section II-B, syntactically
equal subconcerns are grouped together in the
unwoven-concerns panel. If IVCon did not consider

flags when testing for concern-code equality, it
would group both accessLog.append(‘File
read complete.’’) and  SWIW|accesslog.

append (‘‘File read complete.’’) |*“™i% into
a single subconcern, but the presence or absence of security
flags in such a subconcern would be confusing because one
of the instances of this subconcern has a nested security
region, while the other does not.

III. IMPLEMENTATION

We have implemented a prototype of IVCon on a Java
platform [11]. The core IVCon application consists of 6235
lines of code, of which 6107 implement the GUI and 128
implement backend data structures. IVCon also uses sev-
eral third-party libraries (e.g., clipboard and lexical-analysis
libraries) for auxiliary functions.

A. Data Structures

IVCon maintains three key data structures.

1) A regionMap is a hash table that maps a numerical
region identifier to that region’s user-visible name,
beginning and ending positions for the region, and
a list of the concerns to which the region has been
assigned.

2) A concernMap is a hash table that maps a unique
concern name to that concern’s display color and a
list of the regions assigned to that concern.

3) A regionTree is an RTree, a dynamic structure for
storing data about potentially overlapping regions in
space [12], [13]. When queried about a particular
region r, an RTree can efficiently return the set of
stored regions that overlap r. RTrees are ideal data
structures for IVCon because they enable efficient
querying to determine which regions are defined at
a given character position in the source file (e.g., at
the position of the cursor or within a newly defined
region). Once IVCon determines which regions are
present at a given position, it can use the regionMap

to look up and display all the concerns assigned to
those regions. IVCon uses Hadjieleftheriou’s imple-
mentation of RTrees [14].

Together these structures enable reasonable performance in
all of IVCon’s core operations.

B. Translation Algorithms

Given a regionMap, concernMap, and
regionTree, it is generally straightforward to implement
the translation from woven to unwoven view, and vice
versa.

1) Unweaving: Unweaving is the process of translating
a woven-view program into an equivalent unwoven-view
program. Unweaving in IVCon begins with lexical analysis
to (1) ensure that all tokens in the current program are valid
Java tokens and (2) enforce token-level granularity in con-
cern assignment. After lexical analysis, IVCon starts with the
woven code in the unwoven-body panel and iterates through
all concerns in the concernMap, extracting the code in all
of that concern’s regions from the unwoven-body panel to
the unwoven-concerns panel. Extracted concern code gets
replaced with holes () of the appropriate color in the
unwoven-body panel. During the extraction process, IVCon
groups concern code into syntactically equal subconcerns in
the unwoven-concerns panel and displays isolated concerns
in the format described in Section II-B.

Although the unweaving algorithm just described is
straightforward, one interesting issue arose during imple-
mentation. The issue concerns how to display holes in
place of overlapping, but unequal, regions. For example,
let us reconsider the woven-body code of Figure 2. In that
figure, a programmer has assigned an entire if statement
to the security concern and has nested two audit-
concern regions within that security region. There are
two reasonable alternatives for unweaving this i f statement:

1) We could replace the entire if statement with one
hole of the multi-concern color to indicate that one
region of code, which in total implements multiple
concerns, has been extracted.

2) We could replace the entire if statement with five
holes that alternate between the security-concern color
and the multi-concern color. These holes would in-
dicate that the extracted code first contains security-
concern code, then some multi-concern code, then
more security-concern code, and so on.

Because it provides more precise concern-assignment infor-
mation, we implemented the second of these alternatives
in IVCon. Figure 3 shows the resulting five-hole concern
extraction in the unwoven-body panel.

2) Weaving: Weaving is the process of translating an
unwoven-view program into an equivalent woven-view pro-
gram. To weave, IVCon builds the woven body from the
unwoven body by iterating through all the holes in the



unwoven body and filling in each hole with the appropriate
concern code.

The one interesting problem that can arise during weaving
relates to filling multi-concern holes with code. Because a
code segment that fills in a multi-concern hole has been
assigned to multiple concerns, it appears in multiple places
in the unwoven-concerns panel. The problem arises if a
user edits this code in one concern and not in all the other
concerns where it appears (e.g., a user may have changed
the log.appends to 1log.prepends in the security
concern of Figure 4 without modifying the 1og.appends
in the audit concern). In this case, IVCon cannot immedi-
ately determine with what code to fill the hole, so it opens
a popup window to (1) notify the user of the concern-code
inconsistency and (2) allow the user to select which code
segment to fill the hole with (e.g., to use log.prepend
or 1log.append). An alternative to asking users to select
a code segment when an inconsistency is detected would
be to avoid the inconsistency altogether by using linked
editing [15]. By linking all subconcerns in the unwoven-
concerns panel that represent the same hole in the unwoven-
body panel, any changes made in one subconcern would
be immediately reflected in all the other subconcerns that
represent the same hole. We plan to include this feature in
a future version of IVCon.

After IVCon fills in all the holes, it has a complete woven
view of the program and can perform lexical analysis. Like
the lexical analysis at the beginning of the unweaving pro-
cess, lexical analysis at the conclusion of the weaving pro-
cess enforces token-level granularity in concern assignment.
Although for simplicity of our prototype implementation
we have not done so, it would also be useful to integrate
a complete Java compiler into IVCon to check, beyond
simple lexical analysis, that woven programs are statically
valid Java programs. Integrating a complete compiler and
virtual machine into IVCon, or integrating IVCon into an
existing IDE (e.g., Eclipse), would also save programmers
from having to switch to external tools for code compilation
and execution.

IV. PERFORMANCE EVALUATION

To evaluate the practicality of our design, we
tested our implementation by assigning code to
concerns in three of our own IVCon source-code
files: IVCON. java, FileUtilities.java, and
ConcernManipulation.java (our largest source-
code file), respectively containing 49, 313, and 3342 lines
of Java code (in the woven view) and 7, 25, and 182
regions assigned to 5, 11, and 36 total concerns. We also
created an impractically large file of 100,000 lines, each
containing 20 randomly generated single-character tokens,
in order to stress test [IVCon’s performance. We emphasize
that StressTest. java would be an unreasonably large
(2-million-token) source-code file in practice; we included

it in our test suite to better understand IVCon’s performance
limitations.

We measured (on a standard laptop) IVCon’s perfor-
mance weaving and unweaving code, opening, closing,
and saving files, and creating, assigning code to, editing,
and removing concerns. Interested readers may consult our
companion technical report for detailed results of these
experiments [16]. To summarize the results, for reasonably-
sized files (i.e., IVCON. java, FileUtilities. java,
and ConcernManipulation. java), the weaving and
unweaving operations took approximately a half a second or
less, whereas it took approximately eight minutes to weave
and unweave code in StressTest.java. Our perfor-
mance results demonstrate that IVCon’s design is sufficiently
efficient when operating on reasonably sized files, but IVCon
would need additional optimizations to perform tolerably
efficiently on extremely large (multimillion-token) files.

V. CONCLUSION

We conclude by describing future extensions to this work
and summarizing.

A. Future Work

The highest-priority future work involves hardening our
prototype implementation of IVCon using IVCon itself. We
plan to recompile (i.e., bootstrap) IVCon after adding each
of the features listed below, so that we can draw the benefits
of each feature added when implementing the next.

o Search for text in code. This serves a feature similar to
<ctrl-f> in common editors.

o Open multiple files simultaneously. This will aid users
in building projects that span over multiple files.

o View flags in the woven view. This will provide users
with the same clarity of concern assignment in multi-
concern code in the woven view that currently exists in
the unwoven view.

e Show in a tool-tip the concerns implemented by the
code that the mouse pointer points to. This will enable
users to see which concerns a code segment S imple-
ments without actually moving the cursor to S.

« Integrate linked editing in the unwoven-concern panel
in the unwoven view (as mentioned in Section III-B2).
This will ensure that during weaving there are no
inconsistencies in the code corresponding to multi-
concern holes.

We have omitted all of these features from the current proto-
type implementation because their inclusion does not appear
to offer much in the way of new research insights; that is,
none of these features would contribute to IVCon’s novelty.
Rather, our motivation for implementing these features is to
provide ourselves with additional experience using IVCon.



B. Summary

We have presented IVCon, a tool for conveniently cre-
ating, examining, and modifying code in, and translating
between, woven and unwoven views of code. IVCon differs
from existing aspect-visualization tools by providing all the
features summarized in Figure 1. IVCon has a generally
straightforward interface and a prototype implementation
online [11]. In all of our empirical tests, which involved
assigning concerns to, and modifying, real IVCon source
code, IVCon performed efficiently on all practical source-
code files.

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(91

(10]

REFERENCES

P. Tarr, H. Ossher, S. M. Sutton, Jr., and W. Harrison,
“N degrees of separation: Multi-dimensional separation of
concerns,” in Proceedings of the International Conference
on Software Engineering, 1999, pp. 107-119. [Online].
Available: citeseer.ist.psu.edu/tarr99degrees.html

T. Panas, J. Karlsson, and M. Hogberg, “Aspect-jEdit for in-
line aspect support,” in Proceedings of the German Workshop
on Aspect Oriented Software Development, 2003.

“The  Visualiser,” 2008,  http://www.eclipse.org/ajdt/
visualiser/. [Online]. Available: http://www.eclipse.org/ajdt/
visualiser/

W. G. Griswold, J. J. Yuan, and Y. Kato, “Exploiting the map
metaphor in a tool for software evolution,” in Proceedings of
the International Conference on Software Engineering, 2001,
pp. 265-274.

M. Marin, L. Moonen, and A. van Deursen, “SoQueT: Query-
based documentation of crosscutting concerns,” in Proceed-
ings of the International Conference on Software Engineering,
2007, pp. 758-761.

M. P. Robillard and G. C. Murphy, “FEAT: a tool for
locating, describing, and analyzing concerns in source code,”
in Proceedings of the International Conference on Software
Engineering, 2003, pp. 8§22-823.

C. Kistner, “CIDE: Decomposing legacy applications into
features,” in Proceedings of the International Software Prod-
uct Line Conference, second volume (Demonstration), 2007,
pp. 149-150.

C. Kistner, S. Apel, and M. Kuhlemann, “Granularity in
software product lines,” in Proceedings of the International
Conference on Software Engineering, May 2008, pp. 311-
320.

H. Ossher and P. Tarr, “Hyper/J: Multi-dimensional separation
of concerns for Java,” in Proceedings of the International
Conference on Software Engineering, 2000, pp. 734-737.

M. Yuen, M. E. Fiuczynski, R. Grimm, Y. Coady, and
D. Walker.,, “Making extensibility of system software
practical with the C4 toolkit,” in Proceedings of the
Workshop on Software Engineering Properties of Languages
and Aspect Technologies, March 2006. [Online]. Available:
http://www.cs.princeton.edu/~dpw/papers/splat06.pdf

(1]

[12]

[13]

[14]

[15]

[16]

N. Saigal and J. Ligatti, “IVCon — Inline Visualization of Con-
cerns,” 2008, http://www.cse.usf.edu/~ligatti/projects/ivcon/.

A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 1984, pp. 47-57.

L. Arge, M. D. Berg, H. Haverkort, and K. Yi, “The priority
R-tree: A practically efficient and worst-case optimal R-tree,”
ACM Trans. Algorithms, vol. 4, no. 1, pp. 1-30, 2008.

M. Hadjieleftheriou, “Spatial index library,” http://www.
research.att.com/~marioh/spatialindex/index.html.

M. Toomim, A. Begel, and S. Graham, “Managing duplicated
code with linked editing,” in Proceedings of the IEEE Sym-
posium on Visual Languages and Human Centric Computing,
Sept. 2004, pp. 173-180.

N. Saigal and J. Ligatti, “Defining and visualizing many-to-
many relationships between concerns and code,” University
of South Florida, Tech. Rep. CSE-090608-SE, Sep. 2008.
[Online]. Available: http://www.cse.usf.edu/~ligatti/papers/
ivcon-tr.pdf



