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ABSTRACT

Existing security-policy-specification languages allow users to
specify obligations, but open challenges remain in the compo-
sition of complex obligations, including effective approaches
for resolving conflicts between policies and obligations and
allowing policies to react to the obligations of other policies.
This paper presents PoCo, a policy-specification language and
enforcement system for the principled composition of atomic-
obligation policies. PoCo enables policies to interact mean-
ingfully with other policies’ obligations, thus preventing the
unexpected and insecure behaviors that can arise due to par-
tially executed obligations or obligations that execute actions
in violation of other policies. This paper also presents and
analyzes the PoCo language’s formal semantics and imple-
mentation.
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1 INTRODUCTION

Security-policy composition is a classic problem in software
security, due to conflicts that arise when policies have com-
peting requirements. To date, policy composition does not
have a complete solution; many languages are domain specific,
and the general-purpose solutions may compose obligations
in undesirable ways, such as allowing obligations to execute
even when they violate the constraints of other policies.

As software becomes more complex, the quantity and sever-
ity of security vulnerabilities increases [1]. Managing policies
that mitigate these vulnerabilities becomes challenging as the
complexity increases; enforcement may devolve into a patch-
work of security mechanisms affecting each other in unex-
pected or hard-to-understand ways, or policies may expand to
become complex, monolithic specifications that conflate cross-
cutting concerns. As the complexity of policies increases, so
does the likelihood of errors within the policies.
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Following standard software-engineering practices, it is
simpler to maintain modules of related functionality, where
each security concern can be addressed in isolation, and then
build more complex policies as compositions of the modules.
When policies are simple enough, as with classic safety prop-
erties [2], composition is trivial because the only decision
made is whether to permit or deny a given action; such de-
cisions can be composed with boolean operators. However,
these simple policies are insufficiently expressive in practice
because they do not allow policies to propose alternative or
additional actions to be executed. These actions, referred to as
obligations [3], complicate the process of composing policies.

Obligation support enables policies that are impossible with
safety properties. For example, a policy that grants or denies
fund transfers may also include an obligation to log such re-
quests for auditing, or a policy to prevent unintended file
deletion may include an obligation to prompt the user for
confirmation before rendering a decision on a file deletion
request.

The challenge of handling conflicts in obligation-based poli-
cies is well known (e.g., [4-6]), but neglecting to do so could
lead to unexpected behavior or security vulnerabilities. Con-
sider policies P, and P}, that respectively disallow file down-
loads and window pop-ups. P, also defines an obligation to
pop up a warning when a user attempts a file download, which
violates Py. A policy P that composes P, and P}, using con-
Jjunction (i.e., enforcing both P, and P}) should disallow all
downloads and pop-ups. However, without validating P,’s
obligation with Pj,’s constraints, P would allow pop-ups.

Beyond these direct policy conflicts, some policies also re-
quire the ability to react to other policies’ obligations. For
example, a policy limiting the number of files open needs ac-
cess to an accurate count of currently open files—including
those opened and closed by other policies’ obligations. If this
open-file-limiting policy cannot observe and react to actions
performed by other policies’ obligations, it cannot be enforced.

Contributions. This paper presents PoCo (short for Pol-
icy Composition), a new policy-specification language and
enforcement system that:

o Allows for principled (i.e., with provable guarantees)
composition of complex atomic obligations

e Supports pre-, post-, and ongoing-obligations

o Allows policies and their obligations to be effectful and
specified in a Turing-complete language

e Uses static analysis to enable conflict resolution be-
tween policies and other policies’ obligations

e Allows policies to control and react to other policies’
obligations
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e Supports custom policy-composition operators

As far as we are aware, PoCo is the first system to provide sup-
port for atomic obligations, including conflict resolution and
allowing policies to react to obligations. In addition to the de-
sign of the PoCo enforcement system, this paper presents and
analyzes the language’s formal semantics and implementation.

2 GOALS

For obligation-based policies to be expressive and composable,
an ideal general-purpose enforcement system would support
1) pre-, post-, and ongoing obligations, 2) atomic obligations,
3) obligations with side effects, 4) Turing-complete policy spec-
ification, 5) conflict resolution between policies and obliga-
tions, 6) complete mediation of obligations, and 7) custom
composition operators.

2.1 Definition of Goals

The following provides the definition and more details of the
aforementioned goals.

Obligation-Type Support. Based on their time of execu-
tion, obligations can be partitioned into three categories: pre-,
post-, and ongoing- [18-20]. A pre-obligation is fulfilled before
the decision about a security-relevant event is enforced. For
example, in the file-deletion-confirmation policy, the confirma-
tion obligation must be enforced before the decision to permit
or deny a deletion because the permit/deny decision depends
on the result of the obligated confirmation-pop-up action. A
post-obligation is fulfilled after such a decision is carried out,
as in a policy that logs all successful bank transactions. An
ongoing-obligation is carried out asynchronously during the
time that decisions are being enforced. For example, a pol-
icy responsible for monitoring the usage of system resources
might be implemented as an ongoing obligation.

Support for these standard obligation types is essential
for maximum expressiveness of an obligation-based policy
enforcement mechanism. If any type is absent, there would be
a class of obligation policies that cannot be enforced by the
system.

Atomic Obligations. An atomic obligation requires that
either all or none of the included actions are executed. Atomic-
ity can be extended to include the decision to permit or deny an
event after the obligation executes. For many practical policies,
obligation atomicity is necessary for correctness. For example,
in the policy that prevents accidental file deletion by showing
a confirmation dialog before granting a file-deletion request,
if the obligated action of displaying the dialog is carried out,
then the action’s associated decision, as entered by the user,
must also be followed. Otherwise, the policy may incorrectly
deny a file deletion that the user already confirmed or permit
a file deletion that the user canceled.

Obligations with Side Effects. Related work (e.g., [5]) re-
quires obligations to be side-effect free, which makes some poli-
cies unenforceable. For example, any obligation that prompts
the user for a decision or makes a call to a remote procedure
causes side effect(s) that cannot be undone; any enforcement

mechanism that relies on rolling back obligations may be un-
able to manage such effectful obligations correctly.

Complete Mediation of Obligations. Policies sometimes
need to react to other policies’ obligations. For example, the
open-file-limiting policy needs access to the number of open
files, including those opened while enforcing other policies.
Excluding files opened or closed during obligation execution
may cause the policy to have an inaccurate count, leading to
incorrect enforcement. The ability to monitor all events, in-
cluding those executed by policy obligations, is called complete
mediation [21].

Turing Completeness. Turing-complete policy-specification
languages ensure expressiveness, at the cost of non-guaranteed
enforcement termination (discussed in Section 3.5). Tools, like
PoCo, that aim to provide a general-purpose policy-specification
language, prioritize expressiveness.

Conflict Resolution. Several types of conflicts are possi-
ble when enforcing policies. Policies may disagree on a de-
cision regarding a trigger action, an obligation may be disal-
lowed by another policy’s requirements, or multiple policies
may wish to execute obligations in response to the same event.

Disagreement between policies on a permit/deny decision is
the simplest type of conflict and can be resolved with Boolean
algebra. Allowing users to implement logic to combine per-
mit/deny decisions enables resolution of this type of conflict.

When one policy’s obligation violates the rules of another
policy, the resulting behavior can be inconsistent with the
behavior of each policy in isolation.

While the order of execution is unimportant for some obli-
gations, for others it is critical for correctness. For example,
an obligation to log an event to a file and an obligation to
log that same event using a network connection could both
be satisfied in either order. However, when the execution of
one obligation makes the execution of another unnecessary
or incorrect, obligations must include fallback options and be
prioritized so that the most important obligations are executed
first. Obligations that might cause such conflicts include those
that exit the application (and therefore prevent other obliga-
tions from executing) or that make changes to the event being
processed when other obligations are attempting to do the
same.

Custom Composition Operators. There are infinitely many
strategies to compose policies. Certain policies need higher
priority; some policies may only trigger under certain condi-
tions; the decision of one policy may only matter when another
policy agrees with its decision; etc. Each of these examples
requires custom composition logic. For the sake of expres-
siveness, it is therefore desirable to allow policy writers to
implement their own custom logic for composing policies.

2.2 Overview of Related Work

Table 1 provides an overview of the goals satisfied by existing
policy-composition languages. A more detailed discussion of
related work appears in Section 10. Although there has been
significant research on the composition of obligation policies,



C . Supports resolving conflicts | Supports reacting to
Supports obligations that are for obligations that are obligations that are Sup[t)orts
Turing . . . . s o.rrf
pre- | post- | effectful non-atomic atomic non-atomic | atomic | composition
complete
XACML [7] v v v
XACML Ext-
U VAR BV v v v v
ensions [8-12]
Polymer [4] v v v v v v v
Ponder [6, 13] v v v v
SPL [5, 14] v v
Heimdall [15] v
Rei [16] v v v v
Aspect
Oriented [17] v v v

Table 1: Summary of the extent to which existing policy-specification languages satisfy the goals enumerated in Section 2.

composition is a known challenge when considering obliga-
tions as aspects [22] and, to our knowledge, there has been no
work that accomplishes all the goals outlined in Section 2.1.

3 THE POCO MONITOR ARCHITECTURE

PoCo’s enforcement mechanism operates as a monitor that has
the ability to observe a target application’s security-relevant
actions (e.g., system or method calls) and the results of these
actions, as shown in Figure 1. Hence, actions and their re-
sults can trigger the monitor to respond, with the response
depending on the logic of the policies being enforced.

3.1

The PoCo monitor observes all security-relevant events—actions
and results—and broadcasts each event to every policy being

enforced. Each policy inputs the current trigger event e (i.e., the

security-relevant event triggering policy enforcement) and

suggests an obligation to be executed before e is processed.
This obligation, which may be empty, can implement supple-
mental logic or alter the input event to meet the policy’s goals.
In PoCo, security-relevant events are inferred from the logic

of enforced policies and can be further defined by the policy

author. This ensures that the monitor only broadcasts those

events that are required for policy enforcement.

The PoCo monitor can execute any number of obligations
before relinquishing control back to the target application
by returning a result to it. After relinquishing control, PoCo
cannot execute additional obligations until receiving a new
event. The monitor therefore operates in a loop, with each
iteration performing the following steps:

Monitor Operation

(1) Input security-relevant event e
(2) Collect obligations from policies in response to e
(3) While there are obligations to process
(a) Select an obligation o
(b) Collect and process policies’ votes on o
(c) If o is approved, execute o
(d) Collect obligations triggered in response to o
(4) If a new output event has been set, execute or return it
(5) Otherwise, output the original input event

This repeats until the event that is output is a result that
can be returned to the application being monitored. With
this design, the monitor maintains control of execution until
all approved obligations have executed, that is, the pool of
pending obligations is exhausted.

3.2 Monitor Configuration

Before examining PoCo policies in detalil, it is useful to un-
derstand the configuration options available for composing
the policies. This section provides a quick overview of these
options; a more detailed discussion appears in Section 6.

Three elements can be supplied to the monitor when spec-
ifying a composed policy. The first is a list of policies to be
enforced. These base policies are the building blocks used to
construct the composed policy.

The second element is a vote combinator function to com-
bine policies’ votes on an obligation into a single permit/deny
decision. The monitor uses this decision to determine the
obligations to execute. PoCo’s default vote combinator is con-
junctive and only permits obligations that are permitted by all
base policies. PoCo users can alternatively define and apply
custom vote combinators.

The final element is an obligation scheduler function which
is used to prioritize obligations for execution. PoCo’s default
obligation scheduler orders policies by the order in which they
are defined. A custom obligation scheduler allows policies to
be prioritized by other features, such as the complexity of the
policies’ obligations. For example, PoCo can be configured
to always execute simpler obligations before more complex
obligations.

Hence, the PoCo monitor can be viewed as a policy sched-
uler. The monitor decides which obligations to execute and in
what order. The monitor’s parameters allow this scheduling
to be customized.

3.3 Obligations

Throughout the literature on policy specification and enforce-
ment, there are many definitions of obligation [3-6, 18-20, 23].
Generally, an obligation is one or more actions required to
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Figure 1: Obligations are either pre-on-action, which are ful-
filled before a decision on an action is enforced, or pre-on-
result, which are fulfilled before a decision is made to return a
result.

execute under certain circumstances with specific timing in re-
lation to events occurring in the application being monitored.

When conflict detection and resolution are introduced to
obligation systems, the idea that an obligation is guaranteed
to execute must become less strict. When there is a conflict
involving an obligation, the only options available are to exe-
cute the offending obligation (i.e., ignore the conflict), execute
the parts of the obligation that are not in conflict with other
policies (i.e., non-atomic obligations), or do not execute the
obligation at all (i.e., obligation execution is not guaranteed).

Since one of PoCo’s goals is to dynamically resolve conflicts
involving atomic obligations, the only option is to not execute
conflicting obligations. Other works have referred to this defi-
nition of obligations as “suggestions” since they are not guar-
anteed to execute [4]. However, even XACML—which does not
provide conflict resolution among obligations—suffers from
non-guaranteed obligation execution when an intermediate
value in the policy/rule hierarchy fails to match the decision
of the policy that generated the obligation [24, Section 7.18].
Therefore, we have opted to use the term obligation over a
variant such as suggestion with the understanding that the
monitoring system is obligated to attempt execution of the
obligation. An obligation in PoCo is a series of actions the
monitor attempts to execute prior to enforcing a decision on
a proposed action or result.

3.4 Complete Mediation of Policies with
Atomic Obligations

Complete mediation—the ability to monitor events executed by
other policies—is a desirable trait for the enforcement of obli-
gation policies. By default, complete mediation is understood
to be implemented such that each security-relevant event can
be responded to individually. We refer to this design as event-
by-event complete mediation. At least one existing system has
provided event-by-event complete mediation but without al-
lowing for atomic obligations [4]. In fact, as Theorem 1 shows,
it is impossible to have both event-by-event complete media-
tion and atomic obligations.

THEOREM 1. Event-by-event complete mediation and atomic
obligations cannot both be achieved simultaneously.

Proor. For all monitors m, if m allows event-by-event complete
mediation of policy obligations, then m must allow all policies

that it enforces to examine and react to each event in an obliga-
tion o as it executes. If any of m’s policies react to or alter any
event in o, then o was not executed atomically.

Therefore, PoCo enforces obligation-by-obligation complete
mediation, meaning that every policy can monitor and react
to every other policy’s atomic obligations (rather than every
individual event within those obligations).

3.5 Non-termination of Policy Enforcement

By including branching, looping and variables (Section 4),
PoCo is designed to be Turing complete, which introduces
possible non-termination in the enforcement code; e.g., poli-
cies may contain infinite loops. In addition, allowing policies
to react to each other introduces an additional path to non-
termination—two policies may generate an infinite sequence
of obligations in response to each other’s obligations (e.g., one
policy monitors all network connections and logs them to a
file while another monitors all file writes and opens a new
network connection on each, to log the file write in a database).
This non-termination cannot be statically detected in general.
This design prioritizes policy expressiveness over guaranteed
enforcement termination.

4 POCO LANGUAGE

This section summarizes the formal syntax and semantics that
highlight the key features of the PoCo Language and enable
formal type-safety reasoning. The primary purpose of these
semantics, which includes all of the core features of the PoCo
Language, is to express the workings of these features in a
precise and unambiguous manner. PoCo is formalized as a
functional language due to the inherently simpler specification
compared to object-oriented languages such as Java. Using
these semantics, the PoCo language is proven to be type safe
through standard type-preservation and progress lemmas.

4.1 Syntax

Figure 2 lists the syntactic elements of PoCo. The PoCo lan-
guage derives from the simply-typed lambda-calculus (STLC)
with four base types: Int, Bool, String, and Unit; three com-
posite types: arrow 7; — 73, homogeneous list 77;5;, and
reference type 7 Ref; and two algebraic data types: variant
and record (i.e., sums and products with labels). In addition,
several algebraic data type aliases are defined to simplify the
semantic presentation.

Notably, a Res is a wrapper around a security-relevant result
of any type. Since it is dynamically typed (it has a subterm of
type TypedV al), it is used primarily in policy code that may
not know the return type of trigger events statically. While
similar, a 7 Res wraps a security-relevant event of type 7. It is
used in code that must unconditionally produce a term of type
7 (namely, in the dynamic semantics). The same distinction
applies to  Event and Event.

A PoCo policy is a record containing the policy’s name as

well as its three components: onTrigger, vote, and onObligation (de-

scribed in detail in Section 5).
Introduction and elimination expressions are added for each
type. It is worth mentioning that, although both call(e;,ez)



Types:
7z == Bool | String | Int | TypedVal | Unit | T Ref | tpist |

lny >l aX... X ity) | (6111 +.. .+ Cn i Th)
Act = (name : String X arg : TypedV al)
7 Res = (act : Act X result : 7)
Res = (act : Act X result : TypedVal)
t Event = (act : Act +res : T Res)

Event = (act : Act + res : Res)
Obligation = (ot : (evt : Event X onTrig : Event — unit) +
00: (rt : Respis; X onOblig : Respjs; — unit))
CFG = (nodes : Actpisy X
edges : (start : Act X end : Act)piss X
obligation : Obligation)
Pol = (name : String X
onTrigger : Event — unit X
onObligation : Respjs; — unit X
vote : CFG — Bool)
0S = (pol : Polxcfg: CFG)List —
(pol : Pol X cfg: CFG)List

vce = (name : String X vote : Bool)p;s; — Bool
T Option = (some : 7 + none : Unit)
Values:
bu= true|false
fuo= funxi(xy:m):m=e
vu= bls|n|flunit|v o |[]:tLise | €
linfv:t| (b1 =01, ...,0 =0v,)
| makeTypedVal(z, v)
Expressions:
ex= vx|eser|le melet@eler Veler ANexler == e

|—e |refellele :=e|e +e | while(er) {er}

|let x = e; iney end | ing e : 7| head(e) | monitor(z, e)
|if e; theneyelsees | ({1 =e1,...,0n =€) | e.l; | tail(e)
| (caseeof tix1 = e | -+ | lnxn = en)

| setOutput(e) | getOutput() | outputNotSet()| getRT()

| call(ey, e2) | invoke(er, e2) | {e}x(v) | makeCFG(e)

| makeTypedVal(z, e1) | tryCast(z, e1) | empty(e)

act(ey, e;) = (name = ey, arg = e2)

res(es, e2) = (act = ey, result = e2)
Monitored Functions F ::= e | (s, f), F
Monitors R ::= (F, pols, os, vc), where pols, os, vc are values
Memories M ::= o | (¢, v), M

Configurations:
C == (M, R, inOb, rt, out, toyt), where inOb, rt, out are values

Labels label == begins(y) | endg(u,) : v2

Figure 2: Formal syntax for PoCo

and invoke(eq,e2) can be used to call functions, the two ex-
pressions are designed for different purposes. The expression
call(e,e2) is used to call functions that reside within the ap-
plication or within the policies and is the elimination form for
the function type. On the other hand, invoke(eq,e2) is used
primarily by the PoCo monitor to execute security relevant
actions without a direct reference to the action’s function. Its
first parameter is a String that specifies a monitored function’s
name.

Label elements are added to facilitate the obligation prop-
erty proofs in Section 7. The two elements, beginy and endy,
mark the beginning and end of a function’s execution and can
include parameters and return values. These elements have
no effect on a program’s execution.

4.2 Static Semantics

Figure 3 presents some of the static-semantics rules of the
PoCo language, a full listing of which is included in Appen-
dix C. In the judgment form A, T + e : 7, the context I' maps

variables to their types while A maps memory locations to
types. The rule makeCFG specifies the type of the undefined
makeCFG function. For function calls within target applica-
tions and policies, the rule call specifies that the first pa-
rameter is a function type and the second is the type of this
function’s parameter. Different from call, the rule invoke
is used for a PoCo monitor to execute valid actions that are
output from the monitor, thus it requires the first parameter to
be a String type which specifies a valid function name (it is as-
sumed that functions will have unique names and signatures).
Lastly, since label elements are merely used for recording
start and end points, their type depends only on the type of
their subexpression.

A, T+ e:Obligation
AT + makeCFG(e) : CFG
ATre 11 >1 ATre :n

AT+ call(e, e2) : 12

AT Ve :String ATre:TypedVal
A, T Finvoke(ey, e;) : TypedVal Option

ATre:t
ATr{e)sw) T

(makeCFG)

(call)

(invoke)
(endLabel)

Figure 3: Static semantics rules for CFGs, labels, and function
calls.

4.3 Dynamic Semantics

To express the run-time behavior of monitored applications,
PoCo’s dynamic semantics are defined using small-step opera-
tional semantics with a left-to-right, call-by-value evaluation
order. The complete dynamic-semantics rules are presented
in Appendix D.

One interesting part of PoCo’s dynamic semantics is the
set of rules for function calls. As shown in Figure 4, five
rules are included to handle function calls. Aside from all
adding a begin and an end label to an execution trace be-
fore and after the evaluation, the five rules are used to de-
termine the behavior of a function call based on different
situations. Specifically, 1) for a security-irrelevant function
call, callNonMonitoredFunction directly evaluates the call
and attaches a begin and an end label to the function call’s ex-
ecution trace. 2) for a security-relevant function call that origi-
nates from the target application, the rule callFromApplication
will invoke the monitor to resolve the security-relevant event;
3) the rule monitorV, which is directly responsible for in-
voking the PoCo monitor, sets the flag inOb to true before
evaluation to indicate the current executing context; 4) for

onTrigger and onObligation function calls, the rules callOnTrigger

and callOnObligation reset the current result trace before
evaluation; 5) for a security-relevant function call (i.e., in-
cluded in the list of monitored functions F) that originates from
an obligation, the rule callFromObligation will append the
result of evaluating the call to the current result trace;
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(M, R, true, ..
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(callOnTrigger)

beginf(v)

((M, (F, pols, ...),inOb, rt, .. .), call(f, v))

(...,onObligation=f,...) € pols f = (fun x;(x;:Respis;): Unit = e)

((M, (F, pols, . ..), inOb, []: ResList, - -

s AUf/x1, v/ x2]el (o))

(callOnObligation)

beginf(y)
(M, (F, pols, ...),inOb, rt, .. .), call(f, v)) -

(s, funxi(xz:t):p=e) €F f=funxi(xz:7):12=¢)

(M, (F, pols, . ..), inOb, []: Resris¢, - -

s AUf /21, v/ x2]ed (o))

(callFromObligation)

beginy (v): begingppendRes()

((M, (F, ...), true, rt,...), call(f, v))

res(act(s, makeTypedVal(zy, v)), makeTypedVal(zry, [f/x1, v/x2]e)) = []: ResList, - -

(M, (F, ...), true,rt @
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Figure 4: Dynamic semantics for function calls

4.4 Type Safety

The PoCo language is type safe via the standard Preservation
and Progress Lemmas [25]. Type safety guarantees that well-
typed PoCo programs will never get stuck (i.e., well-typed
expressions are either values or can be further evaluated). The
proof of type safety appears in Appendix E.

THEOREM 2 (TYPE-SAFETY).
(C,e): T A(C,e) —* (C',e') =
(C,e'):t A
Au:e’ =v v AC”,e"” : (C',e') — (C”,e")).

5 POCO POLICIES

PoCo policies are designed to be granular pieces of logic that
execute obligations based on security-relevant input events.
Each security-relevant action the target application attempts
to execute, and each security-relevant result the underlying
system attempts to return, is broadcast to all the policies
registered with the monitor.

The following policies will serve as running examples
throughout this section.

® Prije disallows users from opening the secret.txt file.

Pyostiog T€Qquires every file-open action to be logged
after the action has occurred.
® Pyrelog Tequires every file-open action to be logged

before the action has occurred.
® Peonfirm requires each file-open action attempted by
the target to be confirmed through a pop-up window.
Ptime disallows popups unless at least 100 seconds have
passed since the last popup.

Taken together, these examples, which are fully defined in
Appendix B, illustrate the core features of PoCo policies. The
remainder of this section discusses these core features.

5.1 The onTrigger Policy Method

The first component of a PoCo policy, called onTrigger, is
an obligation which executes prior to security relevant in-
put events. Thus, policies that wish to respond to actions at-
tempted by the application or results returned from the system
must specify an onTrigger obligation. It is worth noting that
because onTriggers can respond to both actions and results,
they can implement pre-, post-, and ongoing- obligations (see
Theorem 7).

onTrigger obligations take a trigger event e as input and
may specify arbitrary logic to run before e is either executed
or returned. onTriggers may also set an output event, which
is the final PoCo response to a trigger event. Ultimately, PoCo
must relinquish control to enable the application or system to
continue executing. If no policy specifies an output event, the
PoCo monitor will cede control by allowing the trigger event
to be executed, that is, by outputting the input event.

For example, Pr;j¢’s onTrigger examines the trigger event
e. If e is fopen(secret.txt) then Pr;j,’s onTrigger sets exit
as the output event, meaning that the monitor should cede
control to the system to execute the exit action. Pf;j does not
specify an output event when e is not fopen(secret.txt), thus
allowing irrelevant events to execute normally. No additional
events are executed prior to the monitor ceding control. Hence,
Prije’s onTrigger is defined as follows.

fun onTrigger(e:Event):Unit =
(case e of act a =>

if a.name == "fopen"
A tryCast(String,a.arg) == "secret.txt"
then

setOutput (event(act("exit",
makeTypedVal (Unit,unit)))); unit
else unit
| res r => unit )



Output events must be treated specially because the moni-
toring system must reach agreement in how the transfer of
control occurs. Therefore, one of the primary objectives of any
system for composing run-time policies must be to determine
the singular output event for each trigger event. Output events
that are actions cede control to the underlying system, and
output events that are results cede control to the application.
Prior work has defined models of monitors that operate in this
way, interposing between applications and executing systems
and responding to trigger events with output events [26].

As seen in Pp;jj.’s onTrigger, changing the output event
is accomplished with the setOutput method. Calling this
method commits the monitor to using that event as the output
event. Once setOutput has been called for a given trigger
event, additional calls by any policy for the same trigger event
return false to indicate that the output event cannot be over-
written. To avoid this, a policy may first call getOutput or
outputNotSet to confirm that an output has not yet been set;
policy logic may then determine what happens if the output
event has already been set.

Peonfirm’s onTrigger method tests whether the trigger
event, e, is a file-open action. If it is and no output event has
been set, then onTrigger specifies an obligation to confirm
e. Based on the result of the confirmation, onTrigger sets
the output event to e (indicating that the file open must be
executed) or unit (indicating that an empty result must be
returned to the application in lieu of opening the file). If e is not
a file-open action, or an output event is already set, Peonfirm
inserts no additional logic. Hence, Peopfirm’s onTrigger is
defined as follows.
fun onTrigger(e:Event):Unit =

(case e of act a =>
if a.name=="fopen" A outputNotSet ()
then
if (popupConfirm,e)
then setOutput(e); unit
else setOutput(
ines(res(a,makeTypedVal (Unit,unit)))
:Event); unit
else unit
| res r => unit),

The ability to permanently set the output event is required
for Peonfirm’s correctness. If it were possible for the output
event not to execute due to other policies’ obligations, then
the user could opt to allow the file open before the monitor
chooses not to allow it, or the user could opt to disallow the
file open before the monitor executes it anyway. This level of
control also enables policies to self-manage in instances where
they conflict with other policies.

5.2 The vote Policy Method

The second component of a PoCo policy is the vote method,
which votes on whether a given obligation should be exe-
cuted. To enable static analysis of obligations, PoCo repre-
sents them as Control Flow Graphs (CFGs). Hence, the vote
method takes the CFG of an obligation o being considered for
execution and returns a boolean vote indicating approval or
disapproval of o. For example, the goal of Py is to prevent
the secret.txt file from being opened, even by other policies’

obligations. Therefore, when examining an obligation, Pr;j,
looks for fopen(secret.txt) in the obligation’s CFG. If Pg;j,
finds that action, it votes to disallow the obligation. Otherwise,
Prije votes to allow it. Hence Pg;j.’s vote is:
fun vote(cfg:CFG):Bool =
= (containsAct, (cfg=cfg, name="fopen",
arg=(inag (makeTypedVal(String, "secret.txt")))
:(arg:TypedVal + none: unit, count=1)))
To ensure obligation atomicity, PoCo policies analyze obli-
gations before they execute—specifically, policies vote on can-
didate obligations based on their statically generated CFGs.
These CFGs are conservative approximations since computing
the exact CFG for an arbitrary program is undecidable. Be-
cause it is not always possible to determine the arguments of
actions invoked in obligations, it is necessary to allow unre-
solved arguments, which are parameters to a security-relevant
action that could not be determined statically. The CFG of an
obligation defines unresolved arguments as such, and policies
may specify how to handle unresolved arguments. For exam-
ple, Prjj conservatively votes against obligations known to
open the secret.txt file and also obligations containing file
opens with unresolved arguments. Pr;j,’s vote is therefore:
fun vote(cfg:CFG):Bool =
- (containsAct, (cfg=cfg, name="fopen",
arg=(inag makeTypedVal(String, "secret.txt"))
:(arg:TypedVal + none: unit, count=1)))
A
= (containsAct, (cfg=cfg, name="fopen",
arg=(inpone unit)

:(arg:TypedVal + none: unit, count=1)))

5.3 The onObligation Policy Method

The third component of a policy is an obligation that may be
executed in response to other obligations, in order to inject
additional actions after the triggering obligations. This is nec-
essary to achieve the goal of policies reacting to other policies’
obligations. The onObligation method responds to obliga-
tions by analyzing the results of all security-relevant actions
performed during an obligation’s execution, that is, a result
trace (rt). For example, Pp 51104 Proposes an obligation that
logs each file open in another obligation. This new obligation
is specified in the policy’s onObligation as follows:

fun onObligation(rt: Respist):Unit =
(let results=ref rt in
while (—empty (!results)) {
let event = head(!results) in
results := tail(!results);
if event.act.name == "fopen"
then (log,event)
else unit
end }
end)

PoCo cannot insert obligations before the execution of a
triggering obligation because doing so may create inconsis-
tency in the execution. Prior to executing an obligation o1, the
monitor decides whether 01 should be executed. Execution of
another obligation, oy, prior to 0; may cause policies to vote
differently than they did originally, when deciding to permit
o1. If PoCo were designed to re-query policies after oy was



inserted, and the new decision was to not execute oy, it is
possible that oz should not have been proposed in the first
place. To have reliable behavior, the voting on and execution
of a given obligation must therefore be treated as an atomic
unit. For this reason, it is not possible in P14 to log events
in obligations prior to their execution, though it is possible to
do so in onTrigger.

To summarize, there are two ways PoCo policies specify
obligations: onTrigger specifies an obligation in response
to a trigger event, and onObligation specifies an obligation
in response to other obligations (which may be defined by
onTrigger or onObligation). The vote method enables poli-
cies to indicate approval or disapproval of obligations.

5.4 Parameterized Policies

To aid code reuse, PoCo enables abstraction over common
policy patterns. This can be achieved by declaring a function
which instantiates different policies based on its argument.
For example, there are many policies that might disallow one
particular action. This set of policies can be abstracted over
with the following function:

fun disallow (x:Act) : Pol = (
name = disy,
onTrigger = (fun ot(e:Event):Unit =
case e of
act a =>
if a.name == x.name A a.arg == x.arg
then setOutput(event(
act("exit",makeTypedVal (Unit,unit))))
else unit
| res r => unit),
onObligation = (fun oo(rt: Resp;s;):Unit = unit),
vote = (fun vt(cfg:CFG):Bool =

= (containsAct,cfg=cfg, name=x.name,
arg=(inag (x.arg)):(arg:TypedVal+none:Unit),
count=1)))

Other uses of this functionality could be to specify directory
paths, port numbers, or any other data that may be relevant
to a specific policy.

5.5 Local Policy State

Without the ability to keep local state information, any policy
that needs to “remember” details about previous events cannot
be enforced. It has been noted, in general, that restricting a
monitor’s access to state information can have a significant
effect on the policies that can be enforced [27]. PoCo policies
can utilize let environments and memory references to manage
this data.

Ptime, shown below, tracks the last time a popup window
was displayed. If it was less than 100 seconds ago and the appli-
cation attempts to open another, the policy attempts to exit the
application. The time variable, t, records the last occurrence of
the popup event to compare during future attempts to execute
the popup action. The let environment initializes this variable.
let t = ref @ in (

name = poltipe,

onTrigger = (fun ot(e:Event):Unit =

case e of act a =>
if a.name=="popup" then
if currTime<!t+10@0 A outputNotSet ()

then setOutput(act("exit",
makeTypedVal (Unit,unit)))
else t:=currTime
else unit
| res r => unit),
onObligation = (fun oo(rt):Unit = unit),
vote = (fun vt(cfg:CFG):Unit =

= (containsActAnyArg,
(cfg=cfg, name="popup", count=2))
A =( (containsActAnyArg,

(cfg=cfg, name="popup", count=1))
A currTime < (!t+100)))) end

For the interested reader, Appendix B presents complete
specifications of six example policies. Their construction fol-
lows directly from the policy components that have been de-
scribed in this section.

6 POLICY COMPOSITION

The PoCo monitor, briefly discussed in Section 3.2, handles
composition of policies by scheduling obligations, dispatching
the agreed-upon output event, and handing control back to
the application or system.

Conlflicts produced when composing PoCo policies fall into
two categories, obligations that conflict with policies and obli-
gations that conflict with other obligations.

The first type of conflict results from an obligation o at-
tempting an action that a policy p specifically disallows. In
PoCo, this manifests as p’s vote method returning a deny re-
sponse on o. This type of conflict is handled in PoCo by using
a vote combinator that combines the votes of all policies into
a single decision to permit or deny the obligation.

The second type of conflict is a timing issue between obli-
gations. If the execution of an obligation 0; would render the
execution of obligation 0, meaningless or detrimental, the exe-
cution of 01 should cause o0z not to execute. This type of conflict
is handled in PoCo by configuring the obligation scheduler to
execute the most vital obligations first and writing obligations
such that they are able to gracefully handle such changes.

Using the parameters provided allows both types of conflicts
to be handled in the manner that the policy architect decides is
the best fit for their particular use case. The following sections
consider each of these configuration parameters in turn.

6.1 Policies

The first parameter of the PoCo monitor is a list of policies to
be enforced. Each policy is registered to receive all security-
relevant events that the monitor captures and broadcasts. The
list of policies does not, necessarily, indicate any sort of priority
or ordering of the policies. The order may be more or less
important depending on the other parameters supplied to the
monitor.

6.2 Vote Combinator

The Vote Combinator or VC is the second parameter that initial-
izes the PoCo monitor. The VC is a function that is responsible
for combining the boolean outputs of the policies’ vote meth-
ods into a boolean output that determines if an obligation will
be executed. In addition to the boolean vote of each policy, the
VC may need the policy name to implement combinators that



give preference to specific policies. Therefore, the type of this
argument is (name : String X vote : Bool)r;s; — Bool, which
will be referred to as simply VC. Some possible VCs include
conjunction, disjunction, and majority.

A VC can implement any logic that is desired. For example,
one could write a VC that executes an obligation if a specified
policy, say Poll, does not veto it. This VC would look like:
fun VCyote (votes:(name:String X vote:Bool) jst):Bool=

let output = ref in

let rvotes = ref votes in

while (—empty (!rvotes)) {
case head(!rvotes) of
some v =>
if v.name == "Pol1"
then output := v.vote
else unit
none unit => unit;
rvotes := tail(!rvotes)} end; !output end

The PoCo implementation includes several built-in VCs that
can be used in their entirety or as a building block to create
other VCs. For example, it would be possible to implement a
VC that allows an obligation to execute if either the first policy
allows it or all other policies allow it using a combination of
the built in conjunction and disjunction VCs:
fun VCoverride (VOtes: (name:String X vote:Bool) ist)

:Bool =
(Vcdisjunction »
(VCconjunction, tail(votes))::head(votes))

A convenient side effect of PoCo’s event-broadcasting and
voting mechanism is that policy conflicts are obvious during
execution of the VC; any votes to disallow an obligation or
any vote that gets overruled by the VC are conflicts between
policies. It is, therefore, straightforward to detect and act on
these conflicts dynamically by adding additional logic to VC.
This enables logging information about the conflict so that
it can be used to troubleshoot or make improvements to the
affected policies.

6.3 Obligation Scheduler

The Obligation Scheduler or OS is the last parameter of the
PoCo monitor. The 0S is a function that orders obligations
based on specified criteria. Example 0Ss include prioritizing
simpler obligations, weighting specific actions with more or
less priority, or applying specific priorities to the policies gen-
erating the obligations. This prioritization is especially im-
portant because it determines the single output event for a
given input event. Particularly, the obligations of lower pri-
ority policies will not be able to set the output event if an
obligation of a higher-priority policy has already set it. Like
the vote method for policies, the 0S works with CFG rep-
resentations of obligations, therefore the type for the 0S is
(pol : Pol X cfg : CFG)Lisy — (pol : Pol X cfg : CFG)Lis¢-

The 0S allows arbitrary logic to be implemented in order
to perform its function. One example 0S could be a strict or-
dering of policies. If the policy writer wanted to prioritize the
obligations in the order that the policies were provided to the
monitor, they could simply return the same list. The PoCo
implementation includes several example 0Ss including this
default ordering:

fun OSgefaurt (0bs: CFGrist): CFGList = obs

Another potentially interesting way to order obligations
could be based on their complexity (i.e., the number of nodes
in their CFG). Essentially, this would allow simple obligations
that are less likely to cause conflicts to complete before dealing
with more complicated obligations.

fun OScomplexity (Obs: CFGpist):CFGList =
(sort, (list = obs,
comparator = (fun c((0y,02):(CFGXCFG)):Int =
(length,o0;.nodes)- (length,o0;.nodes))
)

6.4 Monitor Operation

Now that all the inputs to the monitor have been described, let
us examine how PoCo uses these inputs to provide versatile
composition of policies. When a security-relevant event oc-
curs, the monitor collects the CFGs of the policies’ onTrigger
obligations. These CFGs are then prioritized using the 0S and
individually voted on by the policies’ vote methods.

To process an obligation o, the monitor collects a vote on o
from each policy and sends these votes to the VC to make the
final decision on whether the monitor should execute o.

Once a current obligation finishes executing, the monitor
collects any onObligations that may have been generated
and adds them (in order) to the front of the list of obligations
to be processed, thus ensuring that any new obligations trig-
gered as a result of the current obligation are voted on and
executed prior to moving on to any other obligations that may
be waiting.

Once all obligations are processed, the monitor checks if an
output event was set by any of the policies. If one has been set,
the monitor will dispatch this event in order to cede control
back to the target application or the system. If no specific
output event has been set, the monitor will, by default, use the
trigger event as the output event.

7 POCO LANGUAGE PROPERTIES

Using the semantics shown in Section 4 we can prove a number
of useful properties about the PoCo language and architecture:

all obligations are atomic

obligations always allow for conflict resolution
policies can always react to other policies’ obligations
pre-obligations can be used to implement post- and
ongoing obligations

e it is possible to design a PoCo monitor such that the
order in which the policies are declared does not affect
the outcome

Proofs for these theorems can be found in Appendix G. To as-
sist with these proofs, PoCo’s dynamic semantics are designed
to output a trace indicating relevant steps taken by the pro-
gram. This trace is made up of values begins(,) and endp(y).,
where beging () indicates the beginning of a step with any
applicable parameters and endpy,).,, indicates the end of a step
with applicable parameters and output. To simplify theorems’
presentation, the syntax also defines the following values:



N u=  # of policies in Polp ;s

beginOb(e) = beginonTrigger(e) |beginon0bligation(e)
endOb(e) = endonTrigger(e) |end0n0bligation(e)
ob(e) :=  beginOb(e) | endOb(e)

7.1 Atomicity of Obligations

All obligations in PoCo are executed atomically—once an obli-
gation begins executing, no other obligation code executes
until that obligation has finished executing. This does not
guarantee that the executing obligation will terminate.

THEOREM 3 (ATOoMIC OBLIGATIONS). Forall p, t, and t’ if p
is well-typed program such thatp —" p’ and t matches the
oo-expression ((.°) beginOb(e,) t’ beginOb(ey,) .(.*°)) thent’
matches the co-expression ((.*°) endOb(ep) (.*))

Essentially, Theorem 3 states that another obligation will
never start if the previous obligation has not completed exe-
cution. Note that an co-expression can generate possibly in-
finite length strings (i.e., belonging to the union of a regu-
lar and an w language). A trace, t, is considered to match
an oo-expression, e, if + matches [*/co]e or t matches a sub-
expression of e, eg, . .. [w/co]e;. See Appendix F for a full defi-
nition of co-expression.

7.2 Conflict Resolution

PoCo defines conflict resolution as allowing each policy to
vote to approve or deny each obligation immediately prior
to its execution. This vote is guaranteed to be provided as
input to the vote combinator which may or may not use the
value to determine the final vote. Since this vote combinator
is specified by the policy architect, policies have as little or as
much decision-making power as is desired.

THEOREM 4 (CONFLICT RESOLUTION). For all well-typed pro-
grams p such that p —t=* p’, t matches the co-expression
(—beginOb(e))™ (vrrue (en)beginOb(en)(—beginOb(e)) ™)™
where:

Vtrue(e) u= (beyin‘uote(e) (—=beginOb(e))™ endvote(e) : vn)N
beging,c(v,:: - uy) (—beginOb(e))™ endyc(v,:: - won) : true

Theorem 4 shows that no obligation will start without hav-
ing called the vote method for each policy and getting a true
result from the vote combinator.

7.3 Obligation Reaction

PoCo defines obligation reaction as allowing each policy to
propose a new obligation in response to an executed obligation
that contains security-relevant events.

THEOREM 5 (OBLIGATION REACTION PART 1). For all well-

typed programs p such that p —* p’, t matches the co-

expression ((_‘beginappendRes())Do (beginappendRes()
endOb(e)(.~ endmakeCFG(onObligatian, v) :g)N)?)DO

Theorem 5 shows that after each obligation containing
security-relevant events ends, a CFG is created based on query-
ing the onObligation function of each policy. Note that poli-
cies always propose an obligation with onObligation, but it
is possible that it will be an empty obligation which ultimately
does nothing. This, by itself, is not sufficient to prove that
these obligations are executed once they are retrieved.

THEOREM 6 (OBLIGATION REACTION PART 2). For all well-
t ko s . .

typed programs p wherep ——" p’ and p’s monitor is the tuple
(M, funmon,p1 = -+ = pn, €os, €vc) Where the functions
evc, p1-onTrigger, ..., py.onTrigger, p1.onObligation, . .., py.
onObligation terminate, for each event endy,akeCFG(v1, v2) : g
in t there must exist a Uypye(g) O Vfalse(q) in ¢ where:
Vtrue(e) 1= (beginyore(e) (—beginOb(e))™ endyote(e) : v,,)N
beginvc(vl i UN) (—=beginOb(e))™ endvc(vlzz
and
Ufalse(e) n= (beginvote(e) (—beginOb(e))™ endvote(e) : vn)N
beginvc(vl e vN)(_‘beginOb(e))ooendvc(vlzz

tOUN) : true

zonN) : false

Theorem 6 is needed to tie the results of Theorem 5 into
the useful result that each of these obligations is ultimately
voted on and, if approved, executed. It shows that every obli-
gation that is turned into a CFG is eventually voted on and, if
approved, executed provided that all obligations and voting
functions terminate.

7.4 Obligation Completeness

Although the categories pre-, post-, and ongoing- are standard,
all obligations can be implemented as pre-obligations by ex-
panding the domain of security-relevant events to include
both actions and results from actions, as shown in Figure 1.
With this expanded definition of events, the obligation types of
pre-on-action (i.e., pre-obligations on actions) or pre-on-result
(i.e., pre-obligations on results) can be defined. An obligation
o is a pre-on-action obligation to an action q if o is fulfilled
after a is requested by the monitored application but before
the monitor makes a decision regarding a. Similarly, an obliga-
tion o is a pre-on-result obligation to a result r if o is fulfilled
after r is returned from the underlying system but before the
monitor makes a decision regarding returning r to the target
application.

We refer to this property as pre-obligation completeness (The-
orem 7). Similarly, ongoing obligations can be defined in terms
of pre- and post-obligations. It is for this reason that Table 1
didn’t have a row for ongoing obligations; any system with
pre- and post- obligations in a multi-threaded environment
can implement ongoing obligations.

Pre-obligation completeness implies that only pre-on-action
and pre-on-result obligations are necessary in order to support
all the standard obligation categories and, as such, these are
the only types of obligations that are implemented in PoCo.

THEOREM 7 (PRE-OBLIGATION COMPLETENESS). There ex-
ists well-typed programs py, pa, and p3 where p; —1-* P17
Py 27 P, and p3 By P such that t1, ta, and t3 match
the co-expressions epre, €post> €ongoing respectively where
€pre V= *) beginf(x) (-oo)beginmonitor(act(f,x)) ™)
endf(x):v (%)
€post U= (~Oo)e”df(x):v (*) beginmonitor(res(act(f,x),rt))

(-0)

€ongoing * (epre | epost) (™) (epre | epost)~

Theorem 7 shows that with the PoCo obligation design it is
possible to implement pre-, post- and ongoing obligations by
making use of both pre-on-action and pre-on-result obligations.



7.5 Policy Permutability

We have proven that it is possible to design a PoCo monitor
(i.e., VC and OS pair) such that the order in which the policies
are declared does not affect the outcome. This is a desirable
feature because it allows for true modularity of policies and
makes it simpler to test sets of policies in isolation. In order to
prove this, we must first define what it means for the outcome
to be unaffected. In general terms, this means that regardless of
the order that policies are input, identical obligations should be
executed in the same order, and the same output event should
be decided. To formalize this, we define trace equivalence as:

nl = n2
nl =n2
nl = n2
{Pl it nppl R {p{ B s pnt
ny = beglnos(pl:: cenpp) M2 = beglnos(p;:: ceuph)
nl = n2
{prs - mpny=ip; = -+ upp)
n = e"dos(plzz ceupp)o 2= e"dos(pi:: e uph)iv
nl ~ n2
{pr= - mpny = {p] = - =pp)
ny = beginmonitor(plzz cenpn) M2 = begi”monitor(p{:: euph)
nl ~ n2
{p1: -+ upnl= {pi woees npnd
ny = endmanitor(pl:: cenpp)o 2= endmanitor(pi:: e nph)iv
nl ~ n2

—_ — ~ ’
ny = endmakeCFG(o):v nz = endmakeCFG(o’):v o~0

nl = n2

Trace equivalence guarantees that effectful code is executed
in the same order in each trace.

THEOREM 8 (PoLICY PERMUTABILITY). There exists well-typed

programs p1 with monitor (M, funmon, p1 i Pn, €os,
euc) and pz with monitor (M, funmon, p; i Ph, €os,
evc) wherep] -+ i pp isa permutation of p1 i -+ i py

ty

such that p; b p{,pz L Pé, andt; = to.

Theorem 8 provides proof that such an OS and VC can be
created. Not all monitors will make use of this property, but
when true modularity is needed, designing the monitor to
display policy permutability will allow policies to be more
freely added and removed. A proof for this theorem can be
found in Appendix G.

8 IMPLEMENTATION

We have implemented a prototype of PoCo to evaluate and
refine its design. The implementation, written in Java and
packaged as a Java library, is 3,299 lines of code and is available
online [citation anonymized]. This section provides details of
the compiler module.

8.1 PoCo Compiler Architecture

The PoCo compiler builds a trusted application by inlining
security-enforcement code into the untrusted application us-
ing Aspect] [28], an aspect-oriented extension to Java. The
Aspect] compiler inlines code, called advice, that executes
before and/or after methods specified with one or more point-
cuts [29]. The decision to use Aspect] over manual bytecode
re-writing was made largely for simplicity and because byte-
code re-writing to enforce run-time policies has already been
accomplished by other projects [4] so there is no novelty in
creating an additional implementation.

The PoCo compiler is made up of four modules: the pointcut
extractor, policy converter, static analyzer, and Aspect] compiler,
depicted in Figure 5. Following the flow of code translations,
the PoCo compiler takes a list of policies specified in .pol
files as input and uses the pointcut extractor to create an As-
pect] (.aj) file including security-relevant methods monitored
by the policies as the pointcut set. Next, the policy converter
reconstructs the . pol files into Java (. java) files and creates
a policy-scheduler file using the specified obligation scheduler
and vote combinator (in .os and . vc files respectively). Then
the static analyzer statically creates CFGs that represent the
actions that may be invoked for each obligation. Finally, given
the generated files and the information gathered for each obli-
gation, the Aspect] compiler inlines the policy-enforcement
code into the target application.

8.2 Pointcut Extractor

The pointcut extractor obtains a policy’s events of interest by
scanning the onTrigger method, discussed in Section 5.1; it
locates all matches calls on the trigger action in the policy’s
onTrigger method and extracts the arguments to create As-
pect] pointcuts. It is always possible to manually modify the
pointcuts after they are determined. This customization may
be desirable in cases where complex logic makes it impossible
for static analysis to determine the security relevant events
or in cases where the writer wishes to manually restrict the
events being monitored to improve system performance.

Let’s consider the policy Pp;ssyscairs [4] which prevents
a target application from exploiting java.lang.Runtime.exec
methods. This policy’s onTrigger calls the matches method to
inspect the trigger action using the wildcard * to avoid listing
all six overloaded exec methods. If a trigger action matches
the java.lang.Runtime.exec methods, the policy attempts to
halt the target application by changing the output event to
null as the following example illustrates.

public void onTrigger (Event e) {
String acts = "java.lang.Runtime.exec(*)";
if(e.matches(new Action(acts)))
setOutput (new Result(e, null));

Taking this policy as its input, the pointcut extractor locates
the matches method and learns that all of the exec methods
are security relevant. The extractor then creates an Aspect]
file with a pointcut defined to intercept all of the overloaded
Jjava.lang.Runtime.exec methods.
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Figure 5: Overview of the PoCo compiler architecture. The compiler takes as input an untrusted application and outputs the same

application with policy-enforcement code inlined before and after all security-relevant methods. Ovals are used to represent code
files while rectangles represent processes executed during compilation.

Once the pointcut has been defined, the pointcut extractor
defines advice to execute policy-enforcement code whenever
the pointcut is triggered.

8.3 Policy Converter

Given a list of policies, the policy converter copies relevant
sections of the .pol file into a . java file template. The policy
converter is also responsible for creating a policy scheduler Java
source file (described further in Section 8.5), using the specified
obligation scheduler and vote combinator or the default PoCo
scheduler and combinator. The default obligation scheduler,
named OrderAsListed, preserves the original order of input
policies by directly returning the input list.

The default vote combinator, Conjunction, performs a log-
ical AND operation on the policies’ votes to get its result.
This combinator is restrictive and can be used for composing
unanimous decision-making policies.

8.4 Static Analyzer

The PoCo static analyzer utilizes two libraries, Java Com-
piler Tree [30] and ASM5 [31], to generate CFG representa-
tions of each obligation. First, Java Compiler Tree (included
in the com.sun.source package) is used to visit an obligation’s
abstract-syntax tree (AST) and obtain information about the
method calls. Let’s consider the example policy Peopnfirm from
Section 5 which requires every file-open operation attempted
by a target application to first be confirmed through a pop-up
window.
public void onTrigger(Event trig) {
if(trig.matches(fileOpenAct)&8&outputNotSet()) {
if (JOptionPane.showConfirmDialog(

null, msg, "Security Question",Q)

== JOptionPane.YES_OPTION)

setOutput(trig);

else
setOutput (new Result(trig,null));

By scanning the policy’s onTrigger function with the Java
Compiler Tree library, the static analyzer finds three distinct
paths (for simplicity, short-circuit expression evaluation is not
considered). All paths first invoke e .matches and outputNotSet
methods. After that, one path ends while the other two paths
invoke JOptionPane. showConfirmDialog. Depending on the
user’s selection in the confirmation dialog each path invokes
setOutput with differing parameters and then ends their ex-
ecution. The CFG representation of the obligation is shown
in Figure 6. This information is insufficient to make decisions
about an obligation’s relevance to the concerns of the imple-
mented policies as it does not contain type details for vari-
ables and methods. For example, the null value of the first
argument of JOptionPane.showConfirmDialog is ambigu-
ous because the value null can be assigned for variables of
any non-primitive type. Thus, the argument’s type cannot be
precisely inferred.

Method signatures and statically initialized argument val-
ues are obtained by reading compiled policy code with the
ASMS5 library, a bytecode manipulation tool that can be used
to analyze Java programs. By analyzing Peopfirm s class file in
this way, the signature and parameter of the setOutput(trigger)
method call is determined. In this case, trigger is the trigger
event which updates dynamically at run-time. By mapping
the detailed method information onto the control flow infor-
mation, the static analyzer generates a detailed CFG for each
obligation.

For this implementation, dynamic analysis of obligations is
limited to changes in the trigger event; this could be extended
in future work to include additional options for dynamic analy-
sis. This primary reliance on static analysis leads PoCo policies
to be more conservative than what might be accomplished by
allowing additional dynamic analysis.

Once all policies have been converted into appropriate As-
pect] advice and all obligations have been statically analyzed,
PoCo relies on the Aspectf compiler to inline the desired policy-
enforcement code into the target application.



trigger.matches(fileOpenAct)

outputNotSet()

JOptionPane.showConfirmDialog(. . .)

setOutput(null)
End of Obligation

Figure 6: The control flow graph of Pconfirm’s onTrigger
function.

setOutput(trigger)

8.5 Policy Scheduler

As mentioned earlier, the policy converter is responsible for
generating a policy scheduler that uses the configured obliga-
tion scheduler and vote combinator. To respond to a security-
relevant event, the policy scheduler must use the specified obli-
gation scheduler to prioritize the list of policies and generate
an ordered list of obligations. It then obtains the statically gen-
erated CFG of each policy’s onTrigger method and injects the
trigger event into it. If the resulting obligation is non-empty, it
is added to an obligation queue. Once all obligations have been
added to the queue, the obligation scheduler pushes the queue
onto a stack that holds all obligations waiting to execute.

To process an obligation, the policy scheduler removes the
first obligation from the first queue on the obligation stack
and collects votes from all policies on whether to allow the
obligation. These votes are passed to the vote combinator to
be composed into a single permit/deny decision. An obligation
that is denied will be discarded and the scheduler will continue
with the next obligation. An obligation that is permitted is ex-
ecuted, and its result trace is dynamically collected. In order to
avoid time-of-check to-time-of-use (TOCTOU) vulnerabilities,
the voting on and execution of an obligation needs to happen
sequentially in a single thread.

Next, the policy scheduler uses the result trace combined
with the onObligation of each policy to determine if the
executed obligation triggers any additional obligations. As
with the onTriggers, each new obligation is added to a queue
and then the queue is pushed onto the obligation stack. This
stack of obligation queues ensures that obligations generated
by other obligations are executed as soon as possible after the
execution of the triggering obligation. Once the new queue is
added to the stack, the scheduler starts the process over with
the first obligation in the first queue on the obligation stack.
If the obligation stack is empty, the scheduler has completed
all obligations. Figure 7 illustrates this process.

L . obligation queue
trigger | ", ontzigger, [Obligation] _ordered
event N, L/ CFGs Scheduler | obligations ! 2

N

push

S onObligation
s CFGs

43
s @
s
[ =
AN,
l' 1 ‘\
VAN
: |lo |
2 |=
7
\ /
obligation stack
e}
-
1

ideny

Combinator

Figure 7: Policy scheduler flow — obligations are generated
by policies based on the trigger event, prioritized by the obli-
gation scheduler and then voted on. Executed obligations can
result in additional obligations and this process continues un-
til there are no remaining obligations to prioritize and vote on.

9 CASE STUDY

To demonstrate the expressiveness and analyze the perfor-
mance of the PoCo system, we replicated the case study that
was used to validate Polymer [4], which is the most directly
comparable previous work. The case study is made up of ten
policies that are designed to prevent unsafe behavior in an
email client. Due to differences in the structure of the two
systems, there are some differences in how these policies must
be written in PoCo, but the goals and results of the policies
are the same. All variances from the original case study will
be noted for completeness. The policies implemented were:

e IsClientSigned - trusts a cryptographically signed
application and ensures that an unsigned application
is monitored with additional policies. In Polymer this
policy takes two policy parameters; the PoCo version
instead trusts the target application by setting the trig-
ger event as the output event. By prioritizing this policy
as the first policy via the obligation scheduler the PoCo
policy serves the same purpose as Polymer’s version.

e AllowOnlyMIME - prevents connections other than POP
and IMAP.

e ConfirmAndAllowOnlyHTTP - disallows non-HTTP con-
nections and opens a popup for user confirmation be-
fore allowing HTTP connections.

e IncomingEmail - logs incoming emails and flags emails
from unknown addresses as SPAM. This policy includes
additional security-relevant methods due to an imple-
mentation change in the latest version of Pooka.

e OutgoingMail - confirms recipients, adds a BCC, and
logs all outgoing email.

e ClassLoaders - prevents the target application from
creating a custom class loader.

e Attachments - warns users about dangerous email at-
tachments before creating them.

e NoOpenClassFiles - ensures that compiled Java code
will not be executed by the target application.

e DisSysCalls - prevents the target application from
executing system-level calls.



. One trivial | Ten trivial
No policy . .

policy policies

Load Average(ms) 6075.85 6128.40 6169.49
Application Median(ms) 6187.14 6230.36 6255.93
Overhead - 0.87% 1.54%
Load Average(ms) 286.40 272.52 300.89
Email Median(ms) 282.24 281.38 302.29
Details Overhead - 0.39% 5.06%

Table 2: PoCo performance statistics on email client over 100
runs.

e InterruptToCheckMem - monitors the memory con-
sumption of the target application.

e Reflection - prevents Java reflection methods from
being used to call PoCo methods.

In addition to the variances noted in the policies above,
PoCo’s flat policy structure, rather than the tree-like structure
of Polymer, means that PoCo does not need Polymer’s concept
of superpolicies (policies parameterized by other policies [4]);
PoCo instead sorts and composes a list of policies using an
obligation scheduler and a vote combinator. In order to achieve
similar effects to those seen in the Polymer work, the default
0S (OrderAsListed) and the default VC (Conjunction) were
applied to the policies in the order in which they are listed
above.

These policies are encoded in 1138 lines of PoCo code. We
have successfully enforced this composed email policy on
Pooka [32], an open-source email client, without modifying
the application’s source code.

PoCo performance was measured as the run-time overhead
incurred by the system, since this impacts user experience.
Specifically, the average overhead for loading the application
and loading details for a specific email were measured. The
application-loading time was measured from when the email
client begins execution to when the user can view the inbox.
The details-loading time, on the other hand, was calculated
from the moment a user clicks on a specific email to the mo-
ment when the user can view that email’s details. To take
these measurements, an Aspect] program intercepted events
from Pooka and recorded the time at relevant points during
its execution.

These time vectors were measured under three scenarios.
First, measuring these times without enforcing any policies
establishes a baseline. Then, measuring these times with one
Trivial policy as well as a policy composed of ten Trivial poli-
cies establishes how much of this overhead is due to the mon-
itor and how much is due to the overhead of the individual
policies. These measurements were performed using the same
pointcuts that were generated by PoCo for the composed email
policy, ensuring that the same events were considered secu-
rity relevant across all four scenarios. Finally, the run-time
overhead of the fully implemented email policy was measured.
This evaluation was conducted on a MacBook Pro laptop run-
ning macOS Sierra version 10.12.4 with 8GB of memory and
a 2.9GHz Intel quad-core i7 processor. For each scenario and
time period, the test was repeated 100 times on a consistent
university-network environment. The email account that was
used to complete the testing contained 15 incoming emails.

The empirical results demonstrate that the overhead of the
PoCo monitor is relatively low. As shown in Table 2, with
one trivial policy and ten trivial policies, the average timing
overheads for loading Pooka are approximately 0.87% and
1.54%, respectively, and, the overheads for loading a specific
email are approximately 0.39% and 5.06%, respectively.

The overhead of PoCo policies, on the other hand, is domi-
nated by policy obligations which can vary significantly from
one policy to another. As PoCo obligations are Turing com-
plete and can therefore run for arbitrary amounts of time, the
overhead of a composed policy is almost entirely dependent
on the complexity of its obligations and how many of these are
triggered per security relevant event. The run-time overhead
of the entire composed email policy for loading the application
is 17788.89ms (292.78%) on average. This may seem high when
compared to other scenarios; however, during this time period,
the PoCo monitor processes 130 security-relevant events in
total and triggers complex obligations like incoming-email log-
ging, spam-email marking, long-email-subject truncation, etc.
If excluding the overhead of the PoCo monitor, the overhead
per event is approximately 136.43ms.

10 RELATED WORK

Composition of obligation policies is a long-standing research
problem. This section describes the primary efforts in the area.

10.1 XACML

eXtensible Access Control Markup Language (XACML) [7] al-
lows policies to be specified and composed using XML. XACML
allows each policy to return one of four basic result values (per-
mit, deny, indeterminate, or not applicable) and, optionally,
an obligation, to express its response to a request. XACML
also defines seven rule-combining and eight policy-combining
algorithms to combine results from multiple policies. Due to
the stateless nature of its policies and relatively simple rule
structure, XACML has been widely adopted and has been
implemented into commercial and open-source software prod-
ucts. However, XACML has a number of limitations that affect
its overall expressiveness.

Even with significant research extending XACML to over-
come its limitations [8-12] (e.g., to add conflict resolution
by requiring manual specification of which obligations con-
flict [11]), XACML is still lacking in some areas. Stateless poli-
cies are less expressive than stateful policies [27] and cannot
express simple policies such as “disallow network-packet sends
after file reads” [33]. Table 1 summarizes additional issues with
using XACML and its extensions to compose obligation-based
policies.

10.2 Polymer

Polymer is an object-oriented policy specification language and
run-time monitoring system [4] with well-defined semantics
that enables users to compose modularized policies for use
on Java programs. Polymer policies issue “suggestions” in
response to security-relevant events indicating what they want
the monitor to do. By separating policies into an effect-free
query method and an effectful accept method, Polymer ensures



that querying a policy will have no permanent effect when its
suggestion is not followed.

Because Polymer implements event-by-event complete me-
diation, it cannot ensure obligation atomicity (Theorem 1).

10.3 Ponder

Ponder is a policy specification language that can be used to
compose access-control and general-purpose policies [6, 13].
With Ponder, users can flexibly compose complex policies
based on logical relations between policies and hierarchical
relationships between subjects’ policies. Obligation policies
are specified in the format of “on triggering-events do obligated
actions”.

Complex obligations may be specified in Ponder using its
concurrency operators. If any action in an obligation violates
an enforced refrain policy (i.e., policies that specify a forbid-
den subject, action, or object combination), then the target
application halts.

Like Polymer, Ponder inspects all actions of an obligation
one at a time, so the execution of an obligation can be inter-
rupted if its actions result in a security violation. Also, like
Polymer, this characteristic prevents Ponder from ensuring
obligation atomicity. Ponder furthermore does not allow poli-
cies to react to the obligations of other policies; the only al-
lowed response to a conflict between an obligation and other
policies is to halt the application, which may be unacceptable
in practice.

10.4 SPL

Security Policy Language (SPL) is a policy specification lan-
guage that enables users to compose complex authorization
policies by using policy combinators [5, 14] to resolve conflicts
on permit/deny decisions of composed policies. SPL focuses
on policies that make decisions based on actions executed in
the past. Obligations are defined as future events that must be
carried out after the execution of the current event.

SPL requires all obligations to be atomic, to ensure that
future obligations are carried out. In cases where a policy’s
obligation violates other enforced policies, SPL resets the ap-
plication to the state before the execution of the obligation’s
trigger action. For this solution to work, obligations must be
pure (free of side-effects), because effectful actions generally
cannot be rolled back. Excluding effectful obligations signifi-
cantly limits SPL’s expressiveness.

10.5 Heimdall

Heimdall uses compensatory actions in response to execution
failures in obligations [15]. Heimdall builds on the hypothesis
that any executed action can be compensated by future actions.
However, there may not always exist an effective compensa-
tion for security violations; a policy may be able to prevent
future leakage of sensitive data but be unable to compensate
for data that has already been leaked.

Heimdall also does not support conflict resolution between
policies and obligations. If an application’s action triggers any
obligations, Heimdall creates instances of those obligations
and sends the execution request of these instances directly to

the underlying system. Obligations are not validated against
other policies before execution. If an obligation is fulfilled, the
system sends information about this action to Heimdall, which
then deletes the corresponding instance. When an obligation
is not fulfilled, Heimdall requests the system to execute the
compensatory action of the obligation. Enforced policies are
unable to react to the executed obligations.

10.6 Rei

Rei, which modeled the concept of permissions, prohibitions,
obligations, and dispensations, is a non-domain specific lan-
guage that supports specifying pre-on-result obligations [16].
A Rei policy is composed of rules that are each comprised of
an entity and a policy object. A policy object specifies allowed
or prohibited actions and any applicable obligations; an entity
specifies what subject the policy object applies to.

Rei identifies conflicts between obligations and prohibition
policies and offers two ways to resolve them. The first is to
specify priorities among policies and/or policies’ rules and
the second is to set negative/positive-modality precedence on
actions, entities, and policies. The authors do not address the
issue of conflicts involving complex obligations specifically,
but the context suggests that obligated actions are handled
individually, and thus complex obligations would not be ex-
ecuted atomically. It is also unclear if Rei is able to react to
obligations of other policies since the exact details of how
obligations are enforced is not included

10.7 Aspect Oriented Programming

Aspect-oriented programming (AOP) is another approach that
has been used to address modularization of policies, in the
context of cross-cutting concerns [17]. AOP allows code that
would be distributed throughout an application to be sepa-
rated into modules of related functionality, called aspects, that
are woven into the application at specified locations. Aspect-
oriented languages are typically Turing complete. However,
we are not aware of any aspect-oriented languages that effec-
tively handle conflicts or allow arbitrary policy combinators
over atomic obligations. Composing aspects is a known chal-
lenge, as summarized in [22].

11 CONCLUSIONS

PoCo is a policy-specification language and enforcement sys-
tem that enables principled composition of atomic obligations.
It is Turing complete and supports effectful obligations of all
types (pre-, post-, and ongoing) (Theorem 7). PoCo employs
static analysis of obligations, based on their CFG represen-
tations, to allow policies to validate the obligations of other
policies before they are executed (Theorem 4). PoCo also al-
lows policies to react to the completed obligations of other
policies (Theorems 5 and 6) and enables custom operators to
define how policies (i.e., their votes and obligations) should
be prioritized and combined. Taken together, these techniques
enable versatile composition of security policies.

PoCo has been implemented and evaluated, including by
defining the language’s formal semantics, using the semantics
to establish important properties of the enforcement system,
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APPENDIX A THE POCO MONITOR ALGORITHM

Figure 8 presents the PoCo monitor algorithm. Situated between an untrusted application and the underlying executing system,
the PoCo monitor interposes any attempt of executing security-relevant behaviors. Once an attempt is captured, the monitor
performs the following steps:

(1) Input security-relevant event e
(2) Collect obligations from policies in response to e
(3) While there are obligations to process
(a) Select an obligation o (b) Allow policies to vote on o (c) If o is approved, execute o (d) Collect obligations triggered in
response to o
(4) If a new output event has been set, return it. Otherwise, output the original input event
The monitor is given as an expression parameterized by 7 and config. An instance emonitor (7, (evt = e,pols = pols,os =
o0s,vc = vc)) monitors the security-relevant event e—whose return type is 7—using policies pols, obligation scheduler os, and vote
combinator vc.

€monitor (T, C) =

let pols = ref c.pols in

let obQueue = ref [J]:(pol:Pol X cfg:CFG)List in

let obStack = ref [J:(pol:Pol X cfg:CFG)iist ;o 1IN
while (—empty(pols)) {

obQueue := !obQueue @ (pol=head(!pols), cfg=
makeCFG(ingt(evt=c.evt,onTrig=head(!pols).onTrigger):0bligation))::[J:(pol:Pol X cfg:CFG) ist;
pols := tail(!pols); 3;
let votingPolList = (c.os, !obQueue) in
obStack := votingPollList :: !obStack;
while (—empty(!obStack)) {
obQueue := head(!obStack);
let ob = head((!obQueue).cfg) in
let votingPols = ref votingPolList in
let votes = ref []:Booliijst in
if —empty(tail (! obQueue)) then obStack := tail(!obQueue) :: tail(!obStack)
else obStack := tail(!obStack);

while (—mempty (!votingPols)) {
let pol = head(!votingPols).pol in

votingPols := tail(!votingPols);
votes := lvotes @ (pol.vote, ob) :: [J]:Boolijst
end };
if (c.vc, !votes) then
case ob.obligation of ot o; = (oy.onTrig, oj.evt)
| o0 07 = (o2.0n0blig, o3.rt)

else unit;
if —empty(getRT()) then
votingPols := votingPollList;
obQueue := []:(pol:Pol Xxcfg:CFG)List;
while (mempty (!votingPols)) {
obQueue := !obQueue @ (pol=head(!votingPols).pol, cfg=makeCFG (ingo
(rt=getRT(), onOblig=head(!votingPols).pol.onObligation):0bligation))
[1:(pol:Pol xcfg:CFG)List;
votingPols := tail(!votingPols); };
obStack := !obQueue :: !obStack
else unit
end end end }
end end end end;
case getOutput() of some o = o | none unit = e

Figure 8: The PoCo Monitor Algorithm



APPENDIX B EXAMPLE POLICIES

Figures 9—14 present the example policies used throughout this paper written in the PoCo language.

(

name = polfige,

onTrigger = (fun ot(e:Event):Unit =
case e of act a =>

if a.name == "fopen" A tryCast(String,a.arg) == "secret.txt"
then setOutput(event(act("exit", makeTypedVal(Unit,unit))))
else unit

| res r => unit),
onObligation = (fun oo(rt: Resp;s;):Unit = unit),
vote = (fun vt(cfg: CFG):Bool =

= (containsAct, cfg = cfg, name = "fopen",
arg=in, makeTypedVal(String, "secret.txt"):(arg:TypedVal + none: unit,
= (containsAct, cfg = cfg, name = "fopen",

arg=inpone unit:(arg:TypedVal + none: unit, count=1)))

Figure 9: Pr;;. disallows users and obligations from opening the secret.txt file

fun disallow (x:Act) : Pol = (
name = disy,
onTrigger = (fun ot(e:Event):Unit =
case e of
act a =>
if a.name == x.name A a.arg == x.arg
then setOutput(event(act("exit",makeTypedVal(Unit,unit))))
else unit
| res r => unit),
onObligation = (fun oo(rt: Resp;s;):Unit = unit),
vote = fun vt(cfg:CFG):Bool =

count=1)) A

= (containsAct,cfg=cfg, name=x.name, arg=(ingg(x.arg)):(arg:TypedVal+none:Unit),count=1)
)
Figure 10: fun disallow specifies a family of policies which disallow the action x
(
name = pO]-postlog ,

onTrigger = (fun ot(e:Event):Unit =
case e of
act a => unit
| res r => if r.act.name == "fopen" then (log,e) else unit),
onObligation = (fun oo(rt: Respis;):Unit =
let results=ref rt in
while (—empty (!results)) {

let event = head(!results) in
results := tail(!results);
if event.act.name == "fopen"
then (log,event)
else unit

end}

end),
vote = (fun vt(cfg: CFG):Bool = )

)

Figure 11: Ppo51104 logs all file-opens after they occur



(
name = polprelog
onTrigger = (fun ot(e:Event):Unit =
case e of
act a =>
if a.name== "fopen" then
if outputNotSet() then (log,e); setOutput(e)
else case getOutput() of
event o =>
case o of

act a; =>
if aj;.name == e.name
then (log,e) else unit

| res r; => unit
| none n => unit
| res r => unit ),
onObligation = (fun oo(rt: Resp;s;):Unit =
let results=ref rt in
while (—empty (!results)) {

let event = head(!results) in
results := tail(!results);
if event.act.name== "fopen" then (log,event) else unit
end}
end),
vote = (fun vt(cfg: CFG):Bool = )
)
Figure 12: Py, ;o4 logs file-open actions before they are executed
(
name = polconfirm,

onTrigger = (fun ot(e:Event):Unit =
case e of
act a =>
if a.name=="fopen" A outputNotSet() then
if (popupConfirm,e)
then setOutput(e)
else setOutput(ins(res(a,makeTypedVal(Unit,unit))):Event)); unit

else unit
| res r => unit),
onObligation = (fun oo(rt: Resp;s;):Unit = unit),
vote = (fun vt(cfg: CFG):Bool = )

)

Figure 13: P.,pnfirm requires all file-open attempts to be confirmed by the user through a pop-up window

let t = ref @ in (
name = poliipe,
onTrigger = (fun ot(e:Event):Unit =
case e of
act a =>
if a.name=="popup" then
if currTime<!t+100 A outputNotSet ()
then setOutput(act("exit", makeTypedVal(Unit,unit)))
else t:=currTime

else unit
| res r => unit),
onObligation = (fun oo(rt: Resp;s;):Unit = unit),
vote = fun vt(cfg: CFG):Bool =
- (containsActAnyArg, (cfg=cfg, name="popup", count=2)) A
=( (containsActAnyArg, (cfg=cfg, name="popup", count=1)) A

currTime < (!'t+100))) end

Figure 14: P;; . disallows pop-ups unless at least 100 seconds have passed since the last pop-up



APPENDIX C STATIC SEMANTICS OF POCO

This section presents the static semantics of the PoCo language. As defined in the syntax (see section 4.1), A maps locations to
values while I' maps variables to values. It can be said that "under the contexts A and I', the expression e is of type 7" if and only if
the judgment A,T F e : 7 is derivable by the following rules:

AT +n:Int

(intVal) (boolVal) (stringVal)

AT+ b: Bool AT +s: String
(unitVal) 7 (var)
AT U{x:tirx:t

location)

(
(AN Uf{€:7}),T+L:7Ref
ATre:7Ref

A, T v unit : Unit

AT vrer:Int AT reg:Int
AT Fer +ey:Int

AT + e : Bool
A, T + =e : Bool

ATre:T
(add) (createRef)
AT rrefe:tRef ATrle:t

(negation) AT rej:Bool AT+ ey: Bool (con) AT Fej:Bool AT+ ey: Bool @
¢ AT ke Aey: Bool AT Fep Vey: Bool

(accessRef)

ATre: TList
A, T + head(e) : T Option

AT tvre:rtr;
(head) i List (tail)
AT+ tail(e) : tpist

ATre: TList
A, T + empty(e) : Bool

(empty)

ATrer:t AT Fer:trist AT vrer:trist ATFRex:tris

(listEmptyVal) (listCons) (listAppend)
AT EA([] s trise) « TLise AT Ferer: tris ATtrer @er:tList
ATre:T ATrer:11 o1 ATre:n
(endLabel) (call) (getRT)
ATr{elge):T ATk call(er,e2) : 12 AT + getRT() : Resyis;
ATrer:11 ATU{x:q}Fey:1n ATvrei:t i€{l,...,n}
(let) (variant)

ATrletx=ejineyend:

ATk (ing ei:(Crimp+- -+ lpity)): b1+ +Llp:1y)

ATre: (1 X XCp:1y) i€{1,...,n} orojection ATre:n - ATre,:1, (record)
rojection recor
ATtvred;: T Pl A,Tl—(fl261,...,5,1:6”):({’1:T1X~--an:’[n)
ATre;:Bool AN\Trey:7 ATkres:r @ ATre;:Bool ATrey:t (while
AT +if egtheneyelsees:t A, T + while(e1) {ez} : Bool
ATrer:t1 ATrey:n } ) AT Fej:7Ref ATrey:T ( )
sequence, assignment
AT Fep; e2:1m 4 AT ey := ey:Unit e
ATU{x1:11 o m,x2:T1}Fe: D () AT + e : Obligation .
ATF funxi(xg:m):mm=e:11 > 12 A, T + makeCFG(e) : CFG
A, T +e: Event
(setOutput) - (getOutput)
A, T + setOutput(e) : Bool AT + getOutput() : Event Option
ATre :t ATFey:7 1€ ({Int,Bool,String}
(outputNotSet) (equality)
A, T + outputNotSet() : Bool AT+ ey == ey : Bool
ATre:T AT v+ e:TypedVal
(makeTypedVal) (tryCast)

A, T + makeTypedVal(t,e) : TypedVal

AT +e: (evt : T Event X pols : Polpjs; X 0s : OS X vc : VC)

A, T + monitor(r,e) : T Event

ATre:((1:ny+--+lp:ty) ATU{x;:1T1}rFer:T -

AT + tryCast(r,e) : T Option

(monitor)

AT U{xp:thlbrey:t

(case)

AT+ (caseeof t1x1 = e | - | lnxp=en):T

AT+ ey :String AT Fep:TypedVal

(invoke)

A, T + invoke(er, e2) : TypedVal Option
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The rules for A,T e ok are the same as for A,T' I e : 7 (thatis, A,T I e ok © J7.A, T + e : 1), except there are no equivalents for
Rules label and monitor. A, T + e ok is intended to be a user-level static semantics judgment form: a program is ok if and only if it
is well typed and no subexpression of the program is a labeled expression ({e};(¢,)) or a call to the monitor (monitor(z, e)). The
dynamic semantics will allow an ok program to step to a non-ok (but still well-typed) program. For example, it may be the case
that (C, invoke("exit”, v)) — (C, {*** }exit(v))-

A list of monitored functions F is ok iff for each pair (s;, fi), s; is of type String and f; is of type 71 — 72, for some 71 and 2. We
also assume that each monitored function name (i.e., each s;) is unique in F.

AsSUMPTION 1. F = (su, fr), F’ = sp ¢ dom(F’)

F=A{(s15f1)s---»(sns fn)} Viel{l,...,n} Ajets;:String Viel{l,...,n} Andny Aetr fi:ng >

F-ok
At F ok (E-ok)
A+ Fok
A, e pols : Polpg;

Ao+ o0s:0S
A eoruvc:VC

’ R-ok
A+ (F,pols, os,vc) ok (R-ok)
M ={(l1,v1),...,(€n,vn)} A={t1:11,...,0n : T} Vie{l,...,n} A,eruv;:7g

M A (TMem)

To express type preservation, we must ensure the fidelity of configurations. Note how one of the premises in the following rule
uses a type similar to Event, but differs in that the result field of the res variant is of type 7oy, not TypedVal. This is to ensure that
obligations can only set the output result to be the return type of the current security-relevant function. See Rule setOutputNotSet.
M:A
A+ Rok
A, e+ inOb : Bool
A, Frt:Resrjst
A, e +out : T Event Option

A+ (M,R,inOb,rt,out, 7oy,s) ok

(C-ok)

A+ Cok ANere:T
Ar(Ce): 1T

(TConfig)
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APPENDIX D DYNAMIC SEMANTICS

This section presents the dynamic semantics rules of the PoCo language using small-step operational semantics (SOS) with a
left-to-right, call-by-value evaluation order. Each step creates a sequence of labels that are added to the execution trace. An absence
of labels indicates an empty sequence, or no labels, is the result of the current step. We assume the existence of a procedure
makeCFG, which, given an arbitrary value v of type Obligation, computes a value g of type CFG such that g represents the
control-flow graph of v. Formally:

AsSSUMPTION 2. YOYA A, e + v : Obligation = A, e + makeCFGy(v) : CFG

label,,...,label,
(Ce) —=—5 (C.¢)

(Cer) — (Ce))
L (andE) (andTrue) (andFalse)
(Coe1 Aeg) — (C, ei A e3) (C,true Aez) — (Ce2) (C, false Aez) — (C, false)
(Cer) — (Ce)) o) (o) (orFalse)
or}
(Coer Vea) — (C're] Ver) (C,true vV ep) — (C,true) (C, false Vey) — (C,ez)
(C,e) — (C',el) (notE) (notFalse) (notTrue)
(C,—e) — (C’,=e’) (C,~false) — (C,true) (C,—true) — (C, false)
(C’ el) i (C,7 e{) (C’ 62) —_— (C/1 Eé) (addValue)
(addE1) (addE2) addValue
(C.e1+e2) — (C're] +e2) ’ (C.ny+e) — (C',n1+ey) * (C,n1 +nz) — (Cony +g n2)
(C.er) — (Ce)) (C.e2) — (C,e3)
YY) (eqE1) 7 7o (eqE2)
(C,er ==€3) — (C',ef ==e3) (Cuor==¢€) — (C',v1 ==¢y)
m = n2 (eqIntTrue) m ¥ ne (eqIntFalse)
(C,n1 ==ny) — (C,true) (C,n1 ==nz) — (C, false)
(egBoolTrue) (egBoolFalse)
(C, true == by) — (C,b2) (C, false == by) —> (C,=by)
$1 = 52 (eqStrTrue) 5L ¥ % (eqStrFalse)
(C,s1 ==s3) — (C,true) (C,s1 ==s2) — (C, false)
C, Cl, ’
( el) e ( el) (sequenceE1) (sequenceE2)
(C,e1;e2) — (C/, e;;ez) (C,v5e2) — (C,e2)
(C.e) — (C,¢)
(derefE) (derefValue)
(C,le) — (C',1e’) (MU {(t,v)}...),10) — (MU{(0)},...),0)
(C,e) — (C,¢) et ¢ & dom(M) efvaluo)
(C,refe) — (C',refe’) (M, ...),ref v) — (MU{(£,v)},...),0)
’ ’ 7 ’
Ce) — (C,,e) —— (listHeadE) (_C’ e — (C’,e). —— (listTailk)
(C, head(e)) — (C’, head(e’)) (C, tail(e)) — (C’,tail(e’))
- - (listHeadCons) - (listTailCons)
(C,head(vy == -+ =[] :7List)) — (C,insome(v1) : T Option) (C,tail(vy = vz)) — (C,v2)
- - - (listHeadNil) - (listTailNil)
(C, head([] : 71ist)) — (C,inpone(unit) : T Option) (C,tail([] = tpist)) — (C.[]: 7Lise)
/7 ’
(C7 6) — (C > € ) (listEmptyE) (listEmptyNil)
(C,empty(e)) — (C’, empty(e’)) (C,empty([] : TList)) — (C, true)
(listEmptyCons)
(C, empty(vy = v2)) — (C, false) Y
(Coer) — (C'se]) | (Coez) — (C.¢}) |
(listAppendE1) (listAppendE2)

(Cer@e2) — (Ce] @ e2) (C,uvr@e) — (C',v1 @ eyp)

22



(appendNil) (appendCons)

(C, ([ : 7List) @ v3) — (C,v3) (C, (v1 2 v2) @v3) — (C,v1 = (v2 @ v3))
(Ce1) — (C'e)) (C.e2) — (C'¢))
— (listPrependE1) 5 y (listPrependE2)
(Crer = ez) — (C',ef = ea) (Covg = eg) — (Cv1 = eg)
(if True) (ifFalse)
,if true then ey else e3)) — , e i alse then ep else e3)) — ,e3
(c h Ise e3)) (C.e2) ( Ise th Ise e3)) (C.e3)
c, c’,e iefl,...,
( e) — ( ; e,) (projectionE) 1€ n} (projectionV)
(C,e.é’i) —> (C ,e .fi) (C, (f] =01,...,fn =Un).€i) —> (C,’Ui)
(C.er) — (C'e)) (Ce2) — (C'.e))
Y (assignE1) y 7 (assignE2)
(C.e1:=e2) — (C'ref :=e3) (Clhi=e) — (Ch:=e)
(Ce1) — (C',e)) (letValue)
(letF) - etValue
(C.let x = ey inez end) — (C’,let x = ¢] in ez end) (Cletx =vinezend) — (C,[v/x]er)
(C,El) - (c/ve{) ( ) (C’e) - (Cl7€’) (setOutputE)
tryCastE setOutpu
(C,tryCast(r,e1)) — (C’,tryCast(r,e])) ” (C, setOutput(e)) —> (C’,setOutput(e’))
(getRTVal) Ce) — (C.e) (makeCFGE)
((...,rt,out,7out), getRT()) — ((...,rt,out, Toyt),rt) (C, makeCFG(e)) — (C’, makeCFG(e’))
(Ce) = () (callE1) (Ce) = (Cep) (callE2)
(C,call(e1,e2)) — (C',call(e], e2)) (Ccall(fi,e2)) — (C',call(fi,e3))
(C.e1) — (C're]) (invokeE1) (Ce2) — (C'eg) (invokeE2)
(C, invoke(er, e2)) — (C’,invoke(e], e2)) (C, invoke(s1, e2)) — (C’,invoke(s, e3))
(C,e1) — (Cl,ei) (Ce) — (C.¢) (endLabelE)
(1fE) en abe!
(C.if e1 then ey else e3) —> (C',if e then e; else e3) (Clelsw) — (€€ Jsw))
s# monitor” (endLabelValue)

ends(u,) V1

((M,R, false,...),{ v }S(Uz)) —— ((M,R, false,...),v1)

out = inpone (unit) : 7our Event Option

(outputNotSetTrue)
((...,out, Tout), outputNotSet()) — ((...,out, tous), true)

out = ingome(€) : Tour Event Option

(outputNotSetFalse)
((...,out, Tous, outputNotSet()) — ((...,out, out), false)

Y(s’,f)eFs1 #s

(invokeValNotExists)

(M, (F,...),...), invoke(s1,v2)) — ((M,(F,...),...),inpone(unit) : TypedVal Option)
(C.e) — (C,¢)

(makeTypedValE)
(C, makeTypedVal(r,e)) — (C’,makeTypedVal(z,e’))

(tryCastVOk)
(C, tryCast(r, makeTypedVal(r,v))) — (C,insome(v) : T Option)

T1 # T2

(tryCastVBad)
(C, tryCast(r1, makeTypedVal(tz,v))) —> (C,inpone(unit) : 71 Option)

(s1, funxi(xz:71) i =€) €F vy = makeTypedVal(Tl,vé)

(invokeValueExistsOk)

(M, (F,...),...),invoke(s1,v2)) —
(M, (F,...),...), insome(makeTypedVal(rz, call(fun x1(x2 : 71) : 72{e}, v3))) : TypedVal Option)

(s1, funxi(xz:711) : 12 =€) € F vz = makeTypedVal(rs,v)) 11 # 13

(invokeValueExistsBad)

(M, (F,...),...), invoke(s1,v2)) — ((M,(F,...),...),inpone(unit) : TypedVal Option)

(whileE)

(C, while(eq) {e2}) — (C,if ey then (ez; while(e1) {e2}) else false)
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(assignValue)

(MU{(6,0)},.. ), 6 =0") — (MU{(L,0")),...),unit)

out = ingome(€) : T Event Option

(setOutputSet)
((-..,out, Toyr), setOutput(v)) — ((...,out, Tous), false)

Vi(l<j<i)e=v; (Coe) — (Clhe)) i€fl,...,n}

; ; (recordE)
(C,(ll =e1,...,ln = en)) —> (C ,(ll =e1,...,li =el.,...,l,, =épn
(C,ei) — (Clye))
(variantE)
(C,ing, e; : 1) — (C',ing, €] : 7)
€0 — () -
(C,(caseeof tiyx1=e1| -+ | €nxn=en)) — (C',(casee’ of L1 x1 = e1| -+ | €nxn = en))
ie{l,...,n} (caseV)
(C, (case (ing,vi : 1) of L1 x1 = e1 | -+ | bp xp = en)) — (C, [vi/xi]e;)
(€)= (C,¢) .
monitor]
(C, monitor(t, e)) — (C’, monitor(z,e’))
(monitorV)
beQinmonitor(v)

((M, R, inOb, . ..), monitor(r,v)) ——————— ((M,R,true,...), {emonitor(T»U)}monitor(v))
g = makeCFGg (v)

(makeCFGValue)
beginmakecrc(v)

(C, makeCFG(v)) ———— (C.{9g}makeCFG(v))

« . »
s = monitor

(endLabelValueMonitor)
endg(y,) 01

((M,R,inOb,...),{ v }S(vz)) —— ((M,R, false,...),v1)

(setOutputNotSetAct)
((- .., innone(unit) : Tous Event Option, oy;), setOutput(ingc (v) : Event)) —

((- .., insome(ingct (V) : Tour Event) : 7oy Event Option, Toy:), true)

3 3 - " (setOutputNotSetResGood)
((-..,inpone(unit) : Toyr Event Option, toy;), setOutput(inyes(res(vi, makeTypedVal(toys,v2))) : Event)) —

((- .., insome(inres(res(vi,v2)) : Tour Event) : 7oy Event Option, Toy:), true)

t/ # Tour out = inpone (unit) : toyr Event Option

(setOutputNotSetResBad)
((...,out, out), setOutput (inyes(res(v1, makeTypedVal(r’,v3))) : Event)) —

((...,out, tour), false)

out = ingome (iNger (V) : Tour Event) : 1oy Event Option

(getOutputSomeAct)
((...,out, tour), getOutput()) — ((...,out, Tour), insome (ingcs (v) : Event) : Event Option)

out = ingome (inres(res(vi, v2)) : Tour Event) : 1oy Event Option

(getOutputSomeRes)
((-..,out, tour), getOutput()) — ((...,o0ut, Tour), insome (inres(res(vi, makeTypedVal(toys,v2))) : Event) : Event Option) g

out = inpone(unit) : 7oy Event Option

(getOutputNone)
((-..,out, tour), getOutput()) — ((...,out, Tour), iNnone (unit) : Event Option)

(s, funxi(xz:m1):2 =€) €F f=(funxi(x2:71):12=¢) o
(callFromObligation)

beginxl (v)> beginappendRes()

(M, (F,...), true,rt,...),call(f,v))
((M, (F,...),true,rt @

res(act(s, makeTypedVal(z1,v)), makeTypedVal(za, [f/x1,v/x2]e)) = [] : Resrist, - .- ), {Lf/x1, U/XZ]E}xl(v))

f ¢ range(F) Vpol € pols (f # pol.onTrigger A f # pol.onObligation) f = (funxi(xy:71):172 =¢€)

- (callNonMonitoredFunction)
eging(v)
—_—

b
(M, (F,pols, . ..),...),call(f,v)) (M, (F,pols, ... ),.. ) A[o/xz, flx1led (o )
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(name = s,onTrigger = f1,o0nObligation = fa,vote = f3) € pols fi = (fun x1(xz : Event) : Unit = e)

Deai (callOnTrigger)
X eylnf](v)
((M, (F, pols, 0s,vc), inOb, rt, out, Toys ), call(f1,v)) ———

((M, (F, pols, 0s, ve), inOb, [1 : Respist, out, tour), {[fi /%1, v/xz)e}; (o))

(name = s,onTrigger = fi,onObligation = f,vote = f3) € pols fo = (fun x1(x2 : Respjsy) : Unit = e)

beginf () (callOnObligation)
((M, (F, pols, 0s, vc), inOb, rt, out, oyt ), call(f2,v)) _7 2

((M, (F, pols, 0s,vc), inOb, ] : Resyis;, out, rout),{[fz/xl,v/xz]e}fz(v))
(5, f)€F f=(funxi(xz:71):12=¢)

egins(w

Y (callFromApplication)
((M, (F,pols,0s,vc), false, rt,out, 7o14), call(f,v)
((M, (F, pols, 0s, vc), false, rt, inpone (unit) : 7o Event Option, 72), €procEvt)

Where €procEvt =

{let aux = (fun aux(event : 7o Event) : 7 Res =
case event of
acta =
case invoke(a.name, a.arg) of
somer =
case tryCast(ra,r1) of
some v; =
let action_output = in,.s res(a,v1) : 72 Event in
let mon_output = monitor(zy, (evt = action_output, pols = pols,os = os,vc = vc)) in
call(aux, mon_output)
end
end
| none u; = call(aux, event)
| none uy = call(aux, event)
| resry = rp)
in
call(aux, inger act(s,v) : 72 Event).result

end}s(v)
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APPENDIX E PROOF OF TYPE SAFETY

A proof of PoCo’s type-safety is presented below. There are seven main lemmas: A-Weakening (page 27), Weakening (page 31),
Substitution (page 34), Typing Rule Inversion (page 39), Canonical Forms (page 43), Progress (page 46), and Preservation (page 56)
Lemmas. Throughout the proofs, “IH” refers to the inductive hypothesis.

LEMMA 1 (C-INVERSION).
A+ (M,R,inOb, rt,out, 7out) Ok => M : AANAFROKAA o inOb:Bool AA,eFrt:Respisy AN, ®F out : 7oy Event Option
PrOOF.

1. A+ (M,R,inOb,rt,out, 7yys) ok assumption

2. 1is only derivable with Rule C-ok Inspection of A + C ok rules
3. M:A 2, Inversion of Rule C-ok
4. ArRok 2, Inversion of Rule C-ok
5. A, e+ inOb : Bool 2, Inversion of Rule C-ok
6. A,et+rt:Respist 2, Inversion of Rule C-ok
7. A, e\ out: 1oy Event Option 2, Inversion of Rule C-ok
Result is from 3-7
m]
LEMMA 2 (R-INVERSION). A + (F,pols,0s,vc) ok = A+ F ok A A, e+ pols : Polpjsy AAN,eFo0s:0OSAANe+uvc:VC
PrOOF.
1. A+ (F,pols,os,vc) ok assumption
2. 1is only derivable by Rule R-ok Inspection of A + R ok rules
3. ArFok 2, Inversion of Rule R-ok
4. A,e+ pols: Polpjs; 2, Inversion of Rule R-ok
5. A,etros:0S 2, Inversion of Rule R-ok
6. Aetruvc:VC 2, Inversion of Rule R-ok
Result is from 3-6
O

LEMMA 3 (C-WEAKENING).
A+ (M, (F,pols, 0s,vc), inOb, rt, out, o) o0k AM' : A" A AC AN = A+ (M, (F,pols, 0s, vc), inOb, rt, out, 7oy:) ok

Proor.
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assumption

assumption

assumption

1, C-Inversion Lemma

4, R-Inversion Lemma

4, R-Inversion Lemma

4, R-Inversion Lemma

4, R-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

3, 6, Lemma A-Weakening
3, 7, Lemma A-Weakening
3, 8, Lemma A-Weakening
3, 9, Lemma A-Weakening
3, 10, Lemma A-Weakening
3, 11, Lemma A-Weakening
Inspection of A + F ok rules
5, 18, Inversion of Rule F-ok
5, 18, Inversion of Rule F-ok
5, 18, Inversion of Rule F-ok
3, 20, Lemma A-Weakening
3, 21, Lemma A-Weakening
19, 22, 23, Rule F-ok

12-14, 22, Rule R-ok

1. A+ (M, (F,pols,os,vc), inOb, rt) ok

2. M AN

3. ACN

4. A+ (F,pols,o0s,vc) ok

5. AFrFok

6. A,eF pols: Polpisy

7. Ao o0s:0S

8. AN eoruvc:VC

9. A,e+ inOb : Bool

10. A,eFrt:Respjst

11. A, e\ out : 7oy Event Option

12. A, e+ pols : Poly;s;

13. A’,et+o0s:0S

14. A,etruvc:VC

15. A’, e + inOb : Bool

16. A’,e+rt:Respig;

17. A, e+ out : 7oy+ Event Option

18.  (5) is only derivable with Rule F-ok

19. sl,fl , (Sns fn)}

20. Vie{ ,n}3T1T2A.I-fl.1—>T2
21. Vie{l,...,n}.A,es;: String

22. ViE{ ,n}E|T1,T2A orfiiT o
23. Vie| .,n}.A' e+ s;: String

22. AF F ok

23. A’ + (F,pols,0s,vc)) ok

24. A+ (M, (F,pols,o0s,vc), inOb, rt,out, 7oys) ok 2, 15-17, 23, Rule C-ok

LEMMA 4 (A-WEAKENING). (A1,TFe: 7 AA] CAg) > A, Tre:T

Proor. By induction on the derivation of A;,T'Fe: 7

—_—— (intVal
Case A, T rn:Int (neveh

1. As,T+n:Int RuleintVal

————— (boolVal)
Case A1,T b : Bool oo

1. Ay, T+ b:Bool RuleboolVal

C ———————————— (stringVal)
ase A1,T +s: String

1. Ag,T'ks:String Rule stringVal

Case - — (unitVal)
A1,T v unit : Unit

1. Ao, T v unit:Unit Rule unitVal

A, TU{x1:11 > 19, x0:T1} Fe:

ALTF(funxi(xp:m):mm=e€):1y > 12
assumption
assumption
1,2,IH

3, Rule fun

1. A,TU{x1:11 o 1m,x2:71}Fe 1

2. AN CAy

3. A, TU{x1:11 > 1mo,x0:T1} ke

4. A TrH (funxi(xa:m):m=e):11 >

(fun)

(location)
Case ATGIL:th).TF o7 Ref

1. Ap=AjU{f:7} assumption

2. AN C Ay assumption

3. C:T1€EN 1, 2, Definition of C

4 Ap=AjU(l:7) 3

5. Ag,T+{:7Ref 4, Rulelocation
Case (var)

AL T/U{x:t)rx:1T
1. A, T/U{x:7}rx:7 Rulevar

A1,T Feg:Bool A1,T + ey : Bool

Case (con)

A1,T Fe1 Aey: Bool

1. A1,T+eg: Bool assumption

2. A1,Trey: Bool assumption

3. A CAy assumption

4. Ay, TF e : Bool 1,3, IH

5. A2, T+ ey : Bool 2,3, IH

6. Ay,TFei Aey:Bool 4,5,Rule con
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Case

SR e

Case

W

Case

NN

Case

SR e

Case

R e

Case

P NS DN

A1,T Feg:Bool Aq1,TF ey : Bool
A1,T Fe1 Vey: Bool

(dis)

A1,T + e1 : Bool assumption
A1,T F es : Bool assumption
A1 C Az assumption
Ao, T+ e1 : Bool 1,3,IH
Ay, T+ es : Bool 2,3, IH
Ay, T Feg Vey:Bool 4,5,Ruledis
A1,T F e : Bool )
——————— (negation)
A1,T + =e : Bool
A1,TFe:Bool  assumption
A C A2 assumption
A2, T+ e : Bool 1,2, IH

A2, T F —e: Bool 3,Rule negation

A1,Trer:t A1,Tvrey:7 € {Int,Bool,String}

A1, T+ e; == ey : Bool

A,Tre:1 assumption
A,Trey:1 assumption

7 € {Int, Bool, String} ~ assumption

A1 C Ay assumption

Ay, T e 1 1,4, IH

Ay, T ey 1 2,4, IH

A2, T Fe; ==ep : Bool 3,5, 6, Rule equality

A1,T+ep:Int A1, T +ep:Int

(add)
A1, T'+e; +ey:Int
A1 C Ay assumption
A1,T +eq:Int assumption
A1, T Fep:Int assumption
Ao, T +eq:Int 1,2, IH
Ao, T + ey : Int 1,3, IH
Ay, T +ep+ey:Int 4,5, Rule add
A, Tre:11 A,Tre:m
(sequence)

A1, TFe; en: 10

A,Trer:my assumption
A, Trer:m assumption
A1 C Ay assumption
A2, TFep:1p 1,3, IH
Ao, TFer:1m 2,3, IH

A2, T Fer; e2: 12 4,5, Rule sequence

A1,Tre;:Bool Ai,Trey:7 A{,Ttes:

A1, TFifejtheneyelsees: T

A1,T F e1 : Bool assumption
A,Trey:1 assumption
Ai,Tres:1 assumption
A1 C Ay assumption
Ao, T+ ey : Bool 1,4, IH
Ao, TFey:T 2,4, TH
Ay,Tres:T 3,4, IH
A2, T Fif e theneyelsees: 7 5-7,Ruleif
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(equality)

A1,Tre;:Bool Ai,Trey:1

(while)

A1,T + while(ey) {e2} : Bool

A1,T F e1 : Bool
A,Trey:1
A1 C Ay

Ay, T+ e1 : Bool
Ao,Trey:1

assumption
assumption
assumption
1,3,IH
2,3,1H

A2, T + while(e1) {e2} : Bool 4,5, Rule while

A,Trer:t1 A, TU{x:11}Fex:n
A,Trletx=ejineyend:

(let)

A, Trer: assumption
A, TU{x:1}Fer:1 assumption
A C A2 assumption
Ay, T e :mp 1,3,IH
A, TU{x:11}Fex: 1 2,3, IH

Ay, Trletx =ejineyend: 1o 4,5, Rulelet

A,Tre:T
(createRef)
A, Trrefe:7Ref
A,Tre:T assumption
A1 C Ay assumption
Ao, Tre:T 1,2,IH

Ag, T +refe:7tRef 3, RulecreateRef

A1, TFe:TRef
A, Trle:t
A,TFe:TRef
A1 C As
Ao, T Fe:TRef
Aoy, THe: T

(accessRef)

assumption
assumption

1,2, IH

3, Rule accessRef

A1, T +ep :TRef
A1, T e
A1, T Fep:7Ref
A, Trex:7T
A1 C Ay
A2, T Fep:7Ref
A, TFep:T
A2, T+ ey := ep:Unit

A, Trey: 1

= ep : Unit

assumption
assumption
assumption

1,3,1H

2,3, IH

4, 5, Rule assignment

(listEmptyVal)
AT ([0 s Trise) « tLise
A2, T+ ([]: rrist) : tList Rule listEmptyVal

A, Trer:7 A, TFep:trist

(listCons)
A1, T Fep ey trist
A,Tre:1 assumption
A1, T Fep:trist assumption
A1 C Ay assumption
Ay, TFep:T 1,3, IH
Ao, T Fep:trist 2,3, IH

Ao, T Fejier:trist 4,5, RulelistCons

(assignment)



Case

M e

Case

W

Case

W

Case

W

Case

ANl

Case

AR o A

Case

G LN

A, Trertrise AT Fex:trjse

A1, TFer @ ez Tpist (ifppend
A1, T Fep:trist assumption
A1, T Fep:trist assumption
A1 C Ay assumption
Ao, T Fep:Trist 1,3,IH
Ao, T Fep:trist 2,3, IH

A2,T e @ep:trist 4,5, Rule listAppend

A1, T Fe:trist

(head)

A1,T + head(e) : T Option
A1, T Fe:trist assumption
A C A2 assumption
Ay, T Fe:trist 1,2,IH
A2, T + head(e) : T Option 3, Rule head

A, T Fe:trist
(tail)

A1,T + tail(e) : trist
A, T Fe:trist assumption
A1 C Ay assumption
Ao, T Fe:trist 1,2, IH
A2, T+ tail(e) : tpis¢ 3, Rule tail

A,Tre: TList
(empty)

A1, T + empty(e) : Bool
A1, T Fe:trist assumption
A C A2 assumption
Ay, T Fe:trist 1,2,TH
A2, T + empty(e) : Bool 3, Rule empty

A, Tre 1 - AN, Trey:ty

(record)
A1, TFH (51 =e1,...,{n :en):
(51 ZT1X'--X€n:Tn)
A, Tre 1y - A,TFey:1y assumption
A1 C Ay assumption
A2, TFep:1g - N, Tvrey:1y 1,2, IH

A, TH (b =ep,....0h =epn)
sl XXl i Ty)

4, Rule record

A, Tre:(61:y XXty i1y) 1€4{1,...,n}
A, Tredi T

(projection)

A,Tre: (1 :11 X -+ Xy :1y) assumption
ief{l,...,n} assumption
A1 C Ay assumption
Ay, Tre: (61 X XCp:1y) 1,3, IH

Ay, Tred;: T 2, 4, Rule projection

A,Tre 15 i€{l,...,n}
(variant)
A, T+ (in(;i ej:ly:T1+ -+l :1y)
(f1:T1+...+fn:Tn)

A, T et assumption
ief{l,...,n} assumption

A1 C Ay assumption

A2, TFej:1i 1,3, IH

A2, T+ (ing, ej sty 11 +...+ €y :1q) 2,4, Rule variant

(1.l i)
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Case

L

Case

Ll

Case

Case

W=

Case

L

Case

Case

Case

oUW

Case

R

A1, T Fep: TypedVal

(tryCast)
A1, T + tryCast(t,e1) : T Option
A1, T Fep : TypedVal assumption
A1 C A assumption
Ao, T Fep : TypedVal 1,2, IH

A2, T+ tryCast(r,e1) : T Option 3, Rule tryCast

A,Tre:T
(endLabel)
A],r F { e }s(v) T
A, Tre:t assumption
A1 C A assumption
N, Tre:t 1,2, IH

A2, T+ {el}so) 7 3, RuleendLabel

(getRT)
A1,T F getRT() : Respisy

A2, T + getRT() : Respjs; Rule getRT

A1,T F e : Obligation
A1,T + makeCFG(e) : CFG

(makeCFG)

A1,T + e : Obligation assumption
A1 C Ay assumption
A2, T + e : Obligation 1,2, IH

A2,T + makeCFG(e) : CFG 3, Rule makeCFG

A1,T + e : Event

(setOutput)
A1, T + setOutput(e) : Bool
A1,T + e : Event assumption
A1 C Ay assumption
A2, T + e : Event 1,2, IH

A2, T + setOutput(e) : Bool 3, Rule setOutput

(outputNotSet)

A1,T + outputNotSet() : Bool
A2, T + outputNotSet() : Bool Rule outputNotSet

(getOutput)
A1,T + getOutput() : Event Option

A2, T + getOutput() : Event Option Rule getOutput

A1, T Fep:String A1,T + ey : TypedVal

(invoke)

A1,T F invoke(eq, e2) : TypedVal Option
A1, T + eg : String assumption
A1, T+ ep: TypedVal assumption
A C A2 assumption
A2, T + e1 : String 1,3, IH
A2, T+ ez : TypedVal 2,3, IH

Ao, T+ invoke(eq, e2) : TypedVal Option 4,5, Rule invoke
A,Trer:11 > 1 A,Trey: 1y

A, T+ call(el,eg) )

(call)

A,Trer:11 o 1n assumption
A,Tre:mp assumption
A1 C Ay assumption
A, Tre 11 =1 1,3, IH
Ao, T Fey:1mp 2,3, IH

A2, T +call(er,ez) : 73 4,5, Rule call



Case

R

Case

W

Case

W

A,Tre: (61 +--+€p i) AL, TU{x1:ni}rer:t -+ A,TU{xp:1h} ke,

T

A1, Tk (caseeof tix1=>e1| -+ |[€nxn=en): 7T
A,Tre: ({11 +...+Cn:Tn) assumption
A, TU{x1:mi}rer:t oo A,TU{xp: 7y} Fey: 7 assumption
A1 C Ay assumption
Ao, Tre: (61 +...+8n 1) 1,3, IH
Ay, TU{x1:11} ke --- A, TU{xp:t}brep:7 2,3, IH
A2, Tk (caseeof tLix1=>e1| - | tnxn=en): 7T 4, 5, Rule case
Al,l“ Fe:T
(makeTypedVal)
A1, T + makeTypedVal(z,eq) : TypedVal
A,Tre:1 assumption
A1 C Ay assumption
Ao, Tkep:T 1,2, IH
A2, T + makeTypedVal(r,e1) : TypedVal 3, Rule makeTypedVal

A1,Tr e’ : (evt : T/ Event X pols : Polpjs; X 0s : OS X ve : VC)

(monitor)

A1,T + monitor(z’,e’) : ©/ Event
A1, T+ e’ : (evt : v/ Event X pols : Polp;s; X 0s : OS X vc : VC)  assumption
A1 C Ay assumption
A2, T+ e : (evt: 1’ Event X pols : Polpjs; X 0s: OSxve: VC) 1,2,1H
A2, T + monitor(r’,e’) : ©/ Event 3, Rule monitor
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(case)



LEMMA 5 (WEAKENING). A,[1re: A1 Ch = ALhte: 1

Proor. By induction on the derivation of A,Tj Fe: 7

Case

1.

Case

Case

————— (intVal)
ATy Fn:Int

A, Ib +n:Int RuleintVal

———— (boolVal)
A,T1 + b : Bool
A, Ty + b : Bool RuleboolValue
(stringVal)

AT kst String
ATy + s :String Rule stringVal

(unitVal)

A, T + unit : Unit

A, Ty b unit : Unit  Rule unitVal

ATTU{x1:11 > 10, x0: 11} Fe':r

AT+ fun xl(xg : T1) 1Ty = e’ : 1 — T2 ()
e=(funxi(xz:11):12=¢") assumption
LU{x1:p > m,xp: 11} ke’ 11y assumption
L chh assumption

MU{x;:11 > 1m,x2:11} C 3, definition of C
LU{x1:11 = 12,x2: 71}
LU{x:ny —>T2,xg:‘[1}l—€’:l’2

AlLhre: 1 >

2,4, IH
1, 5, Rule fun

location)

(
ANU{l:t},[i+€: T Ref
AN U{l:7},I;+€:7 Ref Rulelocation

(var)

AT Ux:thrx:t

I1 =T U{x:7} assumption
IChh assumption
{x:7t}Cy 1, definition of C
{x:71}CTY 2, 3, definition of C
L=T,jUf{x:7} 4

Al rx:T 5, Rule var

A, T1 F e :Bool ATy F e : Bool
AT F eg A e : Bool

(con)

A, Ty + eq : Bool assumption
A, T1 + ez : Bool assumption
L Cch assumption
A, Ty + eq : Bool 1,3, IH
A, T + ez : Bool 2,3, IH

ATy Fe; Aey: Bool 4,5, rule con
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Case

R e

Case

Ll

Case

BNl ol e

ATy e : Bool ATy F e : Bool

(dis)
A, T1 +e1 Ve : Bool

A, T1 + e1 : Bool assumption
A, Ty + es : Bool assumption
L ch assumption
A, Ty + e1 : Bool 1,3,IH
A, Ty + es : Bool 2,3, IH
ATy +ey Ves:Bool 4,5, Ruledis

A, Tq + e : Bool )
———————— (negation)

A, Tq + —e : Bool
ATy Fe:Bool  assumption
I ch assumption
A, Ty + e : Bool 1,2, IH

ATy + —e : Bool 3, Rule negation

ATivrer:7 ATirey:t 7€ {Int,Bool,String}

A, T1 F e == ey : Bool (cquality
ATl et assumption
ANTivrey:T assumption
© € {Int, Bool, String}  assumption
hCh assumption
ANDhre:7 1,4, IH
AN re:T 2,4, TH

ATy +ep ==ep: Bool 3,5, 6, Rule equality

ATy rep:Int ATy Fep:Int

(add)
AT Fep+ey:Int
ATy +eq:Int assumption
ATy +eg:Int assumption
el assumption
ATy +eq:Int 1,3, IH
ATy +ep:Int 2,3, IH
ATy +ey +ep:Int 4,5, Rule add
ATirer:1 ATire:m
(sequence)
ATirer; ex:1m
Alirer:ny assumption
ATl Fey:m assumption
hCh assumption
A e 'y 1,3, IH
ANl Fey:m 2,3, IH

ATy Fep; ea: 12 4,5, Rule sequence



(@]
&
[72]
@

® NN

Case

BNl e

ATire :Bool ATyrey:t ATires:T

ATy +if egtheneyelsees:t @ Case
A, Ty F eq : Bool assumption
AT rey: 1 assumption 1
AT res: T assumption
Ch assumption
A, T + e1 : Bool 1,4,IH Case
ANlhrey: 1 2,4, IH 1
ANlhres: 1T 3,4, IH 2.
ATy rif egtheneyelsees: v 5,6,7 RuleIf 3'
4.
A, F1 Fep: Bool A, 1"1 Fey:T (while) 5.
ATy + while(ey) {ez} : Bool 6.
A, T1 + eq : Bool assumption
AT eyt assumption
L Ch assumption Case
A, Ty + eq : Bool 1,3, IH 1
ANlhrey: 1 2,3, IH 2
A, Ty + while(ey) {e2} : Bool 4,5, Rule while 3.
4.
ATirer:y ATWU{x:11}Fer: 1 . 5.
AT rletx=ejinerend: 1 6.
AT ey assumption
ATTU{x:1i}re:m assumption
L Cch assumption Case
MU{x:q}ChU{x:1) 3, definition of C 1
Abre:np 1,3, IH 2.
AL U{x:1ti}re:m 2,4, TH 3.
ATy rletx =ejineyend: 1 5,6, Rulelet 4'
ATire:T
(createRef)

ATivrrefe:tRef Case
AlMre:T assumption 1
L Cch assumption 2'
Al vre:r 1,2, IH 3'
ATy +refe:7Ref 3,RulecreateRef 4'

ATy Fe:7Ref

(accessRef)
ATirle: 1
ATy +e: 7 Ref assumption
L Cch assumption
AT re:tRef 1,2,IH
AT rle:r 3, Rule accessRef
ATy +Fep:TRef ATirey:T
(assignment)
ATy +ep := ep:unit
AT +e:TRef assumption
ATl rey: 1 assumption
L Cch assumption
ATy +e:TRef 1,3,IH
ANlhrey: 1 2,3, IH
ATy +eq = ey :unit 4,5, Rule assignment

Case

L
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(listEmptyVal)

AT v (]2 TList) * TList

AT v (] trise) @ TrList

Rule listEmptyVal

ATirer:t ATiFer TList

(listCons)
A, Fl Fep:ex:Trist
Alirer:t assumption
ATy Fep:trist assumption
L Cch assumption
Ao vrer:T 1,3, IH
AT Fen:trist 2,3, IH
ATy Fep:ey:trist 4,5, Rule listCons

ATiver ity ATikex:trise
(listAppend)
ATirer @ez:TList
ATy Fep:trist assumption
ATy Fes:trise assumption
L1 Chh assumption
Ao Fep:trist 1,3, IH
ATy Fes:trist 2,3, IH

AT kel @ez:Trist

AT1Fe:trise

4, 5, Rule listAppend

(head)

ATy + head(e) : T Option

AT re: TList
L Ch
Ao Fe:trist

A, Ty + head(e) : T Option

A, Iire: TList

assumption
assumption
1,2, IH

3, Rule head

ATy + tail(e) : trist
assumption
assumption

AT1Fe:trist

L ch

A re: TList
ATy v tail(e) : tpist

AT Fe:trist

(tail)

1,2,IH

3, Rule tail

(empty)

A, T + empty(e) : Bool

AT1Fe:trise

L ch

Ao Fe:trist

A, Ty + empty(e) : Bool

assumption
assumption
1,2,IH

3, Rule empty



Case

LR S

ATirer:ry -+ ANTivrep:mn

(record)
AT H (fl =e1,...,4n =€n) : (51 Ty XXyt Tn)
ATirer:rp -+ TINkey: 1y assumption
Ch assumption
Aorer:rp - Ikey:y 1,2, IH
ADLr(l1=e,....0nh=¢€n): (l1:11X...X €y :1y) 3, Rulerecord

ATire: ({1 XXy :1y) 1€{1,...,n}

Ik e.€l- LT (projection)
ATire: (01711 X+ X, :17y) assumption
I Cch assumption
ADGvre: (61 XXy i1p) 1,2,TH
ief{l,...,n} assumption
A vrel;: T 3, 4, Rule projection

ATivrei:ry i€{1,...,n}

(variant)
ATy F (in,gi ej:li:ri+-+lp:ty):(Cr:t1 4+ +Cn:Tp)

AT et assumption
I ch assumption
ie{l,...,n} assumption
AN rFe:T 1,2, IH
AT+ (ingi ej:l1:m1+...+Cp:ty): (6111 +...+ €y :Ty) 3,4, Rule variant

AlTire:((1:n+-+ly:ty) ATTU{x:Ti}rer:7 -« ATTU{xp:tplben:t
AT+ (caseeof t1x1=>e1| - | lhxp=>en): 7T fcase)
ATire: (611 +...+8n:1Ty) assumption
ATTU{xi:i}rer:t - ATU{xp:mh}rey:t assumption
I Cch assumption
Vi:[TU{xj:7i} ChU({x;:1} 3, definition of C
ADbre: (611 +...+0n :1p) 1,3, IH
AL U{xi:mi}rer:t -« ADU{xp:th}rep:t 2,4, IH
AT+ (caseeof t1x1 = e | - |lnxp=>en) : T 5, 6, Rule case
ATi et
(makeTypedVal)

AT + makeTypedVal(z,ey) : TypedVal
AT re 7 assumption
L ch assumption
ANlhre 1 1,2, IH
ATy + makeTypedVal(z,e1) : TypedVal 3, Rule makeTypedVal

ATy +eq : TypedVal (ryCast) Case (getRT)

ATy + tryCast(t,eq) : T Option A, T1 + getRT() : Resp sy
A1 e : TypedVal assumption L. ATy F getRT() : Respis; Rule getRT
L ch assumption
ATy + e : TypedVal . 1,2, IH ATy ¥ e : Obligation
ATy + tryCast(z, e1) : T Option 3, Rule tryCast Case (makeCFG)

A, Ty + makeCFG(e) : CFG
1. ATi +e: Obligation assumption
Alire:t 2. 1D assumption

ATiF € }japel 7 (endLabel) 3. A,Ix +e: Obligation 1,2, IH
ATiFe:r assumption 4. AT + makeCFG(e) : CFG 3, Rule makeCFG
L ch assumption
Albre:T 1,2, IH
ATy F{e}iaper : T 3, Rule endLabel
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A, T1 +e: Event
Case (setOutput)
ATy + setOutput(e) : Bool

Case (outputNotSet)
1. AT+ e: Event assumption A, Ty + outputNotSet() : Bool
2. ch assumption 1. ATy + outputNotSet() : Bool Rule outputNotSet
3. A Iyt+e:Event 1,2, IH
4. ATy + setOutput(e) : Bool 3, Rule setOutput

C (getOutput)
ase ATy + getOutput() : Event Option '

1. ATy + getOutput() : Event Option Rule getOutput

ATy + eq : (evt : 7y Event X pols : Polpjsy X 0s : OS X vc : VC)
Case (monitor)
A, T1 + monitor(ry, e1) : 71 Event

A,T1 Feg : (evt : 71 Event X pols : Polpjsy X 0s : OS X ve : VC)  assumption

L Ch assumption
ATy +eq : (evt : 7y Event X pols : Polpjsy X 0s: OS Xvc : VC) 1,2, IH

A, Ty + monitor(ry,e1) : 71 Event 3, Rule monitor

W

ATy v e : String ATh Feg : TypedVal
Case (invoke)
ATy + invoke(er, e2) : TypedVal

A1 F e : String assumption
ATy + ey : TypedVal assumption

L Cch assumption
ATz + e : String 1,3, IH

ATy + ey : TypedVal 2,3, IH

A, Ty + invoke(e1, e2) : TypedVal 4,5, Rule invoke

A e o

ATirer:g > Albe:n
Case (call)
ATy v call(er, ez) : 12
ATlNre 11 > assumption

AT rey:np assumption

1

2

3. 1ch assumption
4. ADte:11 >0 1,3, IH

5. ADrey:n 2,3, IH

6. ATz rcall(er,ez) : 72 4,5, Rule call

LEMMA 6 (SUBSTITUTION). A,TU{x:7}re’: 7" A ATre:7)=ATF[e/x]e:7’

Proor. By induction on the derivation of A,TU {x:7}Fre’: 7’

c ATU{x:t}res: ({11 +--+Clp:1y) ATU{x:T,x1:11}be:7 - ATU{X:T,xp:Tp} ey 1’
ase ATU{x:7}+ (caseesof t1x1=e1| -+ [ lnxn=en): 7’ (e
1. ATU{x:7t}res:(61:m1+...+8€n:1y) assumption
2. ATU{x:t,xi:11)rer:1’ -+ TU{x:T,xp:Tn}lFey:7 assumption
3. ATre:t assumption
4. ATrle/xles:(l1:m1+...+€n: 1) 1,3,IH
5. ATU{xy:ti}rk[e/x]er:t/ -« ATU{xy:th}+ [e/x]en:1’ 2,3,IH
6. AT F (case [e/x]es of €1 x1 = [e/x]e1 | -+ | €n xn = [e/x]en) : v/ 4,5, Rule case
7. ATtk [e/x](caseesof t1x1=e1| - | nxn=en): 7’ 6, definition of [e/x](case es of €1 x1 = e1| -+ | {n xp = en)
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ATU({x:7}Fey:String ATU({x:7}Fey: TypedVal

Case (invoke)
AT U {x : 7} + invoke(er, e2) : TypedVal Option
1. ATU({x:7}t+e :String assumption
2. ATU({x:7}Fez:TypedVal assumption
3. ATre:t assumption
4. AT+ [e/x]e; : String 1,3, IH
5. AT+ [e/x]es : TypedVal 2,3, IH
6. AT rinvoke([e/x]e1, [e/x]ez) : TypedVal Option 4, 5, Rule invoke
7. AT+ [e/x](invoke(e1, e2)) : TypedVal Option 6, definition of [e/x]invoke(e1, e2)

ATU{x:1}re;:1y

Case AT U {x : 7} + makeTypedVal(ry,e1) : TypedVal (rakeTypedial
1. ATU{x:t}re:my assumption
2. ATre:t assumption
3. AT ([e/x]er: 1y 1,2, IH
4. AT + makeTypedVal(ry,[e/x]er) : TypedVal 3, Rule makeTypedVal
5. AT+ [e/x]makeTypedVal(r1, e1) : TypedVal 4, definition of [e/x]makeTypedVal(zy, e1)
Case ATU{x:7}+ e : TypedVal (ryCast)
AT U {x : 7} + tryCast(ry, e1) : 1 Option
1. ATU{x:7}F e : TypedVal assumption
2. ATre:t assumption
3. AT+ [e/x]er : TypedVal 1,2, IH
4. AT v tryCast(ry, [e/x]e1) : 71 Option 3, Rule tryCast
5. AT+ [e/x]tryCast(t1, e1) : 71 Option 4, definition of [e/x]tryCast(zy, e1)
ATU{x:7}re 11 s ATU{x:t}rey:1n
Case (record)
ATU{x:t}r(l1=e1,...,0n=¢€n): ({1:11 XXy : 1y
1. e=(1=e1,....,00=¢n) assumption
2. /=11 X...XCp 1) assumption
3. ATU{x:1t}re:m - ATU{x:t}re,:1n assumption
4. ATre:r assumption
5. AT+ [e/x]e;: 11 - AT [e/x]en : mn 3,4, IH
6. ATF (6 =[e/x]er,....tn =[e/x]en) : (€1:11X...X €y :1y) 5, Rule record
7. ATr[e/x]e’ : 7’ 1, 2, 6, definition of [e/x](€1 = e1,...,{n = €n)
c ATU({x:7}F e : (evt : 71 Event X pols : Polpjs; X 0s : OS X vc : VC) _
ase A, T U {x : 7} + monitor(ry,e1) : 71 Event (moniton
1. 7’/ = (evt : 7y Event X pols : Polp;s; X 0s : OS X vc : VC)  assumption
2. ATU{x:7}re:7’ 1, assumption
3. ATre:t assumption
4. AT+ [e/x]e;: 7’ 2,3, IH
5. A, T + monitor(r1, [e/x]e1) : 11 Event 4, Rule monitor
6. AT+ [e/x]monitor(ry,e1) : 71 Event 5, definition of [e/x]monitor(ry,e1)
Case A TUlcicirb:Bool Case NN T U x o r it Ref
1. 17/ = Bool assumption 1. /' =1" Ref assumption
2. [e/x]b=b definition of [e/x]b 2. [e/x]t=¢ definition of [e/x]¢
3. ATr[e/x]b:t" 1,2, Rule boolVal 3. NU{€:7},T+[e/x]¢:7" 1,2, Rulelocation
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Case

(getRT)

ATU{x : 7} getRT() : Respist

1. 1’ =Respis;
. [e/x]getRT() = getRT()
3. AT+ [e/x]getRT() : ¢’

assumption
definition of [e/x]getRT()
1, 2, Rule getRT

ATU{x:7}F ey : Bool

Case AT U{x:1}+ —eq : Bool (negetion)
1. ATU{x:7}+ e :Bool assumption
2. ATre:T assumption
3. AT+ [e/x]er : Bool 1,2, IH
4. AT+ —([e/x]e1) : Bool 3, Rule negation
5. AT+ [e/x](—e1) : Bool 4, definition of [e/x]e’

ATU{x:7}Feq: Bool

Case A TU{x:7}Fey: Bool @
ATU{x:7}+ ey Ve : Bool
1. ATU{x:7}+ eq: Bool assumption
2. ATU{x:7}Fes: Bool assumption
3. ATre:r assumption
4. AT+ [e/x]er : Bool 1,3, IH
5. AT+ [e/x]ez : Bool 2,3, IH
6. AT [e/x]er V[e/x]ey : Bool 4,5, Rule dis
7. AT+ [e/x](e1 V e2) : Bool 6, definition of
[e/x](e1 V e2)
A TU{x:7}Feq: Bool
Case A TU{x:1}+ ey : Bool
ATU{x:7}+ e Aey: Bool fcon
1. ATU{x:7}+ ey : Bool assumption
2. ATU{x:7}F ey : Bool assumption
3. ATre:7T assumption
4. AT+ [e/x]er : Bool 1,3, IH
5. AT+ [e/x]ey : Bool 2,3, IH
6. AT+ [e/x]er A[e/x]ez : Bool 4,5, Rule con
7. AT+ [e/x](e1 A e2) : Bool 6, definition of
[e/x](e1 A e2)
ATU{x:t}re 1"
ATU{x:t}rey:1”
Case t’” € {Int, Bool, String}
(equality)
ATU{x:7}Fe ==ey: Bool
1. ATU{x:7}re :7"” assumption
2. ATU{x:1t)rey:1” assumption
3. ATre:t assumption
4. ¢’ € {Int, Bool, String} assumption
5. ATk [e/x]er: 1" 1,3, IH
6. AT F[e/x]es: 1" 2,3, IH
7. AT [e/x]e; == [e/x]ez : Bool 4,5, 6, Rule equality
8. AT+ [e/x](eg == ez) : Bool 7, definition of

(intval)
Case ATU{x:7t}Fn:Int e
1. ' =Int assumption
2. [e/xln=n

3. ATF[e/x]n:1’

[e/x](e1 == e2)

definition of [e/x]n
1, 2, Rule intVal
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AT U{x:7}+ ey : Bool
ATUx:t)rey: 1’

Case ATU{x:t}re3:1’ )
ATU{x:7}Fif e theneyelsees: 1’ o

1. e’ =if e theneyelsees assumption
2. ATU{x:7}Fe;:Bool assumption
3. ATU{x:t}rey:7’ assumption
4. ATU{x:tlres:7’ assumption
5. ATre:r assumption
6. AT [e/x]er : Bool 2,5 IH

7. ATr[e/x]ey: 1’ 3,5 IH

8. ATt [e/x]es: 1’ 4,5, 1H

9. ATF(if [e/x]er 6-8, Rule if

then [e/x]ey
else [e/x]es) : 1’
10. A TF[e/x]e’ : 1’

Case ATU{x:7}Fs:String

1. ¢/ = String
2. [e/x]s=s
3. ATr[e/x]s: 1’

1, 9, definition of [e/x]e’

(stringVal)

assumption
definition of [e/x]s
1, 2, Rule stringVal

Case AT Uly: VU {x:t)ry: 7’ (e
1. AlVU{y:t/tre:r assumption
2. AT U{y:t}U{x:7t}ry:7’ assumption
3. XFy=
a. [e/x]ly=y 3, definition of [e/x]y
b. AT U{y:7'}r[e/x]y:7’ 3a, Rule var
4. xX=y=
a. [e/x]ly=e 4, definition of [e/x]y
a =1 2,4
b. AT'U{y:t'}r[e/xly: 7’ 1, 4a, 4b
Result is from 3b and 4c
ATU{x:t}+e:Int
Case ATU({x:7}Fep:Int (add)
ATU{x:7} e +ey:Int
1. ATU{x:7}+eq:Int assumption
2. ATU{x:t}Frey:Int assumption
3. ATre:t assumption
4. AT+ [e/x]er : Int 1,3, IH
5. AT+ [e/x]ez : Int 2,3,IH
6. AT+ [e/x]er +[e/x]ez : Int 4,5, Rule add
7. AT+ [e/x](e1 + e2) : Int 6, definition of

[e/x](e1 + e2)

ATU{x:7}re” : 7" Ref

Case (accessRef)
ATU{x:t}re” 7’
ATU{x:7}re” : 7’ Ref assumption
ATre:t assumption
AT+ [e/x]e” : v/ Ref 1,2,IH

RAEE ol

AT +!([e/x]e”) : 1’
AT+ [e/x](te”) : ¢’

3, Rule accessRef
4, definition of [e/x](le”’)



Case

Case

Case

ARl o

Case

Case

NN

(unitVal)
AT U{x: 1} + unit: Unit
t/ = Unit assumption
[e/x]unit = unit definition of [e/x]unit
AT+ [e/x]unit : t/ 1, 2, Rule unitVal

(listEmptyVal)
ATUx b b (0 T1p,) f Tipie

=11, assumption

le/x]([] : T114s,) = definition of

[e/x1(0 : 71y10,)

1, 2, Rule listEmptyVal

(0 :71psse)

ATk [e/x]([]:t1py,) 7/

ATU{x:t)rer: 1y,
(head)

AT U{x : 7} + head(e1) : 71 Option
ATU{x:t) ke, assumption
ATre:T assumption
AT+ [e/x]er : 11y, 1,2, IH
AT + head([e/x]e1) : 1 Option 3, Rule head
AT + [e/x](head(e1)) : 71 Option 4, definition of

[e/x](head(ey))
A,FU{X:T}I-el:TlList -

AT U {x: 1)+ tail(er) : 11y, (i
ATU{x:t) ke, assumption
ATre:tT assumption
AT ¢ [e/x]er : 11y, 1,2,1H
AT+ tail([e/x]er) : 71;,,, 3, Rule tail
AT+ [e/x](tail(er)) : 71,,,, 4 definition of

[e/x](tail(e1))
ATU{x:thre” o),
(empty)

AT U {x: 7} + empiy(e”) : Bool
ATU{x:1}re”: L5 assumption
ATre:t assumption
[e/x]emptpy(e”’) = empty([e/x]e’’) definition of

[e/x]empty(e”’)
AT+ [e/x]e” : L1 1,2, IH

AT + [e/x]empty(e”’) : Bool 3, 4, Rule empty

ATU{x:t}re: 7y

ATU{x:t)rer:my,, stcons

ATU{x:t) ke ey, e
ATU{x:7T}re 1 assumption
ATU({x:T}Fey:1y,, assumption
ATre:r assumption
AT+ [e/x]er : 1,3, IH
AT+ [e/x]es : rle 2,3, IH
AT+ [e/x]er = [e/x]ez : T1;,,, 4 5,RulelistCons
AT+ [e/x](eq = e2) = 1y, 6, definition of

[e/x](eq ==

e2)
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Case

NG W

Case

N o e LN

Case

N o e LN

Case

G LN

ATU{x:t)ber 1y,
ATU{x:T}Fey:1y,,

ATU{x:7}Fe1@e: 11y,
ATU{x:1}Fe S Trier
ATU{x:t)rer:11y,,
ATre:T

AT+ [e/x]er : 11y,

AT+ [e/x]es : 11y,

AT+ [e/x]er@[e/x]ez : 11y,
AT+ [e/x](e1@e2) : 71y,

ATU{x:1t}re”

(listAppend)

assumption
assumption
assumption

1,3,IH

2,3,1H

4, 5, Rule listAppend
6, definition of
[e/x](e1@e2)

(createRef)

ATU{x:t}rrefe’ :t” Ref

ATU{x:t}re” ¢
ATre:T

AT+ [e/x]e” : t”

AT +ref ([e/x]e”") : "' Ref
AT+ [e/x](ref e”): 7" Ref

assumption
assumption
1,2,IH

3, Rule createRef
4, definition of

[e/x](ref €”)
ATU{x:1}re;: 1y
ATU{x:Tt}Frex:1m
ATU{x:T}rep; e:1 (sequence)

ATU{x:t}re: 7 assumption
ATU{x:t}rer:1 assumption
ATre:r assumption
AT+ [e/x]eq : 1,3,IH
AT+ [e/x]ey : 12 2,3, IH
AT+ [e/x]es; [e/x]ez : 72 4,5, Rule sequence
AT+ [e/x](er; €2) : 2 6, definition of [e/x](e1; e2)

ATU{x:7}Feg: 7" Ref
ATU{x:1t}rey: 1"

ATU{x:7}Fe; := e :Unit (assignment)
ATU{x:7}rer: 7" Ref assumption
ATU{x:t}rey:1"” assumption
ATre:r assumption
AT+ [e/x]er : 1”7 Ref 1,3,IH
AT+ [e/x]es : 2,3, IH
AT+ [e/x]er = [e/x]ez : Unit 4, 5, Rule assignment
AT+ [e/x](er e2) : Unit 6, definition of

[e/x](e1 = e2)
ATU{Xx:T,x1:11 =T, x2:11}Fe”’ 11 ()

ATU{x:t}F funxi(xz:m1):mm=¢" 111 > 12
e’ =funxi(xy 1)y =¢” assumption
ATU{x:7,x1:11 > 12,x2 : 11} F e’/ : 75 assumption
ATre:tT assumption
ATU({x;:11 > 12, %0 : 12} F [e/x]e” 12 2,3, 1H
AT+ funxi(xz: 1) 13 = [e/x]e” 4, Rule fun

1 — T2

ATF[e/x]e :11 > 1

5, definition of

[e/x]e’



Case

ARl o

Case

O NSO

Case

Case

NG e wN =

Case

AR e

ATU{x:7}re” : Event

A, T U {x : 7} + setOutput(e’’) : Bool

ATU{x:1}+e"” : Event
ATre: 1
AT+ [e/x]e” : Event

AT + setOutput([e/x]e’’) : Bool
AT + [e/x](setOutput(e’)) : Bool

ATU{x:t}re’: 17/

(setOutput) Case A7 U {x : T} N { e,/ }S(v) : T’ (endLabel)
assumption ATU{x:t}re”: 7/ assumption
assumption ATre:t assumption
1,2, IH 1,2,IH

3, Rule setOutput
4, definition of

AT+ {[e/x]e” gy i T’

1

2.

3. AT [e/x]e” : 7/

4

5 ATF[e/x]({e” }s(v)) o

3, Rule endLabel
4, definition of

[e/x]setOutput(e’’) [e/x]{e" }5(0)
ATU{x:tlrei:n ATU{x:T,y:milre:n AT U {x:7}Fe” : Obligation
ATU{x:t)rlety=erine end: MG e U 1) ¥ makeCEG(e”) - CFG "
e’, = (let y = ey in ez end) assumption 1. e’ = makeCFG(e”) assumption
T =1 assumption 2. /=CFG assumption
ATU{x:tlter 7y assumpt%on 3. ATU({x:t}+e” :Obligation  assumption
ATUx:T,y:nijrex:1 assumpt%on 4. ATre:r assumption
ATre:t assumption 5. AT+ [e/x]e” : Obligation 3,4,IH
AT+ [e/x]er:n 3,5, H 6. AT+ makeCFG([e/x]e’’) : CFG 5, Rule makeCFG
ATU{y: i}k [e/x]ez: 2 4,5 IH 7. AT r[e/x]e : 7/ 1, 2, 6, definition of
AT+ .let[y/:][e/x]:;l 6, 7, Rule let [e/x](makeCFG(e"))
in [e/x]ez end : 12
AT+ [e/x]e’ : 7’ 1, 2, 8, definition of Case ATU{x:7t}re :Bool ATU{x:T}tey:1" whilo
[e/x]let y = eq in ez end AT U {x:7}+ while(er) {e2} : Bool
1. ATU{x:7}+ e1: Bool assumption
(outputNotSet) . LI .
AT U {x : 7} outputNotSet() : Bool e 2. ATU{x:threr:t assumpt}on

' = Bool assumption 3. ATre:t assumption
[e/x]outputNotSet () definition of 4 ATk [e/x]er: B,O/Ol 1,3, IH
= outputNotSet() [e/x]output NotSet() 5. ATE [6/3_6]62 T 2,3,IH .
AT + [e/x]outputNotSet() : r’ 1, 2, Rule outputNotSet 6. AT+ while([e/x]er) {[e/x]ez} : Bool 4,5, Rule while

7. AT+ [e/x](while(eq) {e2}) : Bool 6, definition of

ATU{x:
ATU{x:1}rer: 11

Thhe:11 > T

(call)

ATU{x:7}Fcall(er,e2) : 12

ATU{x:7t}re:11 2 n
ATU{x:t}rer:1y
ATre: T

AT+ [e/x]er:11 > 1
AT+ [e/x]ey : 11

AT+ call([e/x]e1, [e/x]e2) : 12

AT+ [e/x](call(er,e2)) : T2

ATU{x:t}re”:

assumption
assumption
assumption

1,3, IH
2,3, IH

4, 5, Rule call

6, definition of
[e/x](call(e1, €2))

(b1 iy X+ XLyt 1Tp)

ie{l,...,n}

ATU{x:t}re”t: 1

ATU{x:t}re”’ (b1t X - XCp:1y)

ief{l,...,n}
ATre: 1

AT+ [e/x]e” : (6111 XXy : 1)

AT+ ([e/x]e”).t; - 1;
AT+ [e/x](e” £;) - 1

(projection)

assumption

assumption

assumption

1,3,IH

2, 4, Rule projection

5, definition of [e/x](e”".(;)
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[e/x](while(e1) {ez})



ATU{x:t}re 15 i€{1,...,n}

Case ATUlx:thr(ing ei:(Lrimi+-+ln 1)) (b1 + -+ Ly i Tp) (variant)

1L e =(ing ei:(ly:m+...+0n:1)) assumption

2. T'=1:4... .+l 1) assumption

3. ATU{x:1t}rei:T assumption

4. ATre:t assumption

5. ie{l,...,n} assumption

6. ATt [e/x]e;: i 3,4, IH

7. AT v (ing [e/x]ei: (Cr:mi+...+€p:tn)): (b1:11+...+ €y :1Tq) 5,6, Rule variant

8. AT [e/x]e : 1’ 1,2, 7, definition of [e/x](ing, e; : (€1 : 11 + ...+ €n : Tn))
Case AT U {x : 7} getOutput() : Event Option (gerQutpu)

.t/ = Event Option assumption
2. [e/x]getOutput() = getOutput() definition of [e/x]getOutput()
3. AT+ [e/x]getOutpui() : T’ 1, 2, Rule getOutput

LEmMA 7 (TyPING RULE INVERSION). All of the typing rules are invertable.

Proor. By case analysis of rules deriving A,T Fe: 7

Case A Tvndm ™
ATkrn:t assumption
. AT Fn:7isonly derivable by Rule intVal inspection of typing rules
3. r=Int 1, 2, rule intVal
Case  ATrbiBool
. ATrb:T assumption
2. AT+ b:7isonly derivable by Rule boolVal inspection of typing rules
3. 7 = Bool 1, 2, rule boolVal
Case AT +s: String (oringta)
ATks:t assumption
. AT Fs:7isonly derivable by Rule stringVal inspection of typing rules
3. 1 =String 1, 2, rule stringVal
1. AT vunit:t assumption
. AT Funit : 7 is only derivable by Rule unitVal inspection of typing rules
3. r=Unit 1, 2, rule unitVal
ATU{X1 i1 > mo,x2:11} ke 110
Case (fun)
AT I—funxl(xg :T]) ) { e’ } S )
ATF funxi(xg:11) 2 {e' } 7 assumption
AT F funxi(xz :71) : 7o { €’ } : 7 is only derivable by rule fun inspection of typing rules
3. 1=11—->10, ATU{x1:11 > m,x:11}Fe 11 1, 2, Rule fun
Case G TRl Ref
1. NU{l:t},T+l:1 assumption
. 1is only derivable by Rule location inspection of typing rules
3. t=1'Ref 1, 2, Rule location
Case AT U{x:t"}rx: 1/ e
AT'Ux:t/}rx:t assumption

1 is only derivable by Rule var  inspection of typing rules
3. =1’ 1, 2, Rule var
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AT +ep:Bool AT Fey: Bool

Case (con)
AT+ e A ey : Bool
ATreiANey: T assumption
2. AT Fe; Aey:1isonly derivable by rule con  inspection of typing rules
3. 7 =DBool, A,T + e :Bool, A,T + ey : Bool 1, 2, Rule con
Case AT +eq:Bool AT+ ey: Bool @
AT ke Vey: Bool
ATrei Ve :1 assumption
. AT Fe1 Vey:7isonly derivable by Rule dis  inspection of typing rules
3. 7 =DBool, A,T+ej:Bool, A,TF es: Bool 1, 2, Rule dis
A, T+ e : Bool i
Case A, T + —=e : Bool (negation)
ANTrF=-e: 1T assumption
2. AT+ —e: 7 is only derivable by rule negation inspection of typing rules
3. 7 =Bool, A,T + e: Bool 1, 2, Rule negation
ATrer:1q ATrery:ng .
Case AT+ e; == ey : Bool (equalit)
ANTrer==ey:7T assumption
A, T + eq == ep : 7 is only derivable by rule equality inspection of typing rules

3. 7=Bool, A\TFes:11, AAT+ey:1,71 € {Int,Bool,String} 1, 2, Rule equality
AT rer:Int AT Fep:Int

Case AT Fer +ey:Int (edd)
ANTrer+e:7 assumption
. AT Feg +e:7isonly derivable by rule add  inspection of typing rules
3. rt=1Int, AT v+eq:Int, AN\TFey:Int 1, 2, Rule add
C ATrer:y ATFer:1
ase ATrep;e:1 (equence)
ATre; en: 1 assumption
A, T + eq; e : 7 is only derivable by rule sequence inspection of typing rules
3. =1, A\Trer:11, AThtey: 1 1, 2, Rule sequence
ATre;:Bool A\Trey:1q ATres:1p
Case - (if)
AT +if eg theneyelsees: 1
AT +if e theneyelsees:t assumption
. AT Vvif egtheneyelsees: 7 isonly derivable by rule if inspection of typing rules
3. 7=1, ATtre :Bool, ANTtrey:7, AT t+es:1y 1, 2, Rule if
Case AT rer: ?ool ATre : 1 (while)
A, T + while(ey) {e2} : Bool
A, T + while(ey) {e2} : Bool assumption
. AT + while(eq) {ez2} : Bool is only derivable by rule while inspection of typing rules
3. 7 =Bool, A,\TFeq:Bool, A\TFey:1 1, 2, Rule while
ATrer:11 ATU{x:1i}Fey:1m
Case - (let)
ATrletx=ejineyend:
ATrletx=ejineyend:t assumption
. AT Fletx=ejineyend: T isonly derivable by rule let inspection of typing rules
3. 7=, ATvre:m, ATU{x:11}Fer:1 1, 2, Rule let
ATre:n
Case ATrrefe:r Ref (createRed
ATvrrefe:r assumption

. AT rref e:risonly derivable by rule createRef inspection of typing rules
3. =1 Ref, ATre:n 1, 2, Rule createRef
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ATre:7 Ref

Case —————————————— (accessRef)
AT He:ny
ANTHe:T assumption
. AT Hle: 7 is only derivable by rule accessRef inspection of typing rules
3. 7=11, ATre:rRef 1, 2, Rule accessRef
Case AT Fep:1 Ref A, F.I— ey : 1] (asignment)
AT Fep:=ey:unit
ATre :=e:1 assumption
A, T + eq := ez : 7 is only derivable by rule assignment inspection of typing rules
3. t=unit, ATre:11Ref, ATrer:7 1, 2, Rule assignment
listEmptyVal
ase AT ([] ; TL,ist) : Tiist ( e
cATR(ir )T assumption
2. 1is only derivable by Rule listEmptyVal inspection of typing rules
3. 7= Tiis ; 1, 2, Rule listEmptyVal
Case AT+ e1:n AT+ €2 Tlriss (lstCons)
AT Fep:en: st
ATre e T assumption
2. AT+ eq::ep:7isonly derivable by rule listCons inspection of typing rules
3. t=1,, ATvrer:n, ATrer: 1y, 1, 2, Rule listCons
Case ATkRer i, ATFe: T, (listAppend)
AT re @ey:1rist
ATrei@ey: 1 assumption
. AT Fe; @ ez : 7 is only derivable by rule listAppend inspection of typing rules
3. t=11,, AT vrer ity AT e 1y, 1, 2, Rule listAppend
Case ATre: Tlpise (head)
AT + head(e) : 11
AT+ head(e) : T assumption
. AT+ head(e) : 7 is only derivable by rule head inspection of typing rules
3. t=1,ATre:ry,, 1, 2, Rule head
Case AT vre:ty,, (i)
AT v tail(e) : 71y,
AT+ tail(e) : 7 assumption
AT + tail(e) : 7 is only derivable by rule tail inspection of typing rules
3. T=T1,, AT ey, 1, 2, Rule tail
Case ATk e Lise (empty)
A, T + empty(e) : Bool
AT+ empty(e) : T assumption
. AT+ empty(e) : 7 is only derivable by rule empty inspection of typing rules
3. 7=DBool, ATVFe:1ris 1, 2, Rule empty
ATvre:1p -+ ATre,:1m,
Case (record)
AT+ (f1 =€1,...,fn :en) : (51 s X-“an:Tn)
ATF({=0v1,....,0n=vp): T assumption
. ATF (1 =uv1,...,00 =vp) : 7 is only derivable by rule record inspection of typing rules
3. t=(l1:X...XCy:i1y), ATrovr:11 -+ AThro, 1y 1, 2, Rule record
ATre: (611 X X€p:1y) 1€{1,...,n}
Case (projection)
ATred;: 1
ATvretli:T assumption

AT+ e.l; : 7 is only derivable by rule projection inspection of typing rules
3. =1, ATre:({1:1 X...XECp:1Ty) 1, 2, Rule projection
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Case

Case

Case

Case

Case

Case

Case

Case

ATvrei:1 i€{l,...,n}

(variant)
ATk (ing ej:by:mi+--+blp)ity (L1t +- -+ Ly 1h) o
ATr(ing ej:lrimi+...+lp:ty):T assumption
AT+ (ing, ej: €y : 11+ ...+ €y : 7y) : T is only derivable by rule variant inspection of typing rules
T=1:ni+...+lp:t), AT e i1, i €{1,...,n} 1, 2, Rule variant
ATvre :(f1:mi+-+€n:1y) ATU{x :TibbFe e -+ ATU{xp:mh) ke oy s
ATtk (casee’ of t1x1 = e1| - | €nxn = en): 1y
ATk (casee’ of thyxy=e1| -+ |lnxn=en):t assumption
AT+ (casee’ of {1 x1 = e1| -+ | {n xn = ey) : T is only derivable by rule case inspection of typing rules
T=Tx, ATre : ({1 +...+6n 1), ATU{x1:11}Fer 1 -+ ATU{xp:th}tFen:txe 1,2, Rulecase
ATre 1T
(makeTypedVal)
AT + makeTypedVal(r1,e1) : TypedVal
A, T + makeTypedVal(ry, e1) : TypedVal assumption
A, T + makeTypedVal(r1, e1) : TypedVal is only derivable by rule makeTypedVal inspection of typing rules
7 =TypedVal, A\T+es:7 1, 2, Rule makeTypedVal
AT + e : TypedVal
(tryCast)
AT + tryCast(r1,e1) : 11
AT + tryCast(r1,e1) : 11 assumption
A, T + tryCast(t1, e1) : 71 is only derivable by rule tryCast  inspection of typing rules
=11, AT ey : TypedVal 1, 2, Rule tryCast
ANTre:ny
(endLabel)
ATH{e }Iabel 5|
ATF{e}apel: T assumption
AT +{ e }japer : T is only derivable by rule endLabel inspection of typing rules
r=11, ATre:ny 1, 2, Rule endLabel
(getRT)
AT + getRT() : Resrjst
AT +getRT(): 7 assumption
1 is only derivable by Rule getRT inspection of typing rules
T = Resrjst 1, 2, Rule getRT
A,T + eq : Obligation
(makeCFG)
A, T + makeCFG(e1) : CFG
AT + makeCFG(ey) : T assumption
A, T + makeCFG(e1) : 7 is only derivable by rule makeCFG inspection of typing rules
7 = CFG, A,T t e; : Obligation 1, 2, Rule makeCFG
A, T + e1 : Event
(setOutput)
AT + setOutput(eq) : unit
AT + setOutput(eq) : T assumption
A, T + setOutput(eq) : 7 is only derivable by rule setOutput inspection of typing rules
T = unit, A,T + ey : Event 1, 2, Rule setOutput
(outputNotSet)
A, T + outputNotSet() : Bool
AT + outputNotSet() : T assumption
1 is only derivable by Rule outputNotSet inspection of typing rules
7 = Bool 1, 2, Rule outputNotSet
(getOutput)
AT + getOutput() : Event Option
AT + getOutput() : t assumption

1 is only derivable by Rule getOutput inspection of typing rules
7 = Event Option 1, 2, Rule getOutput
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AT +e: (evt: v/ Event X pols : Polpjst X 0s : OS X vc : VC)

Case (monitor)
AT + monitor(r’,e) : t/ Event
1. AT+ monitor(t’,e) : T assumption
2. 1is only derivable by Rule monitor Inspection of typing rules
3. 1 =r1"Event 2, Inversion of Rule monitor
4. ATtre:

(evt : T/ Event X pols : Polp;s; X 0s : OS X vc : VC)

Result is from 3, 4

AT +eg:String AT v ey : TypedVal
AT + invoke(e1, e2) : TypedVal Option
A, T F invoke(eq,e2) : T
. 1lis only derivable by Rule invoke
3. 1 =TypedVal Option, A,T + ey : String, A,T + ez

Case

(invoke)

ATrer:11 o1 ATrkey:n
Case (call)
AT Fcall(er,ez) : 12
AT+ call(er,er) : T
AT + call(ei, e2) : 7 is only derivable by rule call
3. 7=m,ATtrter:11 >, ATFey: 1y

LEMMA 8 (CANONICAL FORMS).
(1) t=Bool =>v=">b
(2) t=String=v=s
B)r=Int=>v=n
(4) 7 = Unit > v = unit
(5) t=tRef =v="¢

: TypedVal

IfA,e+v:7then

"U:(fl:z)lx...

2, Inversion of Rule monitor

assumption
inspection of typing rules
1, 2, Rule invoke

assumption
inspection of typing rules
1, 2, Rule call

Xy =vp)

(6) T = TypedVal = Jv; : v = makeTypedVal(r,v1)

(7) = 1pise = (Ao, v2:0 =01 2 v2) Vo =[] 1Lise

B)r=1:11 XXy 1) = Jv1,...,0

V) =11 > =3Ix,x3,e:v=(funxi(xz:71) : 12 =€)
10) c={1 14+ +Cp:1y)=>di,v1:i€{1,...,

Proof. By induction on the derivation of A,e - v : 7

—— (intVa))
Case Ao+ n:Int e
1. v=n assumption
Case ———————— (boolVal)
A, e+ b : Bool
1. v=0>b assumption
Case —————— (stringVal)
A, e s : String
1. v=s assumption
Case —————————— (unitVal)
A, o + unit : Unit
1. v =unit assumption

A
Aot funxi(xp:m):ip=e:11 >0
1. v=funxi(xz:7):72 =€ assumption

:T1—>T2,XZZT2}I-€:T2
Case

(fun)

n} Av=ing, v1: (6

it 4+ ln i Ty)
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Case

Case

Case

Case

Case

Case

Case

Case

Case

Case

Case

Case

Case

(location)

(NU{t:t}),TrLl:7Ref
v =1{ assumption

(var)

AeU{x:T}rkx:T
x is not a value so the lemma holds vacuously in this case

A,e+ ey :Bool A, et ey: Bool

A,e + ey A e : Bool
e1 A ez is not a value so the lemma holds vacuously in this case

(con)

A,e+ ey :Bool A, et ey : Bool
A,e+e1Vey: Bool
e1 V ey is not a value so the lemma holds vacuously in this case

(dis)

A, e+ e: Bool
A, e + —e : Bool
—e is not a value so the lemma holds vacuously in this case

(negation)

Aoter:T Aeotrey:7 1€ {Int,Bool,String}

(equality)
A, e+ ey == e : Bool

e1 == ey is not a value so the lemma holds vacuously in this case

Aotrey:Int Aetrey:Int
Ao+ ey +ep:Int
e1 + ez is not a value so the lemma holds vacuously in this case

(add)

Aeote :11 ANetrer:1m

(sequence)
Aeter; ex: 1

e1; ez is not a value so the lemma holds vacuously in this case

A,etey:Bool Aerey:7 Aetrey:T
A,orifejtheneyelsees: T
if e1 then ey else e3 is not a value so the lemma holds vacuously in this case

(if)

A,etrey:Bool Aetrey:T
A, e + while(eq) {ez} : Bool
while(e1) {ez} is not a value so the lemma holds vacuously in this case

(while)

Aeotrer:ry AeU{x:Ti}rey: 1

, (let)
Aotrletx=ejinerend: 1

let x = ey in ey end is not a value so the lemma holds vacuously in this case

ANetre:T
A,orrefe:tRef
ref e isnot a value the lemma holds vacuously in this case

(createRef)

Ao+ e:TRef
Aeotle: 1
le is not a value so the lemma holds vacuously in this case

(accessRef)
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A,oF ey :TRef Aorey:T

Case - (assignment)
A, o+ ey = ep:unit
1. e; := ez isnota value so the lemma holds vacuously in this case
Case (listEmptyVal)

Ao+ ([]:tLise) « TList
1. v=/[]:7r1jsy assumption

Case A’ cract A’ o2 TList (listCons)
A,oFe ey Trigy
e =01 and €2 = V2 => €1 162 =01 1V assumption
e1 # U1 Or ey # U3 = eq :: ep isnot a value  the lemma holds vacuously in this case
Result from 1, 2

A eote:Tr; A eotrey:tr;
Case s 1 TList s 2+ TList (listAppend)
N ote @ez:TList

1. e @ ez is not a value so the lemma holds vacuously in this case

A eote:tr;
Case Lo PList )
A, e+ head(eq) : T

1. head(e;) is not a value so the lemma holds vacuously in this case

Ao+ eq:TL;
Case - 1 List (tail)
A, e+ tail(ey) : Trist

1. tail(e1) is not a value so the lemma holds vacuously in this case

AT Fe:1ris
Case (empty)
AT + empty(e) : Bool

1. empty(ep) is not a value so the lemma holds vacuously in this case

Aerer:11 -+ Netrey:1y
Case (record)
Aot (51 :el,...,fn :en) : (51 5 X---an :Tn)
e1=01,....en=vp=> ((1=e1,....n=€y) = ({1 =v1,...,ln, =vp) assumption
e1#0v1V,...,Vey, #v, = (€1 =e1,...,{n = ey) is not a value the lemma holds vacuously in this case
Result from 1, 2
ANere:({1:y X - X{lp:7T ief{l,...,n
Case ( ! 1 1 n) { } (projection)
Aered;:1i
1. e.; is not a value so the lemma holds vacuously in this case

ANetrer:1; i€{l,...,n}
Case - (variant)
Aeor(ingep:ly:mp+- - +lp:my): (b1t +- -+ Ly 1y)

1. 7={:1+...+0y:1y) assumption

2. v=ing et assumption, 1

3. ief{1,...,n} assumption

4. e=vi>v=ingv1:7 assumption, 2

5. e;j #v; > visnotavalue the lemma holds vacuously in this case

Result is from 4, 5
ANeore:(l1:11+ - -+Cp:1y) AMxi:mi}rer:t -+ AMxp:tnlren:t
Case (case)
Aot (caseeof O1x1 = e | - |lnxn=ep):7

1. (caseeof €1 x1 = e1| -+ | {n xn = ep) is not a value so the lemma holds vacuously in this case
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Aeote 1
Case (makeTypedVal)
A, o + makeTypedVal(t’, e1) : TypedVal
e1 = v = v = makeTypedVal(t’,v1) assumption
e1 # v1 = v is not a value the lemma holds vacuously in this case
Result is from 1, 2

A, o+ er: TypedVal
Case (tryCast)
A, o+ tryCast(r,e1) : T

1. tryCast(r,e1) is not a value so the lemma holds vacuously in this case

Aetre:T
Case (endLabel)
Aor{elgper: T

1. { e }japel is not a value so the lemma holds vacuously in this case

(getRT)
Case TV getRT() : Respior

1. getRT() is not a value so the lemma holds vacuously in this case
A, o+ e1 : Obligation
Case (makeCFG)
A, e + makeCFG(ey) : CFG
1. makeCFG(e;) is not a value so the lemma holds vacuously in this case

c A, e+ e : Event (setOutput)
ase setOutpul
A, o  setOutput(e) : unit

1. setOutput(e) is not a value so the lemma holds vacuously in this case

(outputNotSet)
Case A, o + outputNotSet() : Bool

1. outputNotSet() is not a value so the lemma holds vacuously in this case

Case - (getOutput)
A, o + getOutput() : (event : Event + none : Unit)

1. getOutput() is not a value so the lemma holds vacuously in this case

A, e e : (evt : 71 Event X pols : Polpjs; X 0s : OS X vc : VC)
Case (monitor)
A,T + monitor(ty,e1) : 71 Event

1. monitor(ty, e1) is not a value so the lemma holds vacuously in this case

c A,o ey :String A et e; € F.name A,e+ Flej].fun:1 —> 12 A et ep:TypedVal ok
ase invoke
A, o + invoke(eq, e2) : TypedVal

1. invoke(eq, e2) is not a value so the lemma holds vacuously in this case

Aerel:11 >1 Aerer:T
Case (call)
A, e+ call(er,e2) : 12

1. call(e1, e2) is not a value so the lemma holds vacuously in this case

LEMMA 9 (PROGRESS). A+ (C,e) : 7 = evalue vV AC’, e’ : (C,e) — (C’,¢’)

We will instead prove the equivalent statement A+ Cok A A,e Fe: 7 = evalue vV AC’, e’ : (C,e) — (C’,¢’). It can be shown
that these two statements are equivalent by inversion of rule TConfig.
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Proof. By induction on the derivation of A,e e : 7

- (intVa)
Case Ao+ n:Int e

1. nwoalue definition of values

C ———————— (boolVal)
ase A, e+ b : Bool

1. bvalue definition of values

Case ——————c 5 (stingVa)
A, e s :String

1. swvalue definition of values

Case —————————— (unitVal)
A, o + unit : Unit

1. unit value definition of values

Aeotrer:m
Case ‘ (fun)
Ao funxi(xp:71):Ta =€ :71 >

1. (funxi(xz:71): 72 = e2) value definition of values

(location)
Case AU{[ZT},OI—Z:’[‘Ref ocatio:

1. {wvalue definition of values

C —— (van)
ase Aeotrx:T )

1. Aerx:T assumption
2. A,e+ x:7isnotderivable Inspection of typing rules
3. This case holds vacuously 1,2
A,e ey :Bool A, et ey : Bool
Case (con)
A, e+ e1 A ey : Bool
A+ Cok
A, e+ e : Bool
A, e+ ey : Bool
er =v; or (C,er) — (C',e))
ez =0y or (Ce2) — (C',ep)
e1 =v1 = e € {true, false}
(C.e1) — (C',e]) = (C,e1 Aea) — (C',ef Aea)
(e1 = v1) and (C, ez) — (C’,e5) = (C,e1 Aea) — (C',v1 Aeg)
(
(

0 RNk WD

e1 =true and ez =vy) = (C,e1 Aey) — (C,vy)
e1 = false and ez = vy) = (C,e1 A ez) — (C, false)
AC’,e’ : (C,e1 Aex) — (C,e)

—
= O

c A,e+ ey :Bool A, et ey: Bool @
ase is
A, e+ e1 Ve : Bool

1. This case is analogous to case con.

c A, e + ey : Bool (negation)

ase —————— (negation,
A, e + —eq : Bool ¢
A+ Cok

A, e+ e : Bool

er =v1 V (C,e1) — (C'.e])

e1 = v1 = e € {true, false}

e1 = true = (C,—e1) — (C, false)

e1 = false = (C,—e1) — (C, true)

(C.e1) — (C're]) = (C.mer) — (Ce])
AC’, e’ : (C,—e1) — (C’,¢")

PO NG
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assumption
assumption
assumption
1,2, IH

1,3, IH

2, Lemma Canonical Forms
Rule andE1
Rule andE2
Rule andTrue
Rule andFalse
7-10

assumption

assumption

1,2, IH

2, Lemma Canonical Forms
notTrue

notFalse

notE

5-7



Aotrer:7 Aotrey:T 1€ {Int,Bool,String}

Case A,e + ey == e : Bool (caualiy
1. A+ Cok assumption
2. Aeotrer:T assumption
3. ANetrer:T assumption
4. 7 € {Int, Bool, String} assumption
5. er =v1 or (C,er) — (C',e)) 1,2,IH
6. ez =vp or (C,e) — (C’,eé) 1,3, IH
7. e — e] = (C,e1 == e3) — (C',e] == e3) Rule eqE1
8. e = vy and e; — e;, = (C,e; == ez) — (C’,v; ==e;) Rule eqE2
9. e1=v1 and ey = vy =
a. T =Int=
i v =M Lemma Canonical Forms, 2, 9, 9a
ii. vy =ny Lemma Canonical Forms, 3, 9, 9a
iii. n;=ny = (C,e; == ey) — (C, true) 9, (i), rule eqIntTrue
iv. ny#n2 = (C,e1 ==e3) — (C, false) 9, (ii), rule eqIntFalse
b. 7 = Bool =
1. vy € {true, false} Lemma Canonical Forms, 2, 9, 9b
ii. vy € {true, false} Lemma Canonical Forms, 3, 9, 9b
iii. wvp =by (ii), definition of b
iv. v1 =true = (C,e; == e3) — (C, by) 9, (iii), rule eqBoolTrue
v. v1 = false = (C,e; == e2) — (C, ~b2) 9, (iii), rule eqBoolFalse
vi. AC’,e’ : (C,e1 == e3) — (C’,¢’) (@), (iv), (v)
c. T = String =
i. V1 =81 Lemma Canonical Forms, 2, 9, 9¢
ii. vy =9 Lemma Canonical Forms, 3, 9, 9c
iii. s; =53 = (C,eq == e3) — (C, true) 9, (i), rule eqStrTrue
iv. s1#s2 = (C,eq ==e2) — (C, false) 9, (ii), rule eqStrFalse
d. aC’, e’ : (C,e) — (C',¢") 4, a(iii, iv), b(vi), c(iii, iv)
10. e=vordC’, e, (Ce) — (C',e) 7,8, 9d
Case A,orey:Int Aot ey:Int (add)
A,ot+ey+ep:Int
1. ArCok assumption
2. Aot eq:Int assumption
3. Aetrey:Int assumption
4. er=vior(Ce) — (C',e]) 1,2, IH
5. e =uvy0r (C,ep) — (C, eé) 1,3, IH
6. e1=v1 =>e =n 2, Lemma Canonical Forms
7. ey = Uy = ey = Ny 3, Lemma Canonical Forms
8. (Coe1) — (C',e]) = (C.e1 +e2) — (C',e] +e2) Rule addE1
9. (e1=n1 and (C,e2) — (C',e5)) = (C,e1 +e2) — (C',n1 +e5) Rule addE2
10. (eg =n1 and ez = ny) = (C,e1 +e2) — (C,ny +4 n2) 6, 7, Rule addValue
11. e=vordC’, e, (C,e) — (C',¢) 8-10
Case A’ cte:n A’ erexiT (sequence)
A oter; er:1m
1. ArCok assumption
2. Aetre:1 assumption
3. ANetrey:m assumption
4. eg=v1 or (Crer) — (C',e)) 1,2,IH
5. (Crer) — (C',e]) = (C, (e1;€2)) — (C’, (e]; €2)) Rule sequenceE1
6. e =v1 = (C,(e1;e2)) — (C,e2) Rule sequenceE2
7. AC’,e’ : (C,e) — (C,¢') 3-5
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Case

e U

-
e

Case

1.
2.

0 U R WN = 9
(¢

Case

PN BN

Case

0 RN WD

_
N = O

A,et+ ey :Bool Aerey:7 Aeres:T

A,ot+ifejtheneyelsees: T @
A+ Cok assumption
A, e F e : Bool assumption
Aeoetrey: T assumption
Aetres:T assumption
eg =vyor (C,e1) — (C’,e{) 1,2,IH
el =v1 = e € {true, false} 3, Lemma Canonical Forms
(C.e1) — (C',e]) = (C.if e1 then ey else e3) — (C’,if e] then ez else e3)  RuleifE
e1 = true = (C,if eq then ey else e3) — (C, e2) Rule if True
e1 = false = (C,if e; then e; else e3) — (C, e3) Rule ifFalse
AC’, e’ : (C,if e; then ey else e3) — (C’,¢’) 7-9
A,et+ ey :Bool Aerey:tT (while
A, e + while(e1){e2} : Bool
A+ Cok assumption
(C, while(e1){e2}) = (C,if e1 then while(e1){ez2} else false 1, Rule whileE
ANeotre :1y ANeter:1m et
Aetrletx =ejineyend : 1y
e = (let x = ey in ey end) assumption
A+ Cok assumption
ANeoete:my assumption
AeU{x:11}Fey: 1 assumption
er = vy or (C,er) — (C',e]) 2,3, IH
e1 =v1 = (C,e) — (C, [v1/x]e2) Rule letValue
(C,e1) — (C’,e]) = let x = ey iney end — let x = e] iney end Rule letE
aC’,e’,(C,e) — (C',¢’) 5-7
ANetrer:T
(createRef)
A,orrefer:TRef
A+ Cok assumption
Aeter:T assumption
er =v; or (C,e1) — (C',¢]) 1,2,IH
(C,e1) — (C’,e]) = (C,ref e1) — (C',ref e]) Rule refE
A+ C ok is only derivable by Rule C-Ok Inspection of Rule C-Ok
C = (M, R, inOb, rt, out, Toyt) 1, 5, Rule C-Ok
e1 =v= (C,ref e1) — (MU {{,v},R,inOb,rt,out, 7oy ),£) 6, Rule refValue
aC’,e’,(C,e) — (C',¢’) 3,4,7

A,ot+ ey :TRef
————————— (accessRef)
Aeotler: 1T
A+ Cok
e1:7Ref

er =01 or (C,e1) — (C',ef)

(C.en) — (C'r€]) = (C.ler) — (C'.1€])

eg=v>e ={;

A=A U{l:1}

A+ C ok is only derivable by Rule C-Ok
C = (M,R,inOb, rt,out, tout) AM: A
M : A is only derivable by Rule TMem
M=M U{(l,v)}

e1 =v1 = (C,ler) — (C,v)

AC’,e’, (C,e) — (C',¢’)

assumption

assumption

1,2, IH

3, Rule derefE

2, Lemma Canonical Forms
2, 5, Rule location
Inspection of Rule C-Ok

1, 7, Inspection of Rule C-Ok
Inspection of Rule M:A

6, 8, 9, Rule TMem

8, 10, Rule derefV

3,4,11
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Case

0 RNk DN

N el el e
Ll ol

15.
Case

1.

Case

O X NN U kWD

Case

e A A

= e e
LN ee

A,oF ey :TRef Aorey:T

(assignment)
A, o+ ey = ep:unit
AFCok
A,oFe;:TRef
Aeotrey:T
er =v1 or (C,er) — (C',e])
ez = vy or (C,e2) — (C'e})
e1=v1 =e =10
Ae - {1 : 7 Ref is only derivable by Rule location
A=AU {€1: 71}
C = (M,R,inOb,rt,out, Toys) AM: A

M : A is only derivable by TMem
M =M U{(l1,9014)}
(C.e1) — (C're]) = (Cre1 :=e2) — (C', ¢ := e2)

e1=v1 A (C,e2) — (Ce3) = (C,e1 := e2) — (C,v1 = ¢))

assumption

assumption

assumption

1,2,IH

1,3, IH

2, Lemma Canonical Forms
Inspection of the Rule location
2, 6, 7, Inversion of Rule location
1, Lemma C-Inversion
Inspection of Rule TMem

8,9, 10, rule TMem

Rule assignE1

9, Rule assignE2

e1 =vi Aey =03 = (C,e1 1= eg) — ((M' U {{1, v}, R, inOb, rt, out, Ty ), unit) 6,9, Rule assignValue

aAC’,e’,(C,e) — (C',¢’)

(listEmptyVal)
Aok ([ tList) t TList
e=([I:7rist) =0

Aotrer:T Aeotey:trist

(listCons)
A, oFeq ey Trist

A+ Cok

Aeotre:T

Ao te:Trist

er =vyor (Coer) — (C'e))
ez = vz 0r (C,e2) — (C',e))
(C.e1) — (C',e1) = (C,e1 i e2) — (C e =€)

(C,e2) — (C're5) = (C,eq : e2) — (C',vy = €))

(e1 =v1 and ey = vy and vy vy =v) = (C,e1 = e3) — (C,0v)
e=vordC’, e, (C,e) — (C',¢)

Neoter:trisr Aoker:Tris

Aete @er: st
A+ Cok

Ao ker:Trst

(listAppend)

Aot e: TList

er =01 or (C,e1) — (C',e])
ez = vz or (C,ez) — (C',ej)

(C,e1) — (Ce]) = (Coe1 @ e2) — (C',e] @ e2)

(e1 =01 and (C,e2) — (C,e3)) = (C,e1@e2) — (C',v1@e))

e1=v1 e =0 - nop or ep =[] T

€=UV D ey =0, e HUy or eg =[] TLigy

(e1 =[] :7List and ez = v2) = (C, (e1@e2)) — (C,v2)

ep=vy: - nop and ex = []) = (C, (e1@ez)) — (C,v1)

(er=vy= - nvy and ep =0 = - o) = (G (e1@er)) — (Coop = -+

e=vordC e, (C,e) — (C',e)
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4-5,12-14

definition of list value

assumption
assumption
assumption

1,2,IH

1,3,IH
listPrependE1
listPrependE2
Definition of values
6-8

assumption

assumption

assumption

1,2,IH

1,3,IH

Rule listAppandE1

Rule listAppendE2

2, Lemma Canonical Forms

3, Lemma Canonical Forms

Rule listAppendNil

Rule listAppendValue
::vp,) Rule listAppendValue

6,7,10-12



0 U R W= Q
(¢

Case

NSO

Case

NS W=

Case

Gk N

Aeoter:trig

(head)

A, e+ head(ey) : T
A+ Cok assumption
Aot e TList assumption
er =vor (C,e) — (C',e)) 1,2,IH
e1=v=e =v; v or e1 =[]:TList 1, Lemma Canonical Forms
e1 = []: trist = (C, head(e1)) — (C, inpone(unit) : © Option) listHeadEmpty
e1 = v1 :: v2 = (C, head(e1)) — (C, insome(v1) : T Option) listHeadValue
(C,e1) — (C’, e]) = (C, head(e1)) — (C’, head(e;)) listHeadE
aC’,e’,(C,e) — (C’,¢’) 5-7

Aot €1 : TList
(tail)

A, e+ tail(ey) : Trist
A+ Cok assumption
Ao+ e Trist assumption
er =v or (C,er) — (C',e]) 1,2,IH
e1=v=e =v; =0y or e =[]:TList 2, Lemma Canonical Forms
e1 =[] : 1rist = (C,tail(e1)) — (C,[] : trist) Rule listTailNil
e1 = v1 vy = (C,tail(e1)) — (C,v2) Rule listTailCons
(C,e1) — (C', e]) = (C, tail(e1)) — (C’, tail(e])) Rule listTailE
aC’,e’,(C,e) — (C',¢’) 5-7

A oteq: TList
(empty)

A, o + empty(er) : Bool
A+ Cok assumption
A, ok ey Trist assumption
e1=v or (C,el)—>(C',e{) 1,2,IH
e1=v=e =v; =0 or e; =[]:TList 2, Lemma Canonical Forms
e1 =[] :trist = (C,empty(e1)) — (C, true) Rule listTailNil
e1 = vy vp = (C,empty(e1)) — (C, false) Rule listTailCons
(C.e1) — (C’,e1) = (C,tail(e1)) — (C’,tail(e;)) Rule listTailE
aAC’,e’, (C,e) — (C',¢") 5-7

Aeoetrer:my - Nete,: Ty (record)

Aeor(t1=e1,....8n=€p): (L1:11 X - XLy :Ty)
A+ Cok assumption
e=(l1=e1,...,0n =¢€p) assumption
ANeote:1y - Netre,:Ty assumption
er =v1 or (C,er) — (C'.e]),....en =vp or (C.en) — (C',ep) 3,IH

(C,e1) — (C',e]) = (C,e) — (C', ({1 = ¢

1

e1 = 01,...,ei-1 = 0j-1,(C,e;) — (C',e]) = (C,e) — (C', ({1 = v1,....Li =e,...,{n = vp))

€1 =01,...,en—1 = vp-1,(C,en) — (Cl,e;z) = (C,e) — (C', (L1 =v1,.... 0, :e;l))
Lep=vp=>e=v= ({1 =0v1,.

e =01,..
e=vordC, e, (C,e) — (C',¢)

)

{, .o ln =en)) 1, 2, variantE

1, 2, variantE

1, 2, variantE

5-6
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1, definition of values



Case

NS WN =

Case

M .

Case

O XN NGk WD

Case

Case

AN

ANeoere: (111X XCp:i1y) 1€{1,...,n

ANeorel; T

(projection)

A+ Cok

Aeotrer:(l1:1 X Xy 1 1y)

ief{l,...,n}

e =v1 or (C,er) — (C',e])

eg1=v1 e = (0 :v{,...,é’,, 2uy,)

(C,e1) — (C',e]) = (C,e1.6;) — (C',e].L1)

e = (fl :U{,...,fn :Z);l) = (C,el.fi) —> (C,vl{)

e=vordC’, e, (Ce) — (C',¢)
Aeotre:T;

ief{l,...,n}

Ao (ing ei:ly:mi+--+lpty): (br:m1+ - +p:1y)

e=ing ej:l1:n1+...+lp 1y
A+ Cok

Aeote:Ti

ei =v; or (C,e;) — (C'e))

(C,ei) — (C',e}) = (Cre) — (Clying, e i by i T+ ...+ by 2 Th)

e=vordC’, e, (C,e) — (C',¢)

assumption

assumption

assumption

1,2,IH

2, Lemma Canonical Forms
Rule projectionE

Rule projectionV

6-7

(variant)

assumption
assumption
assumption
1,2,IH

1, Rule variantE
3,4

ANeotrex:(l1:my+--+€ln:1y) ANoeU{x;:ri}rer:t -+ AoU{xp:tplbren:t
Aot (caseexof (1 x1 = e1| - | lpnxp=epn):T fease)
A+ Cok assumption
e=caseex of {1 x1=>e1| -+ | €nxn=en assumption
ANeotrex:(ly:m1+...4+€n :1y) assumption
AoeU{xi:t}re:7 - AbeU{xp:mplten:t assumption
ex =vx or (C,ex) — (C',e%) 1,2,IH
ex =vx > di,vr:i€fl,...,nfAex=ing v1: b1 +...+ €1y 3, Lemma Canonical Forms
(C,ex) — (C',e%) = (C,e) — (C',(case e of t1x1 = e1 | -+ | €y xp = en)) caseE
ex =ing, v1: €111+ ...+l = (C,e) — (C, [vi/xi]ei) 6, caseV
aC’,e’,(C,e) — (C',¢’) 7-8
Aoere;:1
(makeTypedVal)

A, o + makeTypedVal(ty, e1) : TypedVal
A+ Cok assumption
Aere: 1 assumption
e =v1 or (C,er) — (C',e]) 1,2,IH
(C.e1) — (C’,e7) = (C,makeTypedVal(ry,e1)) — (C’, makeTypedVal(ry,e;)) Rule makeTypedValE
e1 = v1 = makeTypedVal(r1,e1) = v Definition of values
e=vordC’,e,(C,e) — (C',¢’) 4-5

A, o+ ey : TypedVal
(tryCast)

A, o + tryCast(r1,e1) : 71 Option
A+ Cok assumption
A, o Fer: TypedVal assumption
er =v; or (C,e1) — (C',¢]) 1,2,1H

(C.e1) — (C.ef) = (C, tryCast(r1, e1)) — (C’, tryCast(ry, €]))

1
e1 = v1 = e; = makeTypedVal(rz, v2)

e1 = makeTypedVal(t2,v2) A 11 = 172 = (C, tryCast(r1,e1) — (C, ingome v2 : 1 Option)
e1 = makeTypedVal(tz2,v2) A 11 # 172 = (C, tryCast(r1,e1) — (C, inpone unit : 1 Option)

aC’,e’,(C,e) — (C',¢’)
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Rule tryCastE

2, Lemma Canonical Forms
5, rule TryCastVOk

5, rule TryCastVBad

4-7



Aetre: 7T

Case A’ o { o }label 7 (endLabel)
1. ArCok assumption
2. A+ C ok s only derivable by Rule C-Ok Inspection of Rule C-Ok
3. C = (M,R,inOb,rt,out, Toyt) 1, 2, Inversion of Rule C-Ok
4. Aetrer:T assumption
5 e =v1 or (Coer) — (C',e)) 1,4,1H
6. (Coe1) — (C'ye)) = (C.{ e Js(ny)) — (C'.{ € J5(ny)) Rule endLabelE
7. e1 =v1 As # “monitor’” = (C,{ e }5(p,)) M) (C,v1) Rule endLabelValue
. e1 =v1 As = “monitor’” = (C,{e Ys(ug)) M ((M, R, false,rt,out, 7oyr),v1) Rule endLabelMonitor
9. dC’,e’ : (C,e) — (C,¢') 5-8
Aerer:T
Case A, o+ getRt() : Respjst (getiD
1. A+Cok assumption
2. A+ C ok is only derivable by Rule C-Ok Inspection of Rule C-Ok
3. C = (M,R,inOb,rt,out, Toys) 1, 2, Inversion of Rule C-Ok
4. (C,getRT()) — (C,rt) 3
A, o e1 : Obligation
Case (makeCFG)
A, o + makeCFG(e1) : CFG
1. ArCok assumption
1. A, et e : Obligation assumption
2. er=v1 or (Coe) — (C're]) 1,IH
3. (C,e1) — (C',e]) = (C,makeCFG(e1)) — (C’, makeCFG(ey)) makeCFGE

beginmakecFG(vy)

4. e =v1 = (C,makeCFG(e1)) ————— (C, {makeCFGq (V) }pakecFG(v,)) makeCFGValue
5. dC’,e’,(C,e) — (C’,¢’) 3,4
Case Ao ke : Event (setOutput)
A, o  setOutput(er) : Bool
1. A+ Cok assumption
2. e1 : Event assumption
3. A+ C ok is only derivable by Rule C-Ok Inspection of Rule C-Ok
4. C = (M, R, inOb, rt, out, 7out) 1, 3, Inversion of Rule C-Ok
5. A, o+ out : 1oy Event Option 1, 3, Inversion of Rule C-Ok
6. out is a value 4, definition of syntax
7. er =v1 or (C,er) — (C',e]) 1,IH
8. (C,e1) — (C’, e7) = (C,setOutput(er)) — (C’, setOutput(e;)) Rule setOutputE
9. e =v1 =
a. out = inpone Unit : Toyr Event Option V vy : out = insome v2 : T Event Option 5, 6, Lemma CF
b. out = ingome V2 : T Event Option = (C, setOutput(e1)) — (C, false) 4, 9, Rule setOutputSet
c. out = inpone unit : T Event Option =
i.  e1 =inget v3: Event V ey = inyes res(vs, makeTypedVal(t,vs)) : Event 2, 4, 9, definition of types, Lemma CF
il. e =inger v3 : Event = (C,setOutput(er)) — 4,9, c, Rule setOutputAct
((M,R,inOb, rt,insome(ingcr v : Tour Event) : 1oy Event Option, Toyt), true)
iii. €1 = inpes res(vy, makeTypedVal(r,vs)) AT = tour = (C, setOutput(er)) — 4,9, ¢, Rule setOutputNotSetResGood
((M,R,inOb, rt,insome (inres res(vi,v2) : Tour Event) : 1oy Event Option, toy;), true)
iv.  e1 = inyes res(vy, makeTypedVal(t,vs)) AT # Tour = (C, setOutput(e1)) — (C, false) 4,9, c, Rule setOutputNotSetResBad
v. 3AC, e’ : (C,setOutput(e1)) — (C,e’) i-iv
d. out = inpone unit : T Event Option = AC’, e’ : (C, setOutput(e1)) — (C,e’) c, c(v)
e. AC’, e’ : (C, setOutput(e1)) — (C,e’) a,b,d
10. e = v = AC, ¢’ : (C, setOutput(er)) — (C,e’) 9, 9(d)
11. AC’, e’ : (C, setOutput(e1)) — (C,e’) 7,8,10
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Case

O X NNk W=

Case

O NS W=

10.

Case

R

(outputNotSet)

A, o + outputNotSet() : Bool
A+ Cok
A+ C ok is only derivable by Rule C-Ok
C = (M, R, inOb, rt, out, Toys)
A, e Fout : 7oy Event Option
out is a value
out = inpone Unit : 7oy Event Option V vy : out = ingome vz : T Event Option
out = inpone unit : 7oyr Event Option = (C, outputNotSet()) — (C, true)
out = ingome V2 : Tour Event Option = (C, outputNotSet()) — (C, false)
AC’, e’ : (C, outputNotSet()) — (C,e’)

assumption

6-8

(getOutput)
A, o + getOutput() : Event Option

A+ Cok

A+ C ok is only derivable by Rule C-Ok

C = (M, R, inOb, rt, out, oyt)

A, e+ out : 1oy Event Option

out is a value

out = inpone unit : 7oy Event Option V vy : out = ingome v2 : T Event Option
out = inpone unit : Tour Event Option = (C, getOutput()) — (C, inpone unit : Event Option)
out = ingome V2 : Tour Event Option =

Vg = inger U3 : Tour Event Option V vy = inyes res(vs, vs) : Tour Event Option
Vg = iNger U3 : Toyr Event Option = (C, getOutput()) —

(C,insome (inger v3 : Event) : Event Option)

Vg = inyes res(vs, Us) : Toyr Event Option = (C, getOutput()) —

(C,insome (inres res(vy, makeTypedVal(tous,vs)) : Event) : Event Option)
aC’, e’ : (C, getOutput()) — (C,e’)

out = insome V2 : Tour Event Option = AC’, e’ : (C, getOutput()) — (C,e’)
aC’, e’ : (C, getOutput()) — (C,e’)

A, e e : (evt : 71 Event X pols : Polpjg; X 0s : OS X vc : VC)

(monitor)
A, ® + monitor(ty, e1) : 71 Event
A+ Cok assumption
A, e e : (evt : 71 Event X pols : Polpjg; X 0s : OS X vc : VC) assumption
er =v1 or (C,e1) — (C',e]) 1,2,IH

Rule monitorE
Inspection of Rule C-Ok
1, 5, Rule C-Ok

(C,e1) — (C’, e]) = (C, monitor(ry, e1)) —> (C’, monitor(r1, e;))
A+ C ok is only derivable by Rule C-ok
C = (M, R, inOb, rt,out, Toyt)

bEginmonitar(‘ul)
e1 = v1 = (C, monitor(ry,v1))
((M, R, true, inOb, rt, out, Tout), {emonitor (T1, V1) Ymonitor(vr))
aC’,e’,(C,e) — (C',¢’)

6, Rule monitorV

3,4,7
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Inspection of Rule C-Ok

1, 2, Inversion of Rule C-Ok
1, 2, Inversion of Rule C-Ok
3, definition of syntax

4,5, Lemma CF

3, Rule outputNotSetTrue
3, Rule outputNotSetFalse

assumption

Inspection of Rule C-Ok

1, 2, Inversion of Rule C-Ok
1, 2, Inversion of Rule C-Ok
3, definition of syntax

4, 5, Lemma CF

Rule getOutputNone

4,5, 8, Lemma CF
Rule getOutputSomeAct

Rule getOutputSomeRes
a-c

8, 8(d)
6,7,9



A,eFep:String A, et ez : TypedVal

Case (invoke)
A, o  invoke(eq, e2) : TypedVal Option
1. A+ Cok assumption
2. A, o eq: String assumption
3. A, o+ ey : TypedVal assumption
4. er =vp or (C,er) — (C',e]) 1,2,IH
5. e1=v1 = e =S 2, Lemma Canonical Forms
6. (C,e1) — (C’, e]) = (C, invoke(e1, e2)) — (C’, invoke(e;, e2)) Rule invokeE1
7. ez =0z or (C,ez) — (C',¢ej) 1,3,IH
8. e1 = s1 A ey — e; = (C, invoke(ey, e2)) — (C’, invoke(es, e5)) 5, Rule invokeE2
9. e1 =Ss1ANey =0y =
a. s, f: (s, f) € F) vV (Tx1,x2, 71,12, € : (5, (fun x1(x2 : 11) : 0 = €)) € F) definition of syntax
(s, f : (s, f) & F) = (C,invoke(e1,e2)) — (C, inpone unit : TypedVal Option 5, 9, invokeValNotExists
c. (Fx1,x2, 71,72, : (5, (fun x1(x2: 71) : 2 = €)) € F) =
i vg = makeTypedVal(zs, vé) 3,9, Lemma Canonical Forms
ii. 11 =13 = (C,invoke(e1,e2)) — (C,insome makeTypedVal(z, 9, ¢, i, Rule invokeValueExistsOk
call((fun x1(xz : 1) : 72 = €),vy)) : TypedVal Option)
iii. 7 # 13 = (C,invoke(e1,e2)) — (C,inpone unit : TypedVal Option) 9, ¢, i, Rule invokeValueExistsBad
iv. AC’, e, (C,e) — (C,¢') ii, iii
. (Tx1,x2, 71,72, € 1 (5, (funx1(x2: 71) : 72 = €)) € F) = AC", ¢/, (C,e) — (C',e’) ¢, c(iv)
e. aC’,e’,(C,e) — (C',¢’) a,b,d
10. ep=s1Aex=vy = AC, e, (C,e) — (C’,¢’) 9, 9(e)

11. aAC’,e’, (C,e) — (C',¢’) 4,6,7,8,10
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Cas

R i

e

-
e

12.
13.

ii.

1i.

il

14.

ANetrel:11 >1 ANerey:1

(call)
A, e+ call(er,e2) : 12

A+ Cok

ANetre 11 o1

AN eokey:1

er =v1 or (C,er) — (C',e])
ez =0z or (C,ez) — (C',¢ej)

(C,e1) — (C’, e]) = (C, call(er, e2)) — (C,call(e, e2))

e1 =v1 = Axy,x2,ez 1 e1 = (funxi(xz : 71) = ez)

er = vy and (C,ez) — (C',e}) = (C,call(e1, e2)) — (C, call(vy, e3))
A+ C ok is only derivable by rule C-ok

C = (M, (F, pols, os, vc), inOb, rt, out, Toyr)

A, e + inOb : Bool

Jv,inOb =v

inOb € {true, false}

e1 =v1 and ey = vy =

ds: (s,v1) e F=

inOb = true =

beginxl (v2)

(C, call(eq, e2))
((M, (F, pols, 0s,vc), true,
rt @ res(act(s, makeTypedV al(t1,v2)), makeTypedVal(za, [v1/x1,v2/x2]€))
=[] : Respise,out, Tout)
{[v1/x1,v2/x2]e}x, (v))
inOb = false =

beings(y)
(C, call(e1, e2)) ——

((M, (F, pols,0s,vc), false, rt,inpone unit : 7o Event Option, 12), emeEUt)

f ¢ range(F) =

(...,onTrigger = vy,...) € pols Avy = (fun x1(xz : Event) : Unit = e) =
beginy, (vy)

(C, call(e1, e2))

((M, (F, pols, 0s, vc), inOb, [] : Respist, out, Tour), {[v1/x1, v2/x2]e} x, (xy)

(...,onObligation = vy,...) € pols A vy = (fun x1(x2 : Respisy) : Unit = e) =
beginy, (vy)

(C,call(eq,e2))
((M, (F, pols, 0s,vc), inOb, [] : Respiss, out, tout), {[v1/x1, v2/x2]e}
(C,call(e1, e2)) — (C,{[v/x]els(w))

x1(x2)

(Ypol € pols : pol = (...,onTrigger = f1,0onObligation = f,...) = v1 ¢ {f1, f2}) =

beginy, (vy)
(C, call(er, e2)) (C {[va/x2, v1/x1]e}x; (o)
AC’, e’ : (C, call(ey, e2)) — (C,¢€")

assumption

assumption

assumption

1,2,IH

1,3,IH

callE1

2, Lemma Canonical Forms
7, callE2

inspection of the rules

9, inversion of Rule C-ok

definition of C
10, 11, Lemma Canonical Forms

7,13, a, callFromObligation

7,13, a, callFromApplication

7,13, b, callOnTrigger

7,13, b, callOnObligation

7,13, b, callNonMonitoredfunction

13a(i), 13a(ii), 13b(i), 13b(ii), 13b(iii)

LEMMA 10 (MONITOR TYPE). A, e | v : (evt : T Event X pols : Polpjsy X 0s : OS X vc : VC) = A, ® F emonitor(r,v) : T Event

The proof of this lemma is trivial though uninteresting. The proof technique is to derive the proof tree of A, ®  emonitor(7, ) :

t Event

LEMMA 11 (PRESERVATION). A+ (C,e) : T A(C,e) — (C',e’) = AN A (C'e’):1 A ACA

We will instead prove the equivalent statement:
(ArCok A Abere:t A (Coe) — (C',e")) = 3N : (A +C ok A N,ere’:7 A ACA).
It can be shown that these two statements are equivalent by inversion of rule TConfig.
It is assumed throughout this proof that any A is a subset of itself.

Proof. By induction on the derivation of (C,e) — (C’,¢’)
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(Coer) — (C'.€))

Case (andE)
(C.e1 Nez) — (C'ref Aer)
1. A+Cok assumption
2. ANerejANey:T assumption
3. (C.er) — (C'.e]) assumption
4. A,e+ ey : Bool 2, Inversion Lemma
5. A,et ey : Bool 2, Inversion Lemma
6. T = Bool 2, Inversion Lemma
7. AN : (A’ + C’ ok /\A’,ol—e{:Bool/\ ACAN) 1,3,4,IH
8. A’,eF ey : Bool 5, 7, A-weakening Lemma
9. N ,eteAex:t 6-8, Rule con
Result is from 7, 9
Case (C,true Ney) — (C,e2) (andree)
1. ArCok assumption
2. A ertrueNey:t assumption
3. 7 = Bool 2, Inversion Lemma
4. ANetrey:T 2, 3, Inversion Lemma
Result is from 1, 4
Case (C, false A ey) — (C, false) fandfelse)
1. ArCok assumption
2. Aot falseney:T assumption
3. 1 = Bool 2, Inversion Lemma
4. Aot false:t 3, Rule boolVal
Result is from 1, 4
(Coe1) — (C'yep)
Case (orE)
(C,e1Ve) — (CreyVer)
1. ArCok assumption
2. ANetreVer:T assumption
3. (Coer) — (Che)) assumption
4. A,e+ e : Bool 2, Inversion Lemma
5. A,eF ey : Bool 2, Inversion Lemma
6. 7 = Bool 2, Inversion Lemma
7. AN : (A'+C’ ok /\A’,OI—e{:Bool/\ ACAN) 1,3,4,IH
8. A’,eF ey : Bool 5, 7, A-weakening Lemma
9. A,et e{ Ve :T 6-8, Rule or
Result is from 7, 9
Case (C,true vV e3) — (C, true) forte)
1. ArCok assumption
2. AertrueVey:t assumption
3. 7 = Bool 2, Inversion Lemma
4. Aertrue:t 3, Rule boolVal
Result is from 1, 4
Case (C, false Ve) — (C,ez) (orfalse)
1. A+Cok assumption
2. Aot falsevey:r assumption
3. 7 = Bool 2, Inversion Lemma
4., ANetrey:T 2, 3, Inversion Lemma

Result is from 1, 4
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Case

W

Case

1.

O 00 N N U W N = g?
(¢}

-
e

Case

VRN W=

—_
S

(Coer) — (Cye))
(C,—|e1) —> (C’,ﬂe{)
A+ Cok
Aot —er:T
(Coer) — (C'.e])
A, e+ eq : Bool
7 = Bool

(notE)

AN (A FC' ok AN etef:bool A ACA)

Ao+ —|e{ iT
Result is from 6, 7

(notFalse)

(C,—false) — (C,true)
A+ Cok
Ao —false: T
T = Bool
Aot true:t
Result is from 1, 4

(notTrue)

(C,~true) — (C, false)
This case is analogous to case notFalse

(Cer) — (Ce))

(eqE1)
(Cer==e2) — (C',ef ==¢2)

A+ Cok
ANere==ey:T
(Ce1) — (C,ep)
ANeoere:1
Aeoter:1ry
71 = {Int, Bool, String}
7 = Bool
AA (A + C’ ok /\A’,H—ei A ACAN)
A’,O Fe:m
N orel==e:T
Result is from 8, 10
(C,e2) — (Ce))

(C,v1 == e3) — (C',v1 ==¢)
A+ Cok
ANervi==ey:T
(C,ep) — (C',¢€})

(eqE2)

2
Aeoruvr:T
Aeokey:1
71 = {Int, Bool, String}
7 = Bool

AN (A FC' ok AN ekej:Ti A ACN)
AN, ,etv:1n

AN erv==¢):1

Result is from 8, 10

assumption
assumption
assumption

2, Inversion Lemma
2, Inversion Lemma
1,3,4,IH

5, 6, Rule negation

assumption
assumption

2, Inversion Lemma
3, Rule boolVal

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
1,3,4,IH

5, 8, A-weakening Lemma
6-9, Rule equality

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
1,3,5IH

4, 8, A-weakening Lemma
6-9, Rule Equality



Case

L

Case

L e

Case

Case

Case

L.

Case

AR o e

Case

O RNk WD

np =nz

(eqIntTrue)
(C,n1 ==ng) — (C,true)
A+ Cok assumption
A,eFny==nz:7 assumption
T = Bool 2, Inversion Lemma
Aot true:t 3, Rule boolVal

Result is from 1, 4

ni # ny
(eqIntFalse)
(C,n1 ==np) — (C, false)
A+ Cok assumption
A,etny ==ny:7 assumption
7 = Bool 2, Inversion Lemma
Ao+ false: t 3, Rule boolVal

Result is from 1, 4
S1 =82

(eqStrTrue)

(C.s1 ==s52) — (C,true)
This case is analagous to case eqIntTrue

S$1 # 2

(eqStrFalse)

(C,s1 ==53) — (C, false)
This case is analagous to case eqIntFalse

(egBoolTrue)
(C, true == by) — (C,b2)
A+ Cok assumption
A, o+ true == by : ¢ assumption
T = Bool 2, Inversion Lemma
Aerby:T 2, 3, Inversion Lemma

Result is from 1, 4

(eqBoolFalse)
(C, false == by) — (C,—by)
A+ Cok assumption
A, o false == by : T assumption
7 = Bool 2, Inversion Lemma
A, e+ by : Bool 2, Inversion Lemma
Aor=by:T 3, 4, Rule negation

Result is from 1, 5

(Coer) — (C.e])

(addE1)

(Cer+e2) — (C'ref +e2)

A+ Cok

A eotrer+er:T
(Ce1) — (C'ye))
Aot ey :Int

A, o+ ey :Int

r = Int

AN (A FC ok AN erel:Int A ACA)

N,e ey Int
A, erel +e:Int
Result is from 7, 9

59

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma

1, 3,4, IH

5, 7, A-weakening Lemma
6-8, Rule add



(Coez) — (C¢})

Case (addE2)
(Cin1+e2) — (Ciny+ey)
1. A+Cok assumption
2. ANerni+e:rt assumption
3. (C.ez) — (C',ej) assumption
4. A, et ey :Int 2, Inversion Lemma
5. t=1Int 2, Inversion Lemma
6. AN :(A'+C'ok AN, etrey:Int A ACN) 1,3,4,IH
7. A,erng:Int Rule IntVal
8. A,erni+ eé : Int 5-7, Rule add
Result is from 6, 8
Case M tafty =0 (addValue)
(C,n1 +n) — (C,n)
1. ArCok assumption
2. Aerni+ng:t assumption
3. t=Int 2, Inversion Lemma
4. Aetrn:t 3, Rule intVal
Result is from 1, 4
(Ce) — ()
Case (sequenceE1)
(Cie1se2) — (Clrefse2)
1. ArCok assumption
2. ANetreer:T assumption
3. (Coer) — (Che)) assumption
4. Aete :1’ 2, Inversion Lemma
5. Aetrer:T 2, Inversion Lemma
6. AN :(A'+C’ ok /\A',or—e{:‘r’/\ ACAN) 1,3,4,IH
7. AN,etrey:1 5, 6, A-weakening Lemma
8. A,er e{;ez iT 6, 7, Rule sequence
Result is from 6, 8
(sequenceE2)
G Cone) — Coag)
1. ArCok assumption
Aerugser: T assumption
3. ANetrey:1 2, Inversion Lemma
Result is from 1, 3
(c, el) i (Cla 6{)
Case (ifE)
(C.if e1 then ey else e3) —> (C',if e] then e; else e3)
1. ArCok assumption
2. Aerifejtheneyelsees:t assumption
3. (Coer) — (C',e)) assumption
4, A, e+ e : Bool 2, Inversion Lemma
5. ANeoerey:T 2, Inversion Lemma
6. Aeotres:T 2, Inversion Lemma
7. AN (A +C ok /\A’,cl—e;:Bool/\ ACAN) 1,3,4,IH
8. AN,erey:T 5,7, A-weaking Lemma
9. A,etre3:T 6, 7, A-weaking Lemma
10. A erif e{ thenes elsees : 7 7-9, Rule if

Result is from 7, 10
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Case

Case

O NS W=

Case

R A i

Case

AR

(C,if true then e else e3) — (C,e2) (e
A+ Cok
A,o+if truetheneyelsees : T
ANeotey: T
Result is from 1, 3
(ifFalse)
(C,if false then ey else e3) — (C,e3)
A+ Cok
A,o+if false theneyelsees : T
Aores:T

Result is from 1, 3

(C, while(eq) {e2}) — (C,if e1 then (ez; while(er) {e2}) else false)

A+ Cok

A, e+ while(e1) {ea} : T

A, e+ e : Bool

Aeotrey:1

T = Bool

A, e+ false : Bool

A, e+ (e3; while(e1) {e2}) : Bool

A, o+ if ej then (ez; while(er) {e2}) else false : T
Result is from 1, 8

(Ce1) — (Cep)
(C.let x = ey inegend) — (C',let x = e] in ez end)
A+ Cok
Aerletx=ejineyend: 1

(Coer) — (C'.¢])

Aeore:1
AMx:ni}re:m
T=1

AN (A FC' ok AN, erel:T1 A ACA)
N i{x:i}re:1m

A',H—letxze{ inegend: T

Result is from 7, 9

(C,let x =vineyend) — (C,[v/x]ez) (letValue)
A+ Cok
Aetletx=vineyend:t
Aeorv:m

A{x:mi}rer:1
T=1

Ao+ [v/x]ey: T
Result is from 1, 6
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(letE)

assumption
assumption
2, Inversion Lemma

assumption
assumption
2, Inversion Lemma

(whileE)

assumption
assumption

2, Inversion Lemma
2, Inversion Lemma
2, Inversion Lemma
Rule boolVal

2,4, 5, Rule sequence
3, 5-7, Rule if

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
1,3,4,IH

5,7, A-weakening Lemma
6,7, 8, Rule let

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma

3-5, Substitution Lemma



(Coer) — (C'.€))

Case (refE)
(C.ref er) — (C',ref e])

1. A+Cok assumption

2. Aerrefer:t assumption

3. (C.er) — (C'.e]) assumption

4. Aete;:1 2, Inversion Lemma
5. 7=11 Ref 2, Inversion Lemma
6. AN :(A'rC ok AN ,erel:11 A ACA) 1,3,4,IH

7. N,etrref e{ iT 5, 6, Rule createRef

Result is from 6, 7

£ ¢ dom(M)

Case (refValue)
((M,R,inOb, rt,out, oyt ), ref v) — (MU {(£,v)},R,inOb,rt,out, toyt), )
1. let (M, R, inOb,rt,out, toys) = C assumption
2. let (MU{(¢,v)},R,inOb,rt,out, Tout) = C’ assumption
3. ArCok assumption
4. Aerrefu:r assumption
5. Aeruv:T’ 4, Inversion Lemma
6. t=1"Ref 4, Inversion Lemma
7. M:A 1, 3, C-Inversion Lemma
8.  8is only derivable by Rule TMem Inspection of M : A rules
9. M={(l1,v1),...,(€n,vn)} 7, 8, Inversion of Rule TMem
10. A={(t1:711)s...,€n :T0)} 7, 8, Inversion of Rule TMem
11. Vie{l,...,n}.A,e+v;:1; 7, 8, Inversion of RuleTMem
12. let M’ = MU {({,v)} assumption
13. let A =AU {(¢:1")} assumption
14. ACAN Definition of C
15. Vie{l,...,n}.A,erv;:1; 11, 14, A-weakening Lemma
16. A ,eruv:7’ 5, 14, A-weakening Lemma
17. M’ N 12,13, 15, 16
18. A’,e+(C’ ok 2,3, 12-14, 17, C-weakening Lemma
19. A,er{:7 6, 14, Rule location

Result is from 14, 18, 19

(Coe1) — (C',¢))
Case ——— (derefE)
(C.ler) — (C'leq)

1. ArCok assumption

2. ANetrle:r assumption

3. (Coer) — (Che)) assumption

4. A,ete:7Ref 2, Inversion Lemma
5 JA :(A'+C'ok AN,erel:TRef A ACA) 1,3,4,1H

6. A,eF !ei iT 5, rule accessRef

Result is from 5, 6

Case IO ) — M UG )y e
1. A+ M U{(t0)l},...)) ok assumption
2. ANerl:r assumption
3. Aer{:TRef 2, Inversion Lemma
4. 3 is only derivable with Rule location Inspection of typing rules
5. A=NU{(l:71)} 3, 4, Inversion of Rule location
6. M U{(t,v)}: N U{l:7} 1, 5, C-Inversion Lemma
7. 6 is only derivable by Rule TMem Inspection of M:A rules
8. Aetruv:T 6, 7, Inversion of Rule TMem

Result is from 1, 8
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O 00 N N U W N = Q
[¢]

Case

o 0NN W

Case

R i

e e el el
N LN e o

(C,e1) — (C.e))

(C.e1:=e2) — (C',e] == e2)

A+ Cok
Aere:=e:T
(Coer) — (C'.¢))
A,oFe1:711 Ref
Aeotrey:1

t = Unit

(assignE1)

AN (A" +C' ok AN, ekel Ty Ref AACA)

A,, e ey Ty
N ore =e:T
Result is from 7, 9

(Ce2) — (C',ep)

(C, 51 = 82) - (C/, €l = eé)
A+ Cok
Aerl1:=e:T
(C.e2) — (Cls eé)
Ao+ {l:1 Ref
ANeotrey:m
r = Unit

(assignE2)

AN (A FC' ok AN, ere; i1 A ACA)

N ,o+{1:11 Ref
N, oF ::eéz‘r
Result is from 7, 9

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
1,3,4,1H

5,7, A-weakening Lemma
6-8, Rule assignment

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
1,3,5 IH

4, 7, A-weakening Lemma
6-8, Rule assignment

(assignValue)

((M" U {(¢£,v)},R,inOb, rt,out, Tout), £ :=v") — (M’ U{(¢,v")}, R, inOb, rt,out, toy), unit)

A+ (M U{(£,v)},R,inOb,rt,out, 7oy:) ok
Aerl:=v":1

M U{(t,v)}: A

A+ Rok

A, e + inOb : Bool

A, o Frt:Resyjst

A, e+ out : 1oy Event Option

Ao+ €7 Ref
Aeorv i1’
T = Unit

3 is only derivable by Rule TMem
A=ANU{t:7")}
Vie{l,...,n}.A,etrv;:71j
Vie{l,...,n—1}.A,e+v;: 7

M U{(,v)}: A

A+ (M U{L,v")},R,inOb,rt,out, 79y;) ok
A, e Funit:t

Result is from 16, 17

assumption

assumption

1, C-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
Inspection of M : A rules

3, 11, Inversion of Rule TMem
3, 11, Inversion of Rule TMem
13, Def of V, Def of <

9, 14, Rule TMem

4-7, 15, Rule C-ok

10, Rule unitVal

63



O 00 N N U W N = QQ
[¢]

Case

O X NN U kWD

Case

Al A

O 00 N N Ul R W = ;\Q
[¢]

(Coer) — (C'.¢])
(Ce1::e2) — (Cref = e2)
A+ Cok
Aeoteg:ey: T

(C.e1) — (C',e])

(listPrependE1)

T = Tlpis

ANeoete:1g

A,.I-ezi’[lList

AN (A + C ok /\A’,H—e{ g A ACAN)
AN orey:ty,,

AN ore et

Result is from 7, 9

(C,e2) — (C'rey)
(C,vy e2) — (C' vy ep)
A+ Cok
Aetruver:T
(C,e2) — (C',e))
T = Tpise
Aeotruvr:T
Aotrer:ty,,
AN (N FC ok AN ere) Ty, A ACN)
A,, eV :IT]
N, ervre) T
Result is from 7, 8

(listPrependE2)

(Ce1) — (C'ye))
(Coe1 @ez) — (C're] @ e2)
A+ Cok
Aeotre@er:T
(Coer) — (Ce))
Aeter:t!

List
Aot ey: T ist

(listAppendE1)

r= Tiist
A (N FC ok AN erel T, AACN)
’ !
A,etey: T it
A',ol—e{@ez i T
Result is from 7, 9
(C,e2) — (C',e))

(Cv1 @e) — (Cv1 @ey)
A+ Cok
Aeoruvi@e: T
(Ce2) — (C'yep)
Aok :Tiist
Aetrey:t],
7

(listAppendE2)

T:TList

AN (A FC' ok AN e e ]
’ )

Aoroviit g

N oetv @ey:1

Result is from 7, 9

A ACAN)

ist =

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
1,3,5, IH

5, 7, Lemma A-Weakening
4,7, 8, Rule listCons

assumption

assumption

assumption

1, Inversion Lemma

1, Inversion Lemma

1, Inversion Lemma

1,3, 6,IH

5,7, A-weakening Lemma
4,7, 8, Rule listCons

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
1,3,4,IH

5, 7, A-weakening Lemma
6-8, Rule listAppend

assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
1,3,5,IH

4,7, A-weakening Lemma
6-8, Rule listAppend
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Case (appendNil)
(€. :7;,) @us) — (Cov3)

1. ArCok assumption
2. Aer([lirf,,,@us3):7 assumption
3. =1, 2, Inversion Lemma
4., ANetruy:T 2, 3, Inversion Lemma
Result is from 1, 4
Case (C,(v1 2v2) @us) — (C,vg = (V2 @ v3)) oppendons
1. ArCok assumption
2. ANetr(vi:v)@us):T assumption
3. Aet (v n0vg): Tiist 2, Inversion Lemma
4, Aot uvz: Tiist 2, Inversion Lemma
5 1= Tiist 2, Inversion Lemma
6. ANetruv:t 3, Inversion Lemma
7. Aeruy: TL’l.st 3, Inversion Lemma
8. Aot (v;@u3): Tiist 4,7, Rule listAppend
9. Aetrvy:(vy@us):T 5, 6, 8, Rule listCons
Result is from 1, 9
(C.e1) — (C',¢))
Case (listHeadE)
(C, head(e1)) — (C’, head(e;))
1. ArCok assumption
2. Aot head(er): 7 assumption
3. (C,er) — (C'se)) assumption
4. A eter: Tll,ist 2, Inversion Lemma
5. =1’ Option 2, Inversion Lemma
6. AN (A +C ok AN ere|:t), A ACA) 13,4, TH
7. AN, ,et head(e{) iT 5, 6, Rule head
Result is from 6, 7
listHeadCons,
Case  ~C head(or = - =[] t/..)) — (C.ingome(v1) : 7’ Option) ( )
1. ArCok assumption
2. Aot head(vy = -+ ]/, ) 7" Option assumption
3. Aer(urn e nflirf )T, 2, Inversion Lemma
4. 7 =1' Option 2, Inversion Lemma
5. Aeruvg:t’ 3, Inversion Lemma
6. A, et (insome(v1) : v/ Option) : T 4, 5, Def of types, Rule variant
Result is from 1, 6
Case (C,head([] : 7/;,,)) — (C,innone(unit) : r’ Option) R
1. ArCok assumption
2. Aerhead([]:7], )7 assumption
3. =1’ Option 2, Inversion Lemma
4. A, e+ unit : Unit Rule unitVal
5. A, e+ (inpone(unit) : T’ Option) : t 3, 4, Def of types, Rule variant

Result is from 1, 5
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Case

NGk W

Case

Gk W

Case

Ll o e

Case

NN

Case

L

Case

L

(Coer) — (C.e])

- ; - ; (listTailE)
(C.tail(er)) — (C',tail(e]))
A+ Cok
A, e+ tail(eg) : 7
(Ce1) — (C'ye))
L
Ao F,el “TList
T= TList
AN (A FC' ok AN erel T A ACN)
ist
N, ek tail(e]) : T
Result is from 6, 7
(listTailCons)
(C, tail(vy = v2)) — (C,v9)
A+ Cok
Ao+ tail(vy i vg) i T
Ao+ (v1 mvg): Tl/,ist
o
T = TList
Aeotruvy:T
Result is from 1, 5
(listTailNil)

(C.tail([] : 7/;,)) —
A+ Cok
Aertail([] ], )t

(0 gi,)

7
T=TList ,
Aer(fitl,) it
Result is from 1, 4

(C,e1) — (C'ye))

(C,empty(e1)) — (C', empty(er))
A+ Cok
A, o Fempty(er) : T
(C.er) — (C".¢])
A,oker: TI:
7 = Bool
AN (A C ok AN e ke
N, o+ empty(er) : T
Result is from 6, 7

(listEmptyE)

ist

Lt ’
1Tl NACA)

(listEmptyNil)
(C,empty([] : 7/,,,)) — (C, true)

A+ Cok

Aeorempty([]:7],,): 7

7 = Bool

Aot true:

Result is from 1, 4

(listEmptyCons)

(C,empty(vy :: v2)) — (C, false)
A+ Cok
A, o+ empty(vr =v2) i T
7 = Bool
Ao+ false: t
Result is from 1, 4

assumption
assumption
assumption

2, Inversion Lemma
2, Inversion Lemma
1,3,4,IH

5, 6, Rule tail

assumption
assumption

2, Inversion Lemma

2, Inversion Lemma

3, 4, Inversion Lemma

assumption
assumption

2, Inversion Lemma

2, 3, Inversion Lemma

assumption
assumption
assumption

2, Inversion Lemma
2, Inversion Lemma
1,3,4,IH

5, 6, Rule empty

assumption
assumption

2, Inversion Lemma
3, Rule boolVal

assumption
assumption

2, Inversion Lemma
3, Rule boolVal
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Case

O NS WN =

Case

NS WDN

Case

G LN

Case

R A i

Case

® NS W

Vil <j<i)e=v; (Coe) — (Che)) i€f{l,...,n}

7 7 (recordE)

C(h=et....In=en)) — (C',(Lh=e1,....li=e},....In=en
A+ Cok assumption
Aer(ly=e1,....0n=¢€p):7T assumption
(C,ei) — (C'se)) assumption
Aeoere :r1...Notre,: 1y 2, Inversion Lemma
T=(r1 X - X1p) 2, Inversion Lemma
N (N FC ok AN e kel T AACA) 1,3, 4, 1H
N,oerter:r1...N,ere,: 1y 4, 6, A-weakening Lemma
N,or(li=ep,....li=¢f,....In=en): 1 5-7, Rule variant

Result is from 6, 8

(C.er) — (C.e))
(Coer.li) — (CVref.li)

(projectionE)

A+ Cok assumption
ANetrerli:t assumption
(C.e1) — (C',e)) assumption

Aorer: (0111 XXl :Tp) 2, InversionLemma

T =7 2, Inversion Lemma
ief{l,...,n} 2, Inversion Lemma
AN (AN FC ok A N,erel (Lt X XLy ith) A ACN) 1,3,4,IH
N orelli:T 5-7, Rule projection
Result is from 7, 8
ief{l,...,n} )
(projectionV)
(C,(€1 =Z)1,...,fn =Un).€i) — (C,‘U,’)
A+ Cok assumption
Ao+ (1 =v1,....n=vp)li:T assumption
Ao+ (l1=v1,....,8n=0vp): ({1:71,...,{n : Tn) 2, Inversion Lemma
T =7 2, Inversion Lemma
ANeotrvi:T 3, 4, Inversion Lemma
Result is from 1, 5
(C,ei) — (C',e))
(variantE)

(C,ing, ei :T") — (C'ing, €] : 77)

A+ Cok assumption
Aot (ing ei:7'):t assumption
C,e;) — (C',e)) assumption
( i p

ief{l,...,n} 2, Inversion Lemma
A eote;:Ti 2, Inversion Lemma
t=01:11+ - +€n Ty 2, Inversion Lemma
=1 2, Inversion Lemma

AN (AN FC ok A N,ereliti AACA)
N, ok (ing ef:7'):
Result is from 8, 9

1,3,4,IH
5-8, Rule variant

(C.ec) = (C.e)

(C,(case ecof t1x1 = e1| -+ | €nxn = €n)) — (C,(casee,of L1 x1 = e1| -+ | €nxn = €n)) (case)
A+ Cok assumption
Aot (caseecof t1x1 = e1| - | lnxp>en):tT assumption
(C,ec) — (C',el) assumption
Aeotre : ({1:11+...+Ln:1p) 2, Inversion Lemma
Af{xy:nifrer: 1, ., A{x1 1} ren: T 2, Inversion Lemma
AN (A FC ok AN eorel:(br:imi+...+lnTy) N ACA) 1,3,4,IH
N ixi:nlvrer: 7,.. ,AN,x1:t1} v by i 1 5, 6, A-weakening Lemma
(A,ercasee,of tixi > e | - |tnxpn=en):1T 6, 7, Rule Case

Result is from 6, 8
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Case

NI

Case

NSO

Case

AN o

Case

AR

Case

AR o

ief{l,...,n}

(C.(case (ingyor : ') of (rx1 > e1 | - | lnxn = en) — (C.[oifxder)
A+ Cok assumption
A, e+ (case (ing,vi: ') of tix1 = e1| - [ bpxp = ep) T assumption
Ao (inpvi:t):(by:mi+...+0n:1y) 2, Inversion Lemma
Adfxj:tilre T 2, Inversion Lemma
Ao+t 3, Inversion Lemma
Ao+ [vi/xilei : T 4, 5, Lemma substitution
Result is from 1, 6

(C.e1) — (C.¢))
(makeTypedValE)

(C, makeTypedVal(r1,e1)) — (C’, makeTypedVal(ry,ey))
A+ Cok assumption
A, o+ makeTypedVal(ty,e1) : T assumption
(C,e1) — (C'se]) assumption
Aeotre:1 2, Inversion Lemma
7 = TypedVal 2, Inversion Lemma
AN (A - C’ ok /\A',ol—e{:rl/\AgA’) 1,3, 4, IH
N, o - makeTypedVal(ry,ef) : T 5, 6, Rule makeTypedVal
Result is from 6, 7

(Ce1) — (e
(tryCastE)

(C, tryCast(ry, e1)) — (C',tryCast(ry, e7))
A+ Cok assumption
A, o+ tryCast(ry,e1) : T assumption
(C,e1) — (C'y¢)) assumption
A, o Fer: TypedVal 2, Inversion Lemma
7 = 11 Option 2, Inversion Lemma
AA (A" C' ok AN e+ e{ : TypedVal A A C A) 1,3,4,IH
A, e+ tryCast(ry,e) : T 5, 6, Rule tryCast
Result is from 6, 7

(tryCastVOk)

(C, tryCast(t’, makeTypedVal(r’,v))) — (C,insome(v) : ©/ Option)
A+ Cok assumption
A, o + tryCast(r’, makeTypedVal(r’,v)) : T assumption
A, e + makeTypedVal(z’,v) : TypedVal 2, Inversion Lemma
T = 1t/ Option 2, Inversion Lemma
Aeoruv:T’ 3, Inversion Lemma
A, o+ (ingome(v) : T/ Option) : T 4, 5, Def of types, Rule variant
Result is from 1, 6

T # T2
(tryCastVBad)

(C, tryCast(t1, makeTypedVal(rz,v))) — (C,inpone(unit) : 11 Option)
A+ Cok assumption
A, o + tryCast(r1, makeTypedVal(rz,v)) : T assumption
7 = 11 Option 2, Inversion Lemma
A, e + unit : Unit Rule unitVal
A, o+ (inpone(unit) : t1 Option) : T 3, 4, Def of types, Rule variant

Result is from 1, 5
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Case

AR

Case

Case

AR

Case

Ll

Case

N RN

(Coer) — (C'.e])

; ; (endLabelE)

(C. e }s(v)) — (C'{ € }s(v))
A+ Cok assumption
Aeotr{e st assumption
(C,e1) — (C',e)) assumption
Aeotre:T 2, Inversion Lemma
HA’:(A’I—Cok/\A’,oI—e{ :TAACA) 1,34, IH
N,or{ellgw):T 5, Rule endLabel
Result is from 5, 6

s # monitor (endLabelValue)
endg(y,) 01

(CA vt ks(0y) — (Cov)
A+ Cok assumption
A, 0+ {01 Jg,) 1 T assumption
Aeotruv:T 2, Inversion Lemma

Result is from 1, 3

« co»
s = monitor

(endLabelValueMonitor)
. ends(y,)v1
((M, R, inOb, rt,out, tout), { V1 }s(v,) ——

((M,R, false, rt, out, Toyt),v1)
A+ (M,R,inOb,rt,out, 7o) ok  assumption

Aot {v) g, T assumption
Aeruv:T 2, Inversion Lemma
M: A 1, C-Inversion Lemma
A+ Rok 1, C-Inversion Lemma
A,e +rt: Respist 1, C-Inversion Lemma
A, e Fout : 7oy Event Option 1, C-Inversion Lemma
A, e+ false : Bool Rule boolVal

A+ (M,R, false,rt,out, 7oyt) ok  4-8, Rule C-ok
Result is from 3, 9

(getRTVal)
((...,rt,out,7our),getRT()) — ((...,rt,out, Tout),rt)
Ar (..., rt,out, 7oys) ok  assumption
A, o+ getRT() : T assumption
T = Resp st 2, Inversion Lemma
ANetrrt:T 1, 3, C-Inversion Lemma

Result is from 1, 4
(C.er) — (C,e))

(C, makeCFG(e1)) — (C’, makeCFG(e]))
A+ Cok
A, o + makeCFG(e1) : T
(C,e1) — (C'se])
r =CFG
A, o e1 : Obligation
AN (A FC' ok AN, et e : Obligation A A C A)
A, e+ makeCFG(ey) : 7
Result is from 6, 7

(makeCFGE)
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assumption
assumption
assumption

2, Inversion Lemma
2, Inversion Lemma
1,3,5 IH

4, 6, Rule makeCFG
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g = makeCFGgy(v)

beginmakeCFG(v)
_

(C, makeCFG(v))
A+ Cok
A, o + makeCFG(v)
g = makeCFGg(v)
A,o+g:CFG
7 =CFG
Aot {g}makeCFG(v) - T
Result is from 1, 6

(G, {g}makeCFG(

T

(C,e1) — (C,¢))
(C, setOutput(e1)) —> (C’,setOutput(ey))

A+ Cok
A, o + setOutput(er) : T
(C,e1) — (C'r¢))
A, e+ ey : Event
T = Bool
AN (A" C' ok AN, e kel Event A ACA)
A, o+ setOutput(e]) : T
Result is from 6, 7

out = ingome(€) : T Event Option

(setOutputE)

(makeCFGValue)

v))

(setOutputSet)

((...,out, out), setOutput(v)) — ((...,out, Tour), false)

AF (...,out,7oyt) ok  assumption

A, o+ setOutput(v) : T assumption

T = Bool 2, Inversion Lemma
A o false: 1 3, Rule boolVal

Result is from 1, 4

assumption
assumption
assumption

3, Assumption 2

2, Inversion Lemma
4, 5, Rule endLabel

assumption
assumption
assumption

2, Inversion Lemma
2, Inversion Lemma
1,3,4,IH

5, 6, Rule setOutput

(setOutputNotSetAct)

((M,R,inOb, rt,inpone (unit) : oy Event Option, toy:), setOutput(inget (v) : Event)) —
((M, R, inOb, rt, insome (ingct (v) : Tour Event) : 7oy Event Option, Toyt), true)
A+ (M, R, inOb, rt,inpone(unit) : 7oy Event Option, 7oy:) ok

A, o + setOutput(ingcr (v) : Event) : T

A, e+ (ingct(v) : Event) : Event

7 = Bool

Ao+ v: Act

M: A

A+ Rok

A, e+ inOb : Bool

A, o+ rt:Resrjst

A, o+ (inget (V) : Tour Event) : 1oy Event

A, o F (ingome(inger (V) : Tour Event) : 1oy Event Optio
Let out = ingome(ingct (v) : Tour Event) : 1oyt Event Op
A+ (M,R,inOb,rt,out, toy;) ok

Ao+ true:t

Result is from 13, 14

n) : Tour Event Option
tion
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assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

3, Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

5, Rule variant, Def of types
10, Rule variant, Def of types
assumption

6-9, 11, 12, Rule C-ok

4, Rule boolVal
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(setOutputNotSetResGood)

((M,R,inOb, rt,inpone (unit) : 1oy Event Option, toy;), setOutput (inyes(res(vi, makeTypedVal(royy,v2))) : Event))
—> ((M,R,inOb, rt,insome(inres(res(vi, v2)) : Tour Event) : oy Event Option, toy;), true)

A+ (M,R,inOb, rt,inpone (unit) : 7our Event Option, Toyr) ok
A, o + setOutput(inyes(res(vi, makeTypedVal(toyr,v2))) : Event) : T
A, o + (inges(res(vi, makeTypedVal(toys,v2))) : Event) : Event
7 = Bool
A, o + res(vi, makeTypedVal(toyr,v2)) : Res
A, o+ vy Act
A, o + makeTypedVal(toys,v2) : TypedVal
Ao F vy Tour
M:A
A+ Rok
A, e+ inOb : Bool
A,e -1t : Resyis;
A, e+ res(vy,v7) : Toyr Res
A, o+ (inpes(res(vy, v2)) : Tour Event) : 1oy Event
A, o+ (ingome (inres(res(v1, v2)) : Tour Event) : 1oy Event Option) : 1oy Event Option
Let out = ingome (inres(res(vi,v2)) : Tour Event) : oy Event Option
A+ (M,R,inOb,rt,out, 7oy;) ok
Aot+true:t
Result is from 17, 18
T/ # Tout out = inpone (unit) : 1oy Event Option

((...,out, tour), setOutput(inyes (res(vy, makeTypedVal(t’,v3))) : Event)) —>
((...,out, tour), false)
Av(...,out, ous) ok assumption
A, o + setOutput(inyes(res(vy, makeTypedVal(t’,v;))) : Event) : T assumption

T = Bool 2, Inversion Lemma

Ao false: t 3, Rule boolVal
Result is from 1, 4
out = inpone(unit) : 7oy Event Option

(outputNotSetTrue)
((...,out, Tout), outputNotSet()) — ((...,out, Tout), true)
AF (..., out, toys) ok assumption
A, o+ outputNotSet() : T assumption
7 = Bool 2, Inversion Lemma
Aot true:t 3, Rule boolVal
Result is from 1, 4
out = ingome(€1) : Tour Event Option
(outputNotSetFalse)
((...,out, oy, outputNotSet()) — ((...,out, Toyr), false)
AF (..., out, tour) ok assumption
A, e+ outputNotSet() : T assumption
7 = Bool 2, Inversion Lemma
Ao+ false:t 3, Rule boolVal

Result is from 1, 4
out = ingome (iNact (V) : Tour Event) : 7oy Event Option

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

3, Inversion Lemma

5, Inversion Lemma

5, Inversion Lemma

7, Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

1, C-Inversion Lemma

6, 8, Rule variant, Def of types
13, Rule variant, Def of types
14, Rule variant, Def of types
assumption

9-12, 15, 16, Rule C-ok

4, Rule boolVal

(setOutputNotSetResBad)

(getOutputSomeAct)
((...,out, tour), getOutput()) — ((...,out, Tour), insome(ingcr(v) : Event) : Event Option)
AF (..., out, tour) ok assumption
A, o F getOutput() : T assumption
out = ingome (iNger (V) : Tour Event) : 1oy Event Option assumption
7 = Event Option 2, Inversion Lemma
A, o F (insome (inger (V) : Tour Event) : toyr Event Option) : 7oy Event Option 1, 3, C-Inversion Lemma
A, o+ (ingct (V) : Tour Event) : 1oy Event 5, Inversion Lemma
Ao+ v Act 6, Inversion Lemma
A, e+ (ingct(v) : Event) : Event 7, Rule variant, Def of types
A, o (ingome(ingcr (v) : Event) : Event Option) : T 4, 8, Rule variant, Def of types

Result is from 1, 9
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out = ingome (inres(res(vi, v2)) : Tour Event) : 1oy Event Option

((...,out, tour), getOutput()) —

(getOutputSomeRes)

((-..,out, Tour), insome (inres (res(v1, makeTypedVal(toys, v2))) : Event) : Event Option)

AF (...,out, 7out) ok
A, o+ getOutput() : T
out = ingome (inres(res(vi, v2)) : Tour Event) : 1oy Event Option
r = Event Option
A, o+ (insome(inres(res(vi, v2)) : Tour Event) : toyr Event Option) : toyy Event Option
A, o+ (inyes(res(vy,v2))) : Tour Event
A, e+ res(vy,v2) : Toyr Res
A, o+ vq: Act
Ao+ vy Tour
A, o + makeTypedVal(tout,v2) : TypedVal
A, o + res(v1, makeTypedVal(tous, v2)) : Res
A, o + (inpes(res(v1, makeTypedVal(toys, v2))) : Event) : Event
A, o+ (ingome (inres(res(vi, makeTypedVal(tout,v2))) : Event) : Event Option) : t
Result is from 1, 13
out = inpone (unit) : 7our Event Option

((-..,out, Tour), getOutput()) — ((...,out, Tout), iNnone (unit) : Event Option)
Av(...,out, ous) ok assumption
A, o+ getOutput() : T assumption

7 = Event Option
A, o + unit : Unit
A, o + (inpone(unit) : Event Option) : T
Result is from 1, 5

2, Inversion Lemma
Rule unitVal
3, 4, Rule variant, Def of types

(Coer) — (C'rep)

(C, monitor(zy, e1)) — (C’, monitor(zy, e]))

(monitorE)

A+ Cok assumption
A, e+ monitor(ry,e1) : T assumption
(Coer) — (CVrep) assumption

Aotrer:

(evt : 71 Event X pols : Polp sy X 0s : OS X vc : VC)

T = 11 Event

A (A F C ok A

A, e e : (evt : 7 Event X pols : Polpjs; X 0s : OS X v : VC)
ANACA)

A’, e - monitor(ry,e]) : T

Result is from 6, 7

2, Inversion Lemma
2, Inversion Lemma

1,3,4,IH
5, 6, Rule monitor

assumption

assumption

assumption

2, Inversion Lemma

1, 3, C-Inversion Lemma

5, Inversion Lemma

6, Inversion Lemma

7, Inversion Lemma

7, Inversion Lemma

9, Rule makeTypedVal

8, 10, Rule variant, Def of types
11, Rule variant, Def of types

4, 12, Rule variant, Def of types

(getOutputNone)

beginmonitor(v)
-

((M, R, inOb, rt, out, Toy: ), monitor(ry, v))
A+ (M,R,inOb,rt,out, 7oy;) ok
A, ® + monitor(r1,v) : T
Aorov:
(evt : 71 Event X pols : Polpjs; X 0s : OS X vc : VC)
T = 11 Event
M:A
A+ Rok
A,e - rt: Resyis;
A, e Fout : 7oy Event Option
A, e + true : Bool
A+ (M, R, true,rt,out, 7oy;) ok
A, ® + emonitor(11,v) : 71 Event
Aok {emonl’l‘or(flyv)}monitor(v) : 71 Event
Result is from 10, 12

assumption
assumption

2, Inversion Lemma

2, Inversion Lemma

1, C-Inversion Lemma
1, C-Inversion Lemma
1, C-Inversion Lemma
1, C-Inversion Lemma
Rule boolVal

5-9, Rule C-ok

3, Monitor Type Lemma
11, Rule endLabel
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((M, R, true,rt,out, Tout)’ {emonitor(fl’ U)}monitor(v))
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(C.e1) — (C'.e))
(C,invoke(er, e2)) — (C',invok(e],e2))
A+ Cok
A, e+ invoke(ey,ez) : T
(Coer) — (C'oe])
A, e+ e : String
A, o ey :TypedVal
7 = TypedVal Option
AN (A" C' ok AN, et el :String A ACA)
N, e+ ey : TypedVal
A, e+ invoke(e], e2) : T
Result is from 7, 9

(invokeE1)

(C.ez) — (Ce3)
(C,invoke(s1, e2)) —> (C’,invoke(s1, e;))
A+ Cok
A, o+ invoke(sy, e3) : T
(C.ez) — (C',e})
A, o ey :TypedVal
7 = TypedVal Option
AN (A FC' ok AN, et e TypedVal A A CA)
A, e+ sy : String
A, e+ invoke(sy,e;) : T
Result is from 6, 8

(invokeE2)

V(s',f)eFs1#s

assumption
assumption
assumption

2, Inversion Lemma
2, Inversion Lemma
2, Inversion Lemma

1,3,4,IH

5,7, A-weakening Lemma

6-8, Rule Inovke

assumption
assumption
assumption

2, Inversion Lemma
2, Inversion Lemma

1,3,4,IH
Rule Stringval
5-7, Rule invoke

(M, (F,...),...), invoke(s1,v2)) — ((M,(F,...),...),inpone(unit) : TypedVal Option)
Avr (M,(F,...),...)ok assumption
A, e+ invoke(sy,v2) : T assumption

7 = TypedVal Option

A, o + unit : Unit

A, o F (inpone(unit) : TypedVal Option) : T
Result is from 1, 5

2, Inversion Lemma
Rule unitVal
3, 4, Def of types, Rule variant

(s1, funxi(x2:11) : 2o =€1) €F vy = makeTypedVal(rl,vé)

(M, (F,...),...),invoke(s1,v2)) —

(M, (F,...),...), insome(makeTypedVal(rz, call(fun x1(xz : 71) : 72 = e1,v}))) : TypedVal Option)

Ar (M, (F,...),...)ok
A, o + invoke(s1,v2) : T

vy = makeTypedVal(zy,v})
A, o vy : TypedVal

7 = TypedVal Option

Aerv) T
Ar(F,...)ok
A+ F ok

(s1, funxi(xz:71) : 2 =€1) € F

8 is only derivable by Rule F-Ok

Aot (funxi(xz:m):ma=e):7{ > 1,
11 is only derivable by Rule fun

/=17 and 7, = 1

Ao call(funxi(xz:11): 72 =e1,v;) : T2
Let x = call(fun x1(x2 : 71) : 72 = e1,v})

A, o + makeTypedVal(rz, x) : TypedVal

A, o+ (ingome (makeTypedVal(zy, x)) : TypedVal Option) : T

Result is from 1, 17
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assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

3, 4, Inversion Lemma

1, C-Inversion Lemma

7, R-Inversion Lemma
assumption

Inspection of A  F ok rules
8, 10, Inversion of Rule F-ok
Inspection of typing rules
11, 12, Inversion of Rule fun
6, 11, 13, Rule call
assumption

14, 15, Rule makeTypedVal
5, 16, Rule variant, Def of types

(invokeValNotExists)

(invokeValueExistsOk)
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(s1, funxi(xz i 71) : 72 = e1) € F vz = makeTypedVal(r3,v) 71 # 73

(invokeValueExistsBad)
(M, (F,...),...), invoke(s1,v2)) — ((M,(F,...),...),inpone(unit) : TypedVal Option)
A+ (M,(F,...),...) ok assumption
A, e + invoke(s1,v2) : T assumption
7 = TypedVal Option 2, Inversion Lemma
A, o + unit : Unit Rule unitVal
A, o+ (inpone(unit) : TypedVal Option) : T 3, 4, Def of types, Rule variant

Result is from 1, 5

(Coe) — (C.e])

(callE1)
(C,call(er, e2)) — (C',call(e]ez))
A+ Cok assumption
A, e+ call(er,ez) : T assumption
(C,e1) — (C',e]) assumption
ANetel:11 o1 2, Inversion Lemma
ANeotey:1 2, Inversion Lemma
T="1 2, Inversion Lemma
AN (A FC' ok AN, erel 11 > T2 A ACAN) 1,3,4,IH
AN ,orey:n 5, 7, A-weakening Lemma
A, e+ call(e],e) : 7 6-8 Rule call
Result is from 7, 9
(Ciez) — (Ce3) i
(C,call(f,e2)) —> (C',call(f,e}))
A+ Cok assumption
Ao Fcall(fiex) : T assumption
(C.e2) — (C',ep) assumption
Aeotrf:r > 2, Inversion Lemma
A eotrer:1 2, Inversion Lemma
T =1y 2, Inversion Lemma
A (A + C’ ok /\A',ol—eé:ﬁ/\AgA’) 1,3,5,IH
N,orfir > 4,7, A-weakening Lemma
A, ercall(f,e)): 1 6-8, Rule Call

Result is from 7, 9
f ¢ range(F) Vpol € pols (f # pol.onTrigger A f # pol.onObligation) f = (funxi(xz:11): 72 =e1)

(callNonMonitoredFunction)

beging(,)

(M. (F.pols,....),...),call(f,v)) ——— ((M,(F.pols,...),...). \[v/xz. f/x1]e1}f (o))
A+ (M,(F,...),...)ok assumption
Ao Fcall(f,v): 7 assumption
f=unxi(x2:71): 12 =e€1) assumption
Aotk f: 1'1’ — 1'2’ 2, Inversion Lemma
Aorv: 1'1’ 2, Inversion Lemma
T = TZ' 2, Inversion Lemma
Afx1:7] = 1), x2: 7/} Fer:1) 3,4, Inversion Lemma
A, o F [v/x, f/x1]er : T 3-7, Substitution Lemma
Aot {[v/xz,f/xl]el}f(v) iT 8, Rule endLabel

Result is from 1, 9
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name = s,onTrigger = fi,onObligation = f,,vote = f3) € pols fi = (fun x1(x2 : Event) : Unit = eq)

( ' beginﬁ = (callOnTrigger)
((M, (F, pols, 0s,vc), inOb, rt, out, Tout ), call(f1,v)) ———

((M, (F, pols, 0s,vc), inOb, [] : Respise, out, Tour), {[f1/x1, v/x2]e1 }fl(v))

A+ (M, (F, pols, os, vc), inOb, rt, out, 7oyt ) ok assumption

Ao call(fi,v):t assumption

fi = (fun x1(xz : Event) : Unit = e7) assumption
Aeorfiiti = 2, Inversion Lemma
Aetruv:r 2, Inversion Lemma
T=1T 2, Inversion Lemma
Af{x1:11 D> 12, x2:T1} Fep: T 3, 4, Inversion Lemma
Ao+ [fi/x1,0/x2]e1 1 T 3-7, Substitution Lemma
M:A 1, C-Inversion Lemma
A+ (F, pols, 0s,vc) ok 1, C-Inversion Lemma
A, e + inOb : Bool 1, C-Inversion Lemma
A, e +out : 79y Event Option 1, C-Inversion Lemma
A,o+ ([]:Resgisy) : Respise Rule listEmptyVal
A+ (M, (F,pols,0s,vc), inOb, [] : Respist, out, Tour) ok 9-13, Rule C-ok

A, o F{[f1/x1,v/x2]e1 }ﬁ(v) i T 8, Rule endLabel

Result is from 14, 15

(name = s,onTrigger = f1,0nObligation = fa,vote = f3) € pols fo = (fun x1(x2 : Respjsz) : Unit = eq)

. beging, (o)
((M, (F, pols, 0s,vc), inOb, rt, out, Toyt ), call(f2,v)) ———

((M, (F, pols, 0s,vc), inOb, [] : Respist, out, Tour), {[f2/x1,v/x2]e1 }fz(v))

A+ (M, (F, pols, os, vc), inOb, rt, out, 7oy ) ok assumption

Ao+ call(fo,v) : T assumption

f2 = (fun x1(x2 : Event) : Unit = e1) assumption
Aeorfoimy > 2, Inversion Lemma
Aeoerv:tr 2, Inversion Lemma
T=T 2, Inversion Lemma
A{x1:11 > m,x2:T1} e 3, 4, Inversion Lemma
Ao+ [fa/x1,0/x2]e1 : T 3-7, Substitution Lemma
M:A 1, C-Inversion Lemma
A+ (F,pols, os,vc) ok 1, C-Inversion Lemma
A, e +inOb : Bool 1, C-Inversion Lemma
A, e Fout : 7oy Event Option 1, C-Inversion Lemma
A,o+ ([]: Respist) : Respist Rule listEmptyVal

A+ (M, (F,pols, 0s,vc), inOb, [] : Respist, out, Tout) ok 9-13, Rule C-ok

Aot {[fz/xl,v/xg]el}fz(v) iT 8, Rule endLabel

Result is from 14, 15

(s, funx1(xp:71) 12 =e1) €F f=(funx1(x2:71):72 =e1)

beginxl(v)’ beginappendRes()

((M, (F, pols, 0s,vc), true, rt, out, 7oy ), call(f,v))
((M, (F, pols, 0s,vc), true, rt @

res(act(s, makeTypedV al(t1,v)), makeTypedVal(za, [f/x1,v/x2]e1)) = [] : Resrist, out, Tour), {[f/xl,U/xz]el}xl(v))
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(callOnObligation)

(callFromObligation)
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A+ (M, (F, pols, 0s,vc), true, rt, out, Toyr) ok
Ao rcall(f,v): 1

f=unxi(xz:11): 12 =e1)

Aerfrir >t

ANetruv:T
T = tau,

4 is only derivable by Rule fun

==

TI=T AT =1,

A{x1:11 > m,x2:T1} e
Ao [f/x1,v/x2]e1 : 12

A, o + makeTypedVal(zz, [f/x1,v/x2]e1) : TypedVal

A, o + makeTypedVal(ry,v) : TypedVal
A, e+ s: String
A, o+ act(s, makeTypedVal(r1,v)) : Act

A, o + res(act(s, makeTypedVal(r1,v)), makeTypedVal(ro, [ f/x1,v/x2]e1)) : Res
Let r = res(act(s, makeTypedVal(ry,v)), makeTypedVal(zra, [f/x1,v/x2]e1))

A, o+ ([]:Respist) : Respist

A, o+ (r::[]:Respist): Respist

A,e rt:Respist

Aot rt @ (r:[]:Respist): Respist
M:A

A+ (F,pols, 0s,vc) ok

A, e + true : Bool

A, eout : 7oyt Event Option

A+ (M, (F,pols,0s,vc), true,rt @ (r = [] : Respist), out, Toyr) ok

Ao {[f/x1,v/x2]e1)y (v) : T
Result is from 25, 26
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assumption

assumption

assumption

2, Inversion Lemma

2, Inversion Lemma

2, Inversion Lemma
Inspection of typing rules

3, 4, 7, Inversion of Rule fun
3, 4, 6, Inversion Lemma

4, 5, 9, Substitution Lemma
10, Rule makeTypedVal

5, Rule makeTypedVal

Rule stringVal

12, 13, Rule product, Def of types
11, 14, Rule product, Def of types
assumption

Rule listEmptyVal

15-17, Rule listCons

1, C-Inversion Lemma

18, 19, Rule listAppend

1, C-Inversion Lemma

1, C-Inversion Lemma

Rule boolVal

1, C-Inversion Lemma
20-24, Rule C-ok

6, 8, 10, Rule endLabel
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VRN

_
= O

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.
30.
31.
32.

(s, /) eF f=(funxi(xz:711):72 =e1)

(callFromApplication)

eging(y)

b
((M, (F, pols,0s,vc), false, rt,out, 7,14), call(f,v)
((M, (F, pols, 0s, vc), false, rt, inpone (unit) : t2 Event Option, 72), eprocEvt)

Where €procEvt =
{let aux = (fun aux(event : ry Event) : 72 Res =
case event of
act a =
case invoke(a.name, a.arg) of
somer; =
case tryCast(ry,r1) of
some v] =
let action_output = in,es res(a,v1) : 72 Event in

let mon_output = monitor(zy, (evt = action_output, pols = pols, 0s = 0s,vc = vc)) in

call(aux, mon_output)
end
end
| none uy = call(aux, event)
| none uy = call(aux, event)
| resry = rp)
in
call(aux, ingct act(s,v) : 72 Event).result
end}g(y)

A+ (M, (F,pols,0s,vc), false, rt,out, 7,14) ok
Ao rcall(f,v):T
f=funxi(xz:71) 12 = e1)
M:A
A+ (F,pols, os,vc) ok
A,e rt:Respist
A, e+ false : Bool
A, e + unit : Unit
A, + (inpone(unit) : o Event Option) : 7o Event Option
A+ (M, (F,pols,0s,vc), false, rt, inpone (unit) : 7o Event Option, 2) ok
Let Iy = {aux : 7o Event — 19 Res, event : 7o Event, a : Act,ry : 75 Res,
r1 : TypedVal,uy : Unit, vy : 2,u; : Unit, action_output : 7o Event, mon_output : 7o Event}
A, Ty + aux : 7o Event — 13 Res
A, Ty + mon_output : 2 Event
A, To + call(aux, mon_output) : o Res
Let I'1 = {aux : 7o Event — 1 Res, event : 7o Event,a : Act,ry : 7o Res,
r1 : TypedVal,uy : Unit,v1 : 2,u; : Unit, action_output : o Event}
A, e+ pols : Poly st
Ao+ o0s:0S
A eoruvc:VC
ATy + pols : Polp sy
ATy +os:0S
ATy Foc:VC
Let ¢ = ((evt = action_output, pols = pols, os = os,vc = vc)
ATy + c: (evt : T Event X pol : Polpjs; X 0s : OS X vc : VC)
A, T + monitor(ty,c) : 7y Event
A, Ty + let mon_output = monitor(zz, c) in call(aux, mon_output) end : 7o Res
Let Iy = {aux : 7o Event — 1 Res, event : 7o Event,a : Act,ry : 7o Res,
r1 : TypedVal,uy : Unit, vy : 72,u3 : Unit}
ATy Fa: Act
Ao :im
ATy +res(a,v1) : 73 Res
A, Ty + (inpes res(a,vy) : 7o Event) : 2 Event
Let e = (let mon_output = monitor(ty, c) in call(aux, mon_output) end)
A, Ty + let action_output = inyes res(a,v1) : 72 Event in e end : 72 Res

assumption
assumption
assumption

1, C-Inversion Lemma
1, C-Inversion Lemma
1, C-Inversion Lemma
Rule boolVal

Rule unitVal

8, Rule variant, Def of types
4-7, 9, Rule C-ok

assumption
11, Rule var
11, Rule var
12, 13, Rule call

assumption

5, R-Inversion Lemma

5, R-Inversion Lemma

5, R-Inversion Lemma

15, 16, Weakening Lemma
15, 17, Weakening Lemma
15, 18, Weakening Lemma
assumption

19-22, Rule variant

23, Rule monitor

14, 24, Rule let

assumption
26, Rule var
26, Rule var

27, 28, Rule variant, Def of types
29, Rule variant, Def of types

assumption
25, 30, 31, Rule let



33. A, + event : » Event 26, Rule var
34, A, Iy + aux : p Event — 12 Res 26, Rule var
35. A, Iz v call(aux, event) : 72 Res 33, 34, Rule call
36. LetI3 = {aux : 7y Event — 1o Res, event : 7y Event,a : Act,ry : 72 Res,
r1 : TypedVal,uy : Unit} assumption
37. ATzt r:TypedVal 35, Rule var
38. ATz k tryCast(zz,r1) : TypedVal Option 36, Rule tryCast
39. Letes = (let action_output = in,es res(a, vy : 2 Event in ez end) assumption
40. A, T3 F case tryCast(tz,r1) of some ri = e3 | none u; = call(aux, event) : o Res 32, 34, 37, 38, Rule case
41. Let ey = (case tryCast(rz,r1) of some r1 = es | none uy = call(aux, event)) assumption
42. A, I3+ aux : 7o Event — 13 Res 36, Rule var
43, A, I3 + event : 9 Event 36, Rule var
44, A, Tz + call(aux, event) : 72 Res 42, 43, Rule call
45. Let Iy = {aux : »p Event — 19 Res, event : 1o Event,a : Act,rs : T2 Res} assumption
46. A Tyra: Act 45, Rule var
47. ATy + a.name : String 46, Rule projection
48. ATy v+ a.arg : TypedVal 46, Rule projection
49. A, T4 + invoke(a.name, a.arg) : TypedVal Option 47, 48, Rule invoke
50. A,Ty F (case invoke(a.name, a.arg) of some ri = e4 | none ug = call(aux, event)) : 72 Res 40, 41, 44, 49, Rule case
51. Let e5 = (case invoke(a.name, a.arg) of some r; = e4 | none up = call(aux, event)) assumption
52. A T4k ry:1m Res 45, Rule var
53. LetIs = {aux : 7y Event — 12 Res, event : 7y Event} assumption
54. A, I5 + event : 7o Event 53, Rule var
55. A, T5 + (case event of act a = e5 | resra = rp) : 72 Res 50, 51, 52, 54, Rule case
56. Leteg = (case event of act a = es | resry = ra) assumption
57. Let Iy = {aux : 7y Event — 15 Res} assumption
58. A,Tg v aux : p Event — 12 Res 57, Rule var
59. A, Tg ks : String Rule stringVal
60. A,e+v:TypedVal 2, Inversion Lemma
61. ATgrov:TypedVal 60, Weakening Lemma
62. A, Tg + act(s,v) : Act 59, 61, Rule record, Def of types
63. A, Tg v (inger act(s,v) : 72 Event) : o Event 62, Rule variant, Def of types
64. AT v call(aux, ingeyr act(s,v) : 7o Event) : 12 Res 58, 63, Rule call
65. A, T+ call(aux, ingcy act(s,v) : 7o Event).result : 73 64, Rule productSelect, Def of types
66. A, e+ (fun aux(event : 7, Event) : 72 Res = eg) : 72 Event — 13 Res 55, 56, Rule fun
67. A, e+ (let aux = (fun aux(event : 7o Event) : 72 Res = eg)
in call(aux, ingcy act(s,v) : 7o Event).result end) : 1) 65, 66, Rule let
68. A, e+ {let aux = (fun aux(event : 7y Event) : 2 Res = eg)
in call(aux, ingcy act(s,v) : 72 Event).result end}s(v) 1Ty 67, Rule endLabel
69. T=1n 2, Inversion Lemma
70.  eprocEvt : T 68, 69

Result is from 10, 70

APPENDIX F DEFINITION OF co-LANGUAGES

To express program traces that are used in theorems in Appendix G, this appendix defines the notion of an co-language.

Definition: Let ¥ be an alphabet, then 2°° denotes the set of all co-languages over . A set L C 2 is an co-language over %, and

L satisfies the following rules:

(1) If a language L is regular, then L is an co-language
(2) If an w-language L is w-regular, then L is an co-language
(3) If Ly, Ly are co-languages, then L1L; is an co-language, and L1Ly = {xy if x is finite, else x | (x,y) € L1 X L}

As Rules 1 and 2 show, the set of co-languages is the union of regular languages and w-regular languages, while Rule 3 defines
concatenation such that the set of co-languages is closed under this operation. Defining concatenation this way allows for an
infinitely-long string to be concatenated with another string (note that concatenating a finite string with an infinite string is
well-defined in w-regular languages).

With this additional rule, a left-hand concatenation operand L™ could be either a finite repetition of L followed by the rest of the
expression, or an infinite repetition of L. Such an operand captures the notion of a divergent program: it expresses a loop that
either iterates a finite number of times and cedes control to the continuation, or iterates an infinite number of times and never
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cedes control. Thus, with this concatenation rule, a possibly divergent program trace can be expressed concisely. For instance,
consider the co-expression ax®by*c. As shown by this expansion below, the interpretation should be "a, followed by a finite or
infinite repetition of x; if finite, then b, followed by a finite or infinite repetition of y; if finite, then c".

ax™b y~c
=a(x?|x")b(y“|y*)c [definition of L™]
= (ax®]ax™)b(y“|y™)c [distribution]
= (ax“blax™b) (y®|y*)c [distribution]
= (ax®]ax*b)(y“|y*)c [concatenation]
= (ax®y“|ax®y*|ax*by® |ax"by*)c [distribution]
= (ax®]ax®|ax*by® |ax*by*)c [concatenation]
= (ax®]ax*by® lax*by*)c [idempotent]
= ax®clax"by“clax*by*c [distribution]
= ax®|ax"by®|ax*by*c [concatenation]

APPENDIX G PROOF OF OBLIGATION PROPERTIES

This appendix proves four important properties of PoCo obligations. Specifically, based on the twelve lemmas (pages 79 to 82),
page 82 and 83 present the proof of the Atomic-Obligation and Conflict-Resolution Theorems respectively, pages 84 through 86
presents the proof of the Obligation-Reaction Theorem, pages 86 through 87 present the proof of the Pre-Obligation Completeness
Theorem, and pages 87 to 88 present the proof for the Obligation-Permutability Theorem.

LEMMA 12 (SEQUENCE TRACES). Given two well-typed expressions e; and ey: if e —* v1 and e —* v, while producing traces
t; and ty respectively, then eq; e3 —* v1;v2 while producing trace t = [t1, £2].

PrOOF.

1. e2 cannot be reduced until e; =™ v1 Rule sequenceE2

2. after el —»* vl producing trace t1, t = f1 1, sequenceE1

label:
3. values are always added to end of trace Definition of ———» B
4. after ey —* vy producing trace to, t = [, f2] 2, 3, Rule sequence E2
O

LEMMA 13 (CASE-STATEMENT TRACES). Given a well-typed expression e where e = (case ex of {1x1 = e1| -+ | {nxn = ep):

if ex —™ ing,v; while producing traces tx and [v;/x;]e; —* v] while producing traces t;, then e —* v while producing trace ¢
and t= [ty, t;] (i € {1,...,n}).

ProOOF.
1. e=(caseexof t1x1 = e1| - |lnxn = en) assumption
2. ey must be reduced before eq, ..., or e, are reduced Rule CaseE, Rule caseV
3. ex —" ing,v; while producing traces tx assumption
4. after ex =" ing,v; producing trace ty, t = ty 2, 3, Rule CaseE
5. after ex —% ing,vi, e =% [vi/x;]e; 1, 2, Rule caseV
6. [vi/xile; =" v] while producing traces t; assumption
7. values are always added to end of trace Definition of M B
8. after[v;/xile; =~ v{ producing traces t;, t= [ty, t;] (i € {1,...,n}) 4,6,7

O

LEMMA 14 (WHILE-STATEMENT TRACEs).  Given a well-typed expression e where e = while (e1){e2}, if e =" v1 and ez —* vy
while producing traces matching expression t; and f; respectively, then e —* e’ while producing trace ¢ that matches co-language
expression (1, t2)t;.
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Proor.

—_

O XN e W

_
- O

=
w »

14.
15.
16.
17.

e = while (e1){ez}

e— if ey then (ex; while (e1){e2}) else unit

e; =" v producing trace

assume v1 = false while producing trace t; in the first iteration

e —* unit while producing trace #;

assume v = true while producing trace #; in the first iteration

e —* (e2; while (e1){ez}) while producing trace t;

ez —* vy producing trace t;

after e; —* vy, the produced trace t = [t1, 3]

the produced trace will be either #; or [t1, t2] after the first iteration
both #; and [t1, t2] matches co-regular expression (t1, t2)*t;

the trace produced after first iteration matches co-regular expression (t1, t2)*t;
assume that e has run n(n > 1) iterations and the trace t,, produced
after the n'" iteration matches oo-regular expression (t1, t2)t

values are always added to end of trace
the trace tp41 produced after (n + l)th iteration will either [t,, t1] or [tn, t1, t2]
both [t,, t1] and [t,, t1, t2] matches co-regular expression (t1,2)*t

h
)t

the trace produced after (n + 1)*” iteration matches expression (t1,2)*t;

Result from 12, 17

assumption

1, Rule whileE
assumption
assumption

2, 3, 4, Rule ifFalse
assumption

2, 3, 6, Rule if True
assumption

3,7, 8, sequence
59

Rule of co-expression
10, 11

assumption

label:
Definition of ——— B
10, 13, 14

11, 13, Rule of co-expression
15, 16

O

LEmMMA 15 (LET-STATEMENT TRACES). Given a well-typed expression e where e = (let x = e in ey end): if e; —* v; while

producing a trace ¢ and [v;/x]ea = v while producing a trace t;, then e —* v while producing a trace ¢t where t = [#1, t2].

Proor.
1

2.
3.
4.

LEMMA 16 (IF-STATEMENT TRACES).

e1; must be reduced before es is reduced  Rule letE, Rule letValue

after ey —* v; producing trace t,t =t; 1, Rule letE

label:
values are always added to end of trace ~ Definition of e, B

after [v1/x]ex =% v, t = [t1, t2] 2,3

e —* vy while producing trace [t3, t;] when v = false.

Proor.
1.

Nk LN

LEMMA 17 (TRAVERSE-LIST-STATEMENT TRACES).

e3 must be reduced before e; or e; are reduced Rule ifE, Rule if True, Rule ifFalse
after e3 —* v3 producing trace t3,t = t3 1, Rule ifE

ifvs = false, if vs then e else ex = ey Rule ifFalse

values are always added to end of trace Definition of M B

if vs = false, after if vs then e; else ex =% vy, t = [t3,12] 2,3,4

if vs = true, if vs then e else ez —>* €1 Rule if True

if v3 = true, after if vs then e else e3 —>* v1,t = [t3,11] 2,6, 4

Result from 5, 7

]

Given a well-typed expression e where e = if e3 then eg else ex:if e; =" v1, e =% vy, and
e3 —* v3 while producing traces ty, t; and t3 respectively, then either e —* v; while producing trace [#3, t;] when v3 = true or

O

Given a well-typed expression e = while(—empty(!€)){item ::= head((); { ::=

tail(1€); ez; } where € : 7 j5pref: if eg —* vy while producing a trace #; and ez does not add or remove values from the list value
stored at £, then the trace ¢ produced when e —* v matches regular expression t,™V where N is the length of .

Proor.

ez —* vy while producing a trace 3 assumption

ey does not add or remove values from the list value stored at £ assumption

the trace produced as the expression —empty(!€) reduces to v is [] Rule derefE, Rule derefValue, Rule inEqE1,
Rule inEqQE2, Rule ineqFale, Rule ineqT

e —* v while producing trace t that matches ([] #2)*[] 1, Lemma 3

t matches t;° 4, rules of co-expression

[tail (1) =€) -1 Rule listTailValue, Rule listTialEmptyValue

£ = tail(!€) reduce !¢ by 1 6, Rule AssignE2, Rule assignValue

80



8.
9.

10.
11.
12.
13.

LEMMA 18 (CALLONTRIGGER-STATEMENT TRACES).

head () does not modify |!¢|

each iteration of while loop reduces |!¢| by 1
when [/€] > 0, —empty(!€) —* true

when || == 0, mempty(!€) —* false

|'€]| > 0 —™ true N times

e —* v while producing trace t that matches #;

Rule listHeadValue, Rule listHeadE
2,6,7
Rule ineqT
Rule eqT, ineqF
8,9,10
N 412
m]

Given an expression e = call(onTrigger, e): if A, o + €1 ok, and e; = vy

while producing a trace t, then t matches the co-expression (beginOb(e) (—ob(e))* endOb(e)).

Proor.

1.
2.
3.

beginOb(e) can not occur directly from eonTrigger Definition of - - - + e; ok

endOb(e) can not occur directly from eonTrigger

Definition of - - - + e; ok

call(onTrigger,e) =" {[v/x]eonTriggertonTrigger(e) 3, Rule callNonMonitoredFunction

while producing trace beginontrigger(e)
the trace t; produced while [v/x]eonTrigger ="

v" matched (—ob(e))® 1, 2, definition of ob(e)

label:
values are always added to end of trace Definition of ——— 5 B
after {[v/x]eonTrigger lonTrigger(e) =" 1V YonTrigger(e)s 4,5, 6, rule endLabelE
t= [beginonTrigger(e)’ t1]
{v’}onT,igger(e) —* vy while producing trace endonTrigger(e) 7, Rule endLabelValue
after {v’}onT,igger(e) —* vy, the produced trace 5,6,7
t= [beginonTrigger(e)s t1, e”donTrigger(e)]
the trace t produced while e; —* v; matches the co-expression 4, 8, Definition of beginOb(e),

(beginOb(e) (—ob(e))™ endOb(e))

LEMMA 19 (CALLONOBLIGATION-STATEMENT TRACES).
e; —* v; while producing a trace ¢, then t matches the co-expression beginOb(e) (—ob(e))* endOb(e).

PROOF.

1.
2.
3.

LEMMA 20 (NO-MONITORED-FUNCTION TRACES).

Definition of endOb(e), Rules of co-expression
[m}

Given an expression e; = call(onObligation, e): if A,e + e; ok, and

beginOb(e) can not occur directly from e,nopligation Definition of - - - + e; ok
endOb(e) can not occur directly from eonobligation Definition of - - - - e; ok
call(onObligation, e) =" {[v/x]eonobligationtonObligation(e) 3, Rule callNonMonitoredFunction

while producing trace beginonopiigation(e)

the trace t; produced while [v/x]eon0pligation =" v’ matched (—ob(e))® 1, 2, definition of ob(e)

values are always added to end of trace
after {[U/x]eonObligation}onObligation(e) -*

el:v

lab
Definition of ——— B
3, 4, 5, rule endLabelE

{v,}onObligatian(e)’ t= [beginonObligation(e)v t1]

{U,}onohligation(e) —* v1 while producing trace endynopiigation(e) 7, Rule endLabelValue

After {v,}anObligation(rt) —* vy, the produced trace 5,6,7

t= [beyi”onObligation(e)’ t1, endonObligation(e)]

the trace t produced while e; —* v; matches the co-expression 4, 8, Definition of beginOb(e) and endOb(e),

(beginOb(e) (—ob(e))™ endOb(e))

Rules of co-expression
o

Given a program p which is an untrusted application egpp With enforced poli-

cies, if A, @ I p ok, and egpp does not contain any monitored functions and p —* p” while producing a trace ¢, then t matches the
oco-expression (—beginOb(e))*.

PROOF.

1.

G W

LEMMA 21 (APP-NO-APPEND-RESULT TRACES).

beginOb(e) cannot occur directly from eqp)
call(monitor, v) cannot occur directly from eqp)

Definition of - - - +- p ok
Definition of - - - + p ok

call(monitor,v) happens only when a monitored function is called Rule callFromApplication

beginOb(e) cannot exist in ¢
t matched (—beginOb(e))™

1,2,3
4
[m]

Given a program p which is an untrusted application eqp) with enforced policies,

if A, e F p ok, and eqpp does not contain any monitored functions, and p —* p” while producing a trace ¢, then ¢ matches the

oo-expression (=begingppendres(r)

)00
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PROOF.

1. Rule callFromObligation is the only rule that adds begingppendRres(r) inspection of the dynamic semantics
2. no function calls from egp, can trigger rule callFromObligation Rule callFromApplication
3. begingppendRes(r) cannot exist in t 1,2
4.t matched (=begingppendres(r))”™ 3
u]
LEMMA 22 (POLICY-NO-APPEND-RESULT TRACES). Given a program p which is an untrusted application egpp with enforced

policies, if A, ® - p ok, and p’s obligations do not contain any monitored functions, and p —* p’ while producing a trace ¢, then ¢
matches the co-expression (=begingppendres(r))” -

ProOF.

1. Rule callFromObligation is the only rule that adds begingppendres(r) Inspection of the dynamic semantics

2. no function calls from egp, can trigger rule callFromObligation Rule callFromApplication

3. no non-function calls outside of eqpp can trigger rule callFromObligation Rule callFromApplication

4. begingppendRes(r) cannot exist in 1,2,3

5.t matched (=begingppendres(r))”™ 4

[m]

LEMMA 23 (NO-MAKECFG TRACES). Given a program p which is an untrusted application egpp with enforced policies, if

A, + p ok, and egpp does not contain any monitored functions, and p —* p” while producing a trace t, then ¢ matches the
co-expression (~endpakeCFG(vy,v):9) -

PR?.OF.endmakeCFG(vhvz):g cannot occur directly from egpp Definition of - - - +- p ok

2. call(monitor,v) cannot occur directly from eqp Definition of - - - + p ok

3. call(monitor,v) happens only when a monitored function is called Rule callFromApplication

4. endpakeCFG(vy,vy):g CANNOL exist in ¢ 1,2,3

5. tmatches (-makeCFG(v1, v2))® 4

O

THEOREM 9 (ATOMIC OBLIGATION). For all p, t, and t’, if A,e + p ok, and p —t; p’, and t matches the co-expression
((.*°) beginOb(ey) t’ beginOb(en,) .(.°°)) then t” matches the co-expression ((.*°) endOb(e,) (.°°))
PROOF.
Case 1: eqpp does not contain any monitored functions:

1. ¢ matches (- beginOb(e))™ Lemma 9

2. The theorem holds vacuously in this case because t does not match 1, Rules of co-expression

((.c0) beginOb(en) t’ beginOb(ep,) (.0))

Case 2: eqpp contains at least one monitored functions:

1. beginOb(e) cannot occur directly from eqpp Definition of - - - + p ok

2. call(monitor,v) cannot occur directly from egpp Definition of - - - + p ok

3. onTrigger ¢ F and onObligation ¢ F Definition of function scope for F

4. only lines 24 and 25 of monitor can result in a trace including beginOb(e) 3, Definition of monitor, Rule

callNonMonitoredFunction

5.  the trace produced while call(o1.0nTrigg, 01.evt) on line 24 reducing Lemma 7, Definition of monitor
to vy is [beginOb(e), (—ob(e))™, endOb(e)]

6.  the trace produced while call(02.0nOblig, 05.rt) on line 25 reducing Lemma 8, Definition of monitor

to voo is [beginOb(e), (—ob(e))™, endOb(e)]
7.  containing of the two call expressions, the case expression spans from line Lemma 2, Definition of monitor
24 to 25 does not introduce additional beginOb(e) in the overall trace

8.  the trace t; produced while case expression that spans from line 24 to 25 5, 6, 7, Lemma 2, Rules of
reducing to v; is [beginOb(e), (—ob(e))*, endOb(e)] co-expression

9.  taken the case expression that spans from line 24 to 25 as its else branch, Lemma 5, Definition of monitor
the if-then-else expression spans from line 23 to 26 does not introduce

10. the trace t; produced while the i f-then-else expression spans from line 8,9, Lemma 5, Rule of

23 to 26 reducing to vy is either [(=beginOb(e))*™] or [(—beginOb(e))*, t;] oco-expression
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11.

12.

13.

14.

15.

16.

17.

18.

containing the if-else-then expression that spans from line 23 to 26,
the let expression that spans from line 15 to 37 does not introduce
additional beginOb(e) in the overall trace

the trace produced while the let expression spans from line 15 to 37
reducing to v3 matches is either [(—beginOb(e)), t; , (—~beginOb(e))™]
or [(—beginOb(e))™]

containing the let expression that spans from line 15 to 37, the while
expression that spans from line 5 to 37 does not introduce additional
beginOb(e) in the overall trace

the trace produced while the while expression spans from line 5 to 37
reducing to vy is either [(—beginOb(e))*] or

[((—beginOb(e))*, t1 , (—beginOb(e))>)>, (—beginOb(e))™]
containing the while expression that spans from line 5 to 37, the monitor
function doesn’t introduce additional beginOb(e) in the overall trace
the trace ¢ produced when the overall monitor function reducing to v is
either [((—beginOb(e))™, t1 , (—beginOb(e))*°)*™°, (=beginOb(e))™] or
[(—beginOb(e))*]

When t is [(—beginOb(e))*], the theorem holds vacuously because ¢ does
not match ((.*°) beginOb(en) t’ beginOb(em) (.*))

When ¢ is [((—beginOb(e))*, t1 , (—beginOb(e))*)>°, (—beginOb(e))™]
and (beginOb(e) —ob(e)*™ endOb(e)) exists more than once in t,

¢’ must always include endOb(e)

Results from 17 and 18

Lemma 4, Definition of monitor

10, 11, Lemma 4, Rules of co-language
expression

Lemma 6, Definition of monitor

12, 13, Lemma 3

Rules of co-expression

Lemma 9, Definition of monitor

14, 15, Lemma 1, 3, 4
Rules of co-expression

16, Rules of co-expression

16, Rules of co-expression

THEOREM 10 (CoNFLICT RESOLUTION).  For all programs p such that A, e +- p ok and p LR p’, t matches the co-expression
(=beginOb(e))™ (vtrue(en) beginOb(en) (—beginOb(e))™)*™ where: virye(e) == (begingore(e) (mbeginOb(e))™

endvote(e) : vn)N begin'uc(v] e it UN) (_'beginOb(e))oo endvc(vl:: < nUN) tEruer

ProoF.

Case 1: eqp)p does not contain any monitored functions calls:

1.
2.

t matches (- beginOb(e))™
t matches ((—beginOb(e))™ virye(en) beginOb(en))™ (—beginOb(e))™

Case 2: eqpp contains at least one monitored functions call:

1.

2.
3.
4

10.

11.

12.

beginOb(e) cannot occur directly from eqpp

call(monitor, v) cannot occur directly from eqpp

onTrigger ¢ F and onObligation ¢ F

only lines 24 and 25 of monitor can result in a trace including beginOb(e)

the trace t,; produced while call(o1.0nTrig, 01.evt) on line 24

reducing to ve; is [beginOb(e), (—ob(e))>, endOb(e)]

the trace ty, produced while call(0.0nOblig, 03.rt) on line 25

reducing to vy, matches [beginOb(e), (—ob(e))™, endOb(e)]

containing of the two call expressions, the case expression spans from line
24 to 25 does not introduce additional beginOb(e) in the overall trace

the trace #; produced while the case expression reducing to vy is
[beginOb(e), (—ob(e))™, endOb(e)]

taken the case expression that spans from line 24 to 25 as its then branch,
the if-then-else expression spans from line 23 to 26 does not introduce
additional beginOb(e) in the overall trace

the trace ¢, produced while the condition expression call(c.vc, votes) on

line 23 reducing to v is [begingc(v,:: --- won)s €Muc(oys: - son)]

the trace t3 produced while the i f-then-else expression spanned from line
23 to 26 reducing to vs is either [begingc(o,: - w0,)> €Mduc(oy:: - won):falsel
or [beginvc(vlz: s nop) endvc(vlzz e nop)itrues t1]

the trace t4 produced while the expression call(!pol.policy.vote, ob)
one line 21 reducing to vy is [beginyore(e) eNdyore(e):on]
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Lemma 9
1, Rules of co-expression

Definition of - - - + p ok
Definition of - - - + p ok
Definition of function scope for F
3, Definition of monitor, Rule
callNonMonitoredFunction
Lemma 7, Definition of monitor

Lemma 8, Definition of monitor
Lemma 2, Definition of monitor

7, 8, Lemma 2
5, 6, 9, Rules of co-expression
Lemma 5, Definition of monitor

Rule callNonMonitoredFunction, Rule
endLabelValue, Definition of monitor
9,10, 11, Lemma 5,

Rules of co-expression

Rule listHeadValue, Rule listTailValue,
Rule listTailEmptyValue



13.

14.

15.

16.

17.

18.

THEOREM 11 (OBLIGATION REACTION PART 1).

the trace t5 produced while the while expression spans from line 30 to 34
reducing to vs is [begingore(e)s endvote(e):vN]N

the trace t¢ produced while the expressions spans from line 30 to 26
reducing to vg is [begingc(p,:: - 2vy,)> €EMuc(v;: - ::vn):false] or

[ts, beginvc(vl:: s nop)Y endvc(v1:: e nop)itrues t1]

the trace t7 produced while the while expression spans from line 5 to 37
reducing to v7 is [t,™]

the trace ¢ produced when the overall monitor function reducing to v
[(=beginOb(e))*, t7, (—beginOb(e))*]

t can be simplified to [(—beginOb(e))™, ((t5, beginyc(y,:: ...
endyc(vy: - vy,):trues 0eginOb(en))?)™]

all possible traces produced by p match the co-expression
(((=beginOb(e))*™, verue(en), beginOb(en))™ (—beginOb(e))™)

1UR)»

13, Lemma 1, Lemma 6,
Definition of monitor
12, 13, Lemma 1,
Definition of monitor

14, Lemma 3,

Definition of monitor

15, Lemma 1, Lemma 3, Lemma 4,

Definition of monitor, Rules of co-expression
16, Rules of co-expression

17, Rules of co-expression
Definition of vrye(en)

]

For all programs p such that A,e + p ok and p LR p’, t matches the co-

expression ((_'bEginappendRes())oo (beginappendRes() .2 endOb(e) (. endmakeCFG(onObligatian, v) :g)N)?)oo-

PROOF.
Case 1:

10.

11.
12.

13.

eaqpp does not contain any monitored functions calls:
t matches (= begingppendres())™
t matches re

no obligations contain any monitored functions calls:
t matches (= begingppendres())™
t matches re

eqpp contains at least one monitored functions call:
beginappendRres only can occur with the context of executions
of obligations

only lines 24 and 25 of monitor can result in a trace including begingppendRes

the trace produced while call(o01.0nTrig, 01.evt) on line 24 reducing

to vy is [(_‘beginappendRes())mv beginappendRes()’ .00, endOb(e)]

the trace produced while call(02.0nOblig, 02.rt) on line 25 reducing

to vor is [(=begingppendres() ™ begiNappendres()s -°0> endOble)]
containing of the two call expressions, the trace produced while the case
expression spans from line 24 to 25 reducing to vy is
[(_‘beginappendRes())oo’ beginappendRes()v -00, endOb(e)]

the trace produced while the then branch spans from line 28 to 35 reducing to

. N
v3 is [.o0, e”dmakeCFG(onObligation,v):g ]

the trace produced while the i f-then-else expression spans from line 27 to 36

; N
evaluates to vy is [.oo, endmakeCFG(onObligation,v):g I?
the trace t6 produced while the expression spans from line 23 to 36
reducing to v is [(_'beginappendRes())m9 (beginappendRes())m9 (-00),

N

endOb(e), (.00 endmakeCFG(onObligation,v):g) )?]
the trace ¢7 produced while the while expression spans from line 5 to 37
reducing to v7 is [t6]™
the trace tg produced when the overall monitor function is reduced to vg
is [(_‘begi"appendRes())oo’ t7, (_‘begi”appendRes())m]
p produces the trace t = [(=begingppendres() ™ tg »

t can be simplified to [(=begingppendres()™> ((=begingppenares())”™

(_'beginappendRes() %]

Lemma 10
1, Rules of co-expression

Lemma 11
1, Rules of co-expression

Definition of - - -  p ok

1, Definition of monitor

Rule calFromObligation,

Definition of monitor

Rule calFromObligation,

Definition of monitor

3, 4, Lemma 2, Definition of monitor
Rules of co-expression

Lemma 8, Definition of monitor

6, Definition of monitor,

Lemma 5

7, Lemma 1, Lemma 2, Lemma 4,
Definition of monitor

8, Lemma 3, Lemma 4,

2,9, Lemma 1,

Definition of monitor

2,10

11, Rules of co-regular expression

(begmappendRes() (.00) endOb(e) (.0 e”dmakeCFG(onObligation,v):g)N)?)oo]

t matches co-expression ((=begingppendres())”

12, Rules of co-regular expression

(beginappendRes() (.00) endOb(e) (.0 endmakeCFG(onObligation,v):g)N)?)oo
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t *
THEOREM 12 (OBLIGATION REACTION PART 2).  Forall programsps.t. A, + pok,andp — p’, and p’s monitor is (M, funmon,
p1 i o-c- i Pp, eos, €uc) Where the functions ey, pi.onTrigger,...,pp.onTrigger, p1.onObligation,. .., p,.onObligation ter-
minate, for each event endp,akeCFG(v1, v2) : g in t there must exist a vy, ye(g) OF Vfgise(g) In t Where:

Vtrue(e) 5= (beginyore(e) (—beginOb(e))™ endyore(e) : vn)N beging,c(y, ... vy) (mbeginOb(e))™ endyc(v,:: . un) : true and
Ufalse(e) n= (begmvote(e) (~beginOb(e))*™ endvote(e) : vn)Nbegmvc(w i ON) (—beginOb(e)) enduc(vl:: - uonN) : false-
PROOF.
Case 1: eqp)p does not contain any monitored functions calls:

1.t matches (mendpmakeCFG(vy,v2):9)" Lemma 10

2. The theorem holds vacuously in this case because t does not match
either vsrye(€) Or Vfgyse(€)

1, Rules of co-expression

Case 2: eqpp contains at least one monitored functions call:

L. endmakeCFG(vy,v,):g annot occur directly from eqpp Definition of - - - + p ok
2. call(monitor,v) cannot occur directly from egpp Definition of - - - + p ok
3. only the two expressions makeCFG on lines 7 and 33 of monitor code can 1, Definition of monitor
result in a trace including endy gk eCFG(01,v5):9
4. the result of the expression makeCFG on line 7 is immediately appended Rules listAppendE1, listAppendE2,
to a list stored in €op0ueue Rule listAppendValue, assignValue,
Rule derefValue, Definition of monitor
5. the list stored in €ypQyeue is prepended to a list stored in {op544ck ON the 4, Rules listPrependE1, listPrependE2,
line 10 of the monitor code resulting in all results of makeCFG in line 7 Rule listPrependValue, assignValue,
being included in €yp 54 qck Rule derefValue, Definition of monitor
6.  the result of the expression makeCFG on line 33 immediately appended Rules listAppendE1, listAppendE2,
to a list stored in {op0ueue Rule listAppendValue, assignValue,
Rule derefValue, Definition of monitor
7. thelist stored in £,p0yeue is prepended to a list stored in €op 5,40k 0N 6, Rules listPrependE1, listPrependE2,
line 35 of the monitor code resulting in all results of makeCFG in line 33 Rule listPrependValue, assignValue,
being included in €yp51ack Rule derefValue, Definition of monitor
8.  results from all possible calls to makeCFG are stored in {ypssgck 1,2,3,5,7
9.  the trace produced while code from lines 30 to 26 is reduced to a value is Theorem 3(14)
either [beginvc(vln - BUN)? endvc(m:: Z:Z}N):falSE] or
[(beginvote(e)v endvote(e):vN) » beginvc(vlzz - HUN)? endvc(vlz: - noN)itrues
beginOb(e), (—ob(e))*™, endOb(e)]
10.  the expression obQueue := head(!obStack) on line 12 of the monitor code Rules derefValue, Rule headValue,
takes opstack’s first list of obligations and stores it in {opouene Rule assignValue,
Definition of monitor
11.  the expression let ob = head(!obQueue) on line 13 of the monitor code Rules derefValue, Rule headValue,
takes the first obligation stored in {,p0ueue Rule assignValue,
Definition of monitor
12.  if'opoueue = [0D], then the expression ~empty(tail(lobQueue)) Rules derefValue, Rule headValue,
on line 16 of of the monitor code will evaluate to false Rule assignValue,
Definition of monitor
13.  If —empty(tail(lobQueue)) evaluates to false, then the first element 12, Rules tailValue, Rule derefValue
of €,pstack Will be removed after executing the expression Rule assignValue,
obstack := tail(lobStack) on line 17 of the monitor code Definition of monitor
14, if¥poueue = [0b, .. .], then —empty(tail(lobQueue)) Rules derefValue, Rule headValue,
on line 16 of of the monitor code will evaluate to true Rule assignValue,
Definition of monitor
15.  If ~empty(tail(lobQueue)) evaluates to true, the first element of 14, Rules tailValue, Rule derefValue,
"obstack Will be replaced with tail(!€op0yene) after executing the Rule listPrependValue, Rule
expression on line 16 of the monitor code assignValue, Definition of monitor
16. for each iteration, one obligation will be removed from €55 qck 10, 11, 13, 15
and stored in £ob
17. no locations besides lines 10, 16, 17, and 35 in the monitor code Definition of monitor, Rule assignValue
assign to CobStack
18.  ob is only assigned to on line 13 of the monitor code where it is 11, Definition of monitor

assigned with €, g 401 s the first list of obligations
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19.  ob is the parameter that passed into vote function of the monitor code Definition of monitor
20. an obligation that is ever added to {,p ;4.1 generates a subtrace 9,16,17, 18,19
matches either (beginyc(y,: ... zoy) €Mdyc(v,: - ::vN):false) or
((beginyore(e) €ndypore(e)un) EIINyc(vy:: - un) EMuc(oy:: -+ won):true
beginOb(e) (—ob(e))*™ endOb(e))
21.  for each end,,; 4k eCFG(v,,0,):g i t there must exist a matching 8,20

Utrue(g) OF Yfalse(g)

O

THEOREM 13 (PRE-OBLIGATION COMPLETENESS).  There exists well-typed programs p1, pa, and p3 where py —* p7, p2 =" p;, and
p3—* pé while producing traces t1, ¢z, and t3 respectively such that t1, ¢z, and t3 match the co-expressions ey, for pre-obligations,
epost for post-obligations and eongoing for ongoing obligations where:

€pre = ((OO) bEginf(x) ('oo)beginmanitor(act(f,x)) (OO) endf(x):v (oo)),

€post = ((.00) endf(x):'u (-00) begmmoni!or(res(act(f,x),rt)) (.00)), and

€ongoing = (epre | epost) (.) (epre | epost)~

PROOF.
Case 1: pre-obligation:
1. assume p; has a policy Poly with the onTrigger eonTrigger(e) = Assumption
if matches(e, act(“print”, x)) then call(log, e) else unit
2. printeF 1, Definition of F
3. when eqpp attempts to execute call(print, v) expression, begin,, ins () 2, Rule callFromApplication
gets added to the trace resulting in a trace of [(.), begin,,ns(v)]
4. when eqp) attempts to execute the expression call(print, v), 2, Rule callFromApplication
call(monitor, act(“print”, v)) will be triggered
5. after call(monitor, act(“print”, v)) is executed, 3, 4, Rule
beginonitor(act(“print,v)) 8ets added to the trace resulting callNonMonitoredFunctions
in a trace of [(.e0), beyinprint(v)’ b""ginmonitor(act(“print”,v))]
6. after expression added by Rule callFromApplication are fully executed, Rule callFromApplication
expression print(v) will be executed next
7. after the execution of print(v), the trace is [(.00), begin,,int(v), 5, 6, Rule endLabelValue
beginmonitor(act(“print”,v))’ (-00), endprint(x):vs (.00)]
8. execution of p; results in a trace of [(.00), beging ins(v)s 2,7
beginmonitor(act(“print”,v))7 (-00), endprint(x):v’ (-00)]
9. execution of p1 results in a trace of that matches rey,,c0p 8, Rules of co-expression

Case 2: post-obligation:

1. assume p; has a policy Pol; with the onTrigger eonTrigger(€) = Assumption
if matches(e, res(“print”, =)) then call(log, e) else unit

2. printeF 1, Definition of F

3. when e, attempts to execute the expression call(print,v), the 2, Rule callFromApplication
call(monitor, res(“print”, v)) will be triggered

4. since Poly does not consider call(print,v) as security relevant, 1
setOutput() is never called in Poly

5. call(print,v) will be executed Rule callFromApplication,

Rule while

6.  after call(print,v) is executed endjo4(y).- gets added to the trace 5, Rule callFromObligation,
resulting in a trace of [.c0, endjoy(v).r] Rule endLabelValue

7. asuccessful execution of call(print, v) triggers Rule callFromApplication
call(monitor, res(act(“print”,v),r))

8.  after a successful execution of call(monitor, res(act(“print”,v),r)), the 7, Rule
trace is [(.c0), endlog(v):r’ (.00), begmmonitor(res(act(“print”,v),r))] callNonMoniteredFunctions

9.  execution of py results in a trace of 8
[(.00), endlog(v):r’ ~(°°)7begmmonitor(res(act(print,v),r))]

10.  execution of p; results in a trace that matches re,os: 08 9, Rules of co-expression
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Case 3: ongoing-obligation:
1. assume p3 has policies as specified in Case 1 and Case 2
2. execution of p3 matches the co-expression

TepreOb and TepostOb
3. execution of p3 matches the co-expression re,pngoingob

Assumption
Case 1, Case 2

2, Rules of co-expression

THEOREM 14 (PoLicY PERMUTABILITY).

If p is a well-typed program with monitor (funmon, p1 = -+ :: pn, €os, €vc) and p —* p” while producing trace ¢, then there

exists eos and ey, such that if ¢ is a well-typed program with monitor (funmon, p{ woee Pl €os, epc) Where prs e n D is
a permutation of py = -+ i pp and ¢ — ¢’ while producing trace t’ then ¢ ~ ¢’ (all eonTrigger » €onObligation: €os» and ey must be
pure functions).

PROOF.

1. only call(e1, e2) and makeCFG(e) expressions can result in values
being added to traces

Rules callFromApplication, Rule makeCFGValue,
Rule callFromObligation, Rule endLabelValue,
Rule callNonMonitoredFunction

2. the parts of t and t’ generated outside of calls to the monitor Definitions of p and n, Definition of monitor,

are identical

Definition of function scope of eqp)

3. calls to monitor from p and q will differ only in the order of policies  Definitions of p and n, Rule
in parameter callFromApplication
4. calls to monitor from p and q result in traces that are equivalent if Definition of trace equivalence, 3
the current traces are equivalent
5. only lines 6, 10, 23, 25, 24, 25 and 41 of monitor result in values being 1, Definition of monitor
added to the trace
6.  calls to the expression makeCFG(e) on line 6 of the monitor code in ~ Definition of Monitor, Rule
p and g will differ only in parameters callNonMonitoredFunction
7. the traces result from calls to makeCFG(e) on line 6 in p and g will Definition of trace equivalence, 6
be equivalent if the current traces are equivalent
8.  the traces result from the execution of the expression line 25 in p Rule callNonMonitoredFunction,
and g will be identical if pol in p and g are identical Definition of Monitor
9. pol on line 25 in p and g will be identical for each iteration of the Rule callNonMonitoredFunction, Rule
loop if the values of the votingPols in p and q are identical while, Definition of Monitor
10. wotingPols in p and q are identical if votingPolsList in p and q are Definition of Monitor, Rule assignValue
identical
11. wotingPolsList in p and g will be identical at each iteration if the Rule assignValue, Rule listTailValue,
votingPolsList in p is initially assigned with a value that is identical ~ Definition of monitor
to the value that is assigned to votingPolsList in q
12.  wotingPolsList in p and g will be assigned with an identical value Definition of monitor, Rule assignValue,
if the results of call(os,p1 :: -+ = pn) in p and the result of Rule callNonMonitoredFunction
call(os,p] == -+ wpy,) in q are identical
13.  assume the results of call(os,p1 :: --- :: pN) in p and the result of Assumption
call(os,py == +++ : py;) in g will be identical when
eos (0bs) = call(orderByPolicyName, 0bs)
14. the traces result from the execution of the expression line 25 in p 8,9, 10,11, 12,13
and g will be identical if eys(0bs) = call(order ByPolicyName, obs)
15.  the traces result from the execution of the expression line 25 in p Definition of monitor,
and g will be identical when the values of votes Rule callNonMonitoredFunction
in p and q are identical
16. wotes in p and g will be identical if traces produced on line 25 of p Definition of monitor, Rule assignValue,
and q are identical Rule derefValue, Rule listAppendValue
17.  the traces result from each iteration of line 25 will be identical when 13, 14, Definition of monitor
eos (0bs) = call(orderByPolicyName, 0bs)
18. the traces result from the execution of the expression line 23 in p and 15, 16, 17, Definition of monitor

q will be identical when e, (0bs) = call(orderByPolicyName, obs)
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19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

the traces result from the execution of the case expression that spans
from lines 24 to 25 in p and q will be identical for each iteration if
the results of call(c.vc, lvotes) in p and g on line 23 are identical

as well as ob in in p and q are identical

the traces result from the execution of the call(vc, lvotes) expression in
p and q will be identical when ey (0bs) = call(orderByPolicyName, obs)
ob in p and g will be identical for each iteration if pols on line 2 of the

monitor code in p and g are identical

the traces result from the execution of the expressions span from
lines 24 to 25 in p and g will be identical for each iteration with
eos(obs) = call(orderByPolicyName, obs)

the traces result from the execution of the expressions on line 9
for each iteration in p and g will be identical if pols in p and ¢q

are identical

the traces result from the execution of the expressions on line 9
for each iteration in p and g will be identical when

eos(obs) = call(orderByPolicyName, obs)

the traces result from the execution of the expressions on line 42
for each iteration in p and g will be identical if votingPols

in p and q are identical

votingPols in p and q will be identical when e, (0bs) is defined

as call(orderByPolicyName, obs)

the traces result from the execution of the expressions on line 42

in p and g will be identical when e, (0bs) is defined as

call(orderByPolicyName, obs)

when ey (0bs) = call(order ByPolicyName, obs), t = t’
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Definition of Monitor

15, 16, 17, 18, Definition of Monitor

Definition of monitor, Rule while,
Rule listTailValue, listHeadValue,
listAppendValue, listPrependValue
19, 20, 21, Definition of monitor

Definition of monitor, Rule while,
Rule listHeadValue, Rule listTailValue,
Rule makeCFGValue

12,13, 23

Definition of Monitor,
Rule makeCFGValue, Rule while

10, 11,12 13

2,4,5,7,14, 18, 22, 24, 27
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