
SQL-Identifier Injection Attacks
Cagri Cetin Dmitry Goldgof Jay Ligatti

Department of Computer Science and Engineering, University of South Florida
{cagricetin, goldgof, ligatti}@usf.edu

Abstract—This paper defines a class of SQL-injection attacks
that are based on injecting identifiers, such as table and column
names, into SQL statements. An automated analysis of GitHub
shows that 15.7% of 120,412 posted Java source files contain code
vulnerable to SQL-Identifier Injection Attacks (SQL-IDIAs). We
have manually verified that some of the 18,939 Java files identified
during the automated analysis are indeed vulnerable to SQL-
IDIAs, including deployed Electronic Medical Record software
for which SQL-IDIAs enable discovery of confidential patient
information. Although prepared statements are the standard de-
fense against SQL injection attacks, existing prepared-statement
APIs do not protect against SQL-IDIAs. This paper therefore
proposes and evaluates an extended prepared-statement API to
protect against SQL-IDIAs.

I. INTRODUCTION

Injection attacks such as SQL-Injection Attacks (SQLIAs)
continue to be considered the most critical web-application
vulnerabilities [1].

The following Java code provides a classic example of a
SQLIA vulnerability.

String sql = "SELECT address FROM Customer
WHERE password = '" + userInput + "'";

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);

By entering an input such as 'OR true --, an attacker
can make the executed query be

SELECT address FROM Customer WHERE password =
'' OR true --'

where -- introduces a comment in SQL code and OR true
bypasses the password check. Under this attack, the executed
query returns all addresses in the Customer table.

A particularly problematic subclass of SQLIAs involves the
injection of identifiers into SQL statements. We call such
attacks SQL-Identifier Injection Attacks, or SQL-IDIAs. As
far as we are aware, this paper is the first to specifically define
and address SQL-IDIAs.

Identifiers may appear in SQL statements as, for example,
names of tables, columns, indexes, databases, views, functions,
procedures, or triggers. The following Java code demonstrates
a SQL-IDIA vulnerability.

String sql = "SELECT * FROM Contact ORDER BY "
+ userInput;

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);

Here the untrusted user input injects an identifier, referring
to a column name in the Contact table, according to which the
results will be ordered. By entering an input such as

(CASE WHEN (SELECT COUNT(*) FROM Demographic
WHERE firstName='John' AND lastName='Doe')
> 0 THEN Contact.lastName ELSE Contact.

firstName END)

an attacker can observe the query results for the Contact table
to infer whether John Doe appears in the Demographic table.
As described in Section IV, we have successfully mounted
such attacks against a deployed Electronic Medical Record
web application to leak confidential information about patients.

SQL-IDIAs are of special interest because the existing stan-
dard SQLIA-preventing mechanisms—prepared statements—
do not protect against SQL-IDIAs.

This paper makes the following contributions. It defines
SQL-IDIAs based on concatenating, into SQL statements,
identifiers that have propagated from untrusted inputs.

To understand the prevalence of SQL-IDIAs, we analyze
120,412 Java source files from GitHub. The analysis shows
that 31.3% of the files are vulnerable to SQLIAs, and 15.7%
of the files are vulnerable to SQL-IDIAs.

To demonstrate the impact of SQL-IDIAs, we mount an
attack on deployed Electronic Medical Record software. This
software uses prepared statements for injecting values like
string and integer literals but concatenates identifiers directly
into SQL statements. Our attack extracts confidential informa-
tion, including the reason for a patient’s doctor visit.

To prevent SQL-IDIAs, we introduce a new extended
prepared-statement API. This new API enables prepared state-
ments to fill placeholders with table and column names.
Because the prepared statements restrict these placeholders to
be filled only with valid table- and column-name identifiers,
attackers are prevented from performing SQL-IDIAs, similarly
to the way that standard prepared statements prevent attack
injections into string- and integer-literal placeholders. Addi-
tional benefits of the new API include extending the safe use
of prepared statements by enabling table and column names
as parameters, not leaking schema information on invalid
inputs, not having drawbacks that existing input-sanitation-
based solutions have, and inducing less performance overhead
compared to an ad hoc dynamic-whitelisting mechanism.

To the best of our knowledge, this is the first work
that (1) defines SQL-IDIAs, (2) analyzes the usage of SQL
statements in source files from GitHub, or (3) introduces an
extended prepared-statement API for preventing SQL-IDIAs.

II. PREPARED STATEMENTS

Prepared statements, also known as parameterized queries,
are the de facto mechanism to prevent SQLIAs [2]. Figure 1



String sql = "SELECT address FROM Customer
WHERE password = ?";

PreparedStatement stmt = conn.prepareStatement
(sql);

stmt.setString(1, userInput);
ResultSet rs = stmt.executeQuery();

Fig. 1: A Java program using prepared statements.

presents a program that employs prepared statements to per-
form database operations. At a high-level, preventing SQLIAs
with prepared statements involves three main steps. First,
an application creates a SQL-statement that has placeholders
(i.e., the question mark symbol in the SQL statement) for
literals and sends this statement to a database system. Then,
when the prepare-statement function is executed, the database
parses the statement and creates a statement structure having
placeholders. Next, the application fills these placeholders
(e.g., by calling the setString function) with values. This
mechanism enforces that applications fill placeholders with
literals, thus preventing SQLIAs.

A major limitation of prepared statements is that only
application-level values are allowed to replace placehold-
ers [3]. For example, for applications written in Java, place-
holders in prepared statements may only be replaced by Java
values such as string literals, integer literals, and Java objects.

This limitation to replace prepared-statement placeholders
with only application-level values prevents safe construction
of SQL statements having dynamically resolved identifiers [4],
[5]. That is, standard libraries do not allow SQL identifiers
such as table and column names to replace placeholders in
prepared statements. SQL syntax allows identifiers to appear in
many statements and clauses, including create, alter, and
drop statements and order by and group by clauses.

Because standard libraries do not allow SQL identifiers
to replace placeholders in prepared statements, developers
must concatenate dynamically resolved identifiers into SQL
statements, though such concatenations create SQL-IDIA vul-
nerabilities, like the one shown in Figure 2. In fact, prior work
showed that every concatenation of untrusted input into a SQL
statement can produce a SQLIA [6], [7].

III. SQL-IDENTIFIER INJECTION ATTACKS

This section defines and presents examples of SQL-IDIAs.

A. Definition of SQL-IDIAs

SQL-IDIA-vulnerable applications are applications that can
form a valid SQL statement by concatenating a user-input
identifier into the statement.

Definition 1. An application is vulnerable to a SQL-IDIA iff
the application constructs a SQL statement S by concatenating
an untrusted input i into S and there exists an identifier x such
that concatenating x into S in place of i causes S to be a valid
SQL statement.

For example, the application excerpted in Figure 2a is
vulnerable to a SQL-IDIA because it can create a valid SQL

String sql = "SELECT * FROM Contact ORDER BY "
+ userInput;

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);

(a) An example Java program vulnerable to SQL-IDIAs.

SELECT * FROM Contact ORDER BY firstName

(b) The output SQL program when the userInput is a valid column name.

(CASE WHEN (SELECT COUNT(*) FROM Demographic
WHERE firstName='John' AND lastName='Doe')
> 0 THEN Contact.lastName ELSE Contact.

firstName END)

(c) A malicious input through the userInput to perform a SQL-IDIA.

Fig. 2: An order-by-based SQL-IDIA.

statement by concatenating an identifier into the statement, as
shown in Figure 2b.

A SQL-IDIA occurs when a SQL-IDIA-vulnerable
application—which would produce a valid SQL statement
by concatenating a user-input identifier into the statement—
instead concatenates a non-identifer, or an invalid identifier,
into the statement in place of a valid identifier.

Definition 2. A SQL-IDIA occurs in a SQL-IDIA-vulnerable
application iff the concatenated input i either is not an
identifier or is an identifier that, when concatenated into S,
makes S an invalid SQL statement.

For example, a SQL-IDIA occurs when the SQL-IDIA-
vulnerable application excerpted in Figure 2a is provided the
input shown in Figure 2c. In this case the untrusted input
(Figure 2c) is concatenated into the output SQL statement at a
position in which an identifier could be valid, yet the untrusted
input is not a valid identifier; hence, a SQL-IDIA has occurred.

Definition 2 also considers invalid-identifier injections to
be SQL-IDIAs because such injections can leak sensitive
database-schema information [8], [9]. For example, an attacker
might input a nonexistent column name into the application
shown in Figure 2a to cause the DBMS (Database Manage-
ment System) to raise an exception when executing the gen-
erated invalid SQL statement. As with traditional SQLIAs, in
cases in which the DBMS raises an exception, the application
may output information contained in the exception object to
leak database schema such as the database name or the SQL
statement being executed.

Although this paper focuses on SQL, identifier-injection
attacks are possible in other languages such as XML.

B. Additional Examples

To provide additional familiarity with SQL-IDIAs, we next
consider two additional examples, shown in Figures 3 and 4.
Both of these examples, as well as the example shown in
Figure 2, are abbreviated and simplified versions of actual



String sql = "SELECT * FROM Customer WHERE " +
userInput1 + " BETWEEN ? AND ?";

PreparedStatement stmt = conn.prepareStatement
(sql);

stmt.setInt(1, userInput2);
stmt.setInt(2, userInput3);
ResultSet rs = stmt.executeQuery();

(a) An example Java program vulnerable to SQL-IDIAs.

age BETWEEN ? AND ? UNION SELECT * FROM Admin
--

(b) A malicious input through the userInput1 to perform a SQL-IDIA.

SELECT * FROM Customer WHERE age BETWEEN ? AND
? UNION SELECT * FROM Admin -- BETWEEN ?

AND ?

(c) The output SQL program with the malicious input (b).

Fig. 3: A column-name-based SQL-IDIA.

Java applications found by our automated GitHub analysis
tool, described in Section IV.

Figure 3a shows a program that is vulnerable to a column-
name-based SQL-IDIA. In this program, two user-inputs fill
placeholders using prepared statements; therefore, SQLIAs are
not possible through these inputs. However, a column-name
parameter (i.e., userInput1) is concatenated into the SQL
statement. In normal cases, this program expects the concate-
nated parameter to be a valid column name. However, attackers
can perform SQL-IDIAs by injecting carefully crafted SQL
statements. For instance, the program (Figure 3a) outputs the
SQL code shown in Figure 3c with the malicious input shown
in Figure 3b. This output program can maliciously return all
entries from the Admin table (assuming the Customer and
Admin tables have the same attributes). The malicious input
is not a valid column in the Customer table, so Definition 2
correctly considers this input to be a SQL-IDIA.

Figure 4a shows a program that is vulnerable to a table-
name-based SQL-IDIA. This program concatenates a table-
name parameter (i.e., userInput) into a SQL statement
and executes this statement using the standard JDBC (Java
Database Connectivity) execute-update function. If an attacker
injects the malicious input presented in Figure 4b through the
table-name parameter, the program (Figure 4a) outputs the
two consecutive SQL statements shown in Figure 4c. These
statements cause two different attacks. The first attack adds
a new user to the Customer table as an administrator by
changing the hardcoded admin value. The second attack—an
example of piggy-backing attacks—deletes all entries from the
Admin table; the malicious input presented in Figure 4b causes
the Java program to execute multiple queries at once.

The existing JDBC API attempts to mitigate piggy-backing
attacks by requiring the execute-update function to only
execute one SQL statement at a time. The API provides

String sql = "INSERT INTO " + userInput + "
(isAdmin) VALUES ('False')";

Statement stmt = conn.createStatement();
stmt.executeUpdate(sql);

(a) A SQL-IDIA-vulnerable program through the table name.

Customer (name, isAdmin) VALUES ('Mallory',
'True'); DELETE FROM Admin; --

(b) A malicious input through the userInput to perform SQL-IDIAs.

INSERT INTO Customer (name, isAdmin) VALUES
('Mallory', 'True'); DELETE FROM Admin; --
(isAdmin) VALUES ('False')

(c) The output SQL program with the malicious input (b).

Fig. 4: A table-name-based SQL-IDIA.

different functions to execute multiple statements as a batch.
However, in practice, some JDBC implementations do not
faithfully follow the API specifications. We tested this SQL-
IDIA with three different JDBC implementations: H2, SQLite,
and MySQL JDBC drivers. Our results showed that these
drivers, except the MySQL driver, are vulnerable to this attack.
On the other hand, Definition 2 correctly classifies the input
shown in Figure 4b as an attack because this input is not a
valid table in the database.

IV. GITHUB ANALYSIS

This section presents an analysis of source files from GitHub
and shows SQL-IDIAs on a deployed web application. This
GitHub analysis investigates how SQL statements are con-
structed in practice and how many of the files are vulnerable
to SQLIAs and SQL-IDIAs.

A. Research Questions

To understand the prevalence of SQLIAs and SQL-IDIAs,
we ask the following research questions:
R1 What percentage of source files use prepared statements,

string concatenation, or hardcoded strings for construct-
ing SQL statements?

R2 What percentage of source files use both prepared state-
ments and string concatenation in the same file?

R3 What percentage of source files use identifier concatena-
tion for constructing SQL statements?

R4 What type of identifiers are the most commonly concate-
nated?

Our GitHub analysis provides empirical answers to these
questions.

B. Dataset Collection

We collected a dataset of source files from GitHub, which is
the most popular platform to publish open source projects. We
used Java source files because Java is one of the most com-
monly used programming languages [10]. We used GitHub



javajavajava Source Code
Analyzer
{RegEx}

(has StrConcat.,
has PrepState.,
has Hardcoded)

Output

Fig. 5: The operation of the source file analyzer.

Archive [11] because the GitHub website provides limited
access to all source files. GitHub Archive is a public database
that collects all public GitHub activities (e.g., source files,
commits, pull requests) since 2011.

Each file in our dataset contains SQL statements. To de-
termine the files that contain SQL statements, we filtered
GitHub Archive with certain keywords (i.e., “executeQuery”,
“executeUpdate”, “createQuery”, and “createNativeQuery”).
These keywords are used to execute SQL statements in Java.
It is noteworthy that these keywords are the functions of the
well-known database libraries [12]. To minimize redundancy
and false positives, we only considered parent projects (i.e., the
projects that are not forked from other projects) and eliminated
unit-test files. Our final dataset contains 120,412 Java source
files, obtained by filtering 56.7 million Java files.

C. Identifying SQL Usages

We developed an automated tool to determine SQL us-
ages in each source file. Figure 5 depicts the source file
analysis operation using this automated tool. As shown in
the figure, this tool takes an individual Java source file as
an input, matches regular expressions to identify how SQL
statements are constructed in the file, and outputs SQL-
construction types in three categories. The first category is
the dynamic SQL-statement construction using string concate-
nation (e.g., "SELECT * FROM table WHERE id=" +
userInput). The second category is the dynamic SQL state-
ment construction with prepared statements (e.g., "SELECT
* FROM table WHERE id=?"). The last category is the
static SQL-statement usage with hardcoded string literals (e.g.,
"SELECT * FROM table WHERE id=5").

These SQL-construction categories are detected with rules
that are encoded in regular expressions. If one of the following
rules is matched, a file is classified as belonging to the string
concatenation category.

• Concatenating a string literal with a Java identifier (e.g.,
a variable name) using the plus operator, where the string
literal contains SQL keywords. For example, this rule
matches "SELECT * FROM " + userInput.

• Using at least two append functions, where at least one
of the append function takes a Java identifier as an
argument and the other takes a string literal containing
SQL keywords. For example, this rule matches append
("SELECT * FROM ").append(userInput).

• Using a Java string-format function that contains at
least one string literal with SQL keywords and string-
format placeholders. For example, this rule matches

String.format ( "SELECT * FROM %s",
userInput).

To determine prepared-statement usage, we encoded a
rule that matches a string literal containing SQL key-
words and prepared-statement placeholders (i.e., ? and
:placeholder_name). A file is considered as using hard-
coded SQL-statements if the file (1) does not contain a string
concatenation to form SQL statements, (2) does not contain
prepared statements, and (3) only contains string literals with
SQL keywords.

These SQL-construction categories determine the files that
are vulnerable to SQLIAs and SQL-IDIAs. Assume that the
concatenated variables are propagated from untrusted inputs.
Then, the source file is considered as vulnerable if it uses at
least one string concatenation to construct SQL statements [6],
[7]. If a source file does not use string concatenation and em-
ploys prepared statements and/or hardcoded SQL-statements,
then the file is considered as not vulnerable.

D. Empirical Results

This section discusses the prevalence of SQLIAs and SQL-
IDIAs by empirically answering each of the research ques-
tions.
R1 What percentage of source files use prepared statements,

string concatenation, or hardcoded strings for constructing
SQL statements?

Figure 6a summarizes the SQL-usage statistics of 120,412
Java source files. 30.3% of the files construct SQL statements
using string concatenation, 30.6% of the files employ prepared
statements to form SQL statements, and 22.4% of the files
only use hardcoded SQL statements. These results reveal that
a significant portion of source files are vulnerable to SQLIAs
through string concatenation.
R2 What percentage of source files use both prepared

statements and string concatenation in the same file?
Interestingly, 16.7% of the files have both string concate-

nation and prepared statements. The following answer to R3

shows that one reason for using both string concatenation and
prepared statements in the same file is the identifier limitation
of the existing prepared-statement API.
R3 What percentage of source files use identifier concate-

nation for constructing SQL statements?
Based on the GitHub analysis, 9.6% of the files use only

identifier concatenation to form SQL statements. Additionally,
6.1% of the files concatenate identifiers and also employ
prepared statements for values in the same file.
R4 What type of identifiers are the most commonly con-

catenated?
We analyzed the types of identifiers (e.g., table, column,

index, function, procedure names) being concatenated. Based
on the analysis, 96% of the identifiers were table and column
names.

As a result, the GitHub analysis revealed that identifier
concatenation is a real problem. As shown in Figure 6b,
15.7% of the files are vulnerable to SQL-IDIAs. In addition,
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Fig. 6: SQL-construction and injection-attack vulnerability statistics of GitHub Java source files that contain SQL statements.

31.3% of the files are vulnerable to SQLIAs through string
concatenation.

E. Attacking a Deployed Application

We present SQL-IDIAs on a large-scale Electronic Med-
ical Record software. As of March 17, 2019, this open-
source software is actively maintained and has 21,844 total
commits, 61 contributors, and 23 stars at GitHub. Features
of this software include managing confidential patient and
medication records, scheduling appointments, and managing
hospital-related tasks. Our GitHub analysis showed that a
Java file in this software concatenates an identifier to form
a SQL statement. By manually inspecting the source code,
we were able to verify that this software is indeed vulnerable
to SQL-IDIAs. We set up an attack environment by running
this Electronic Medical Record software on a local computer
and creating a test database. Although we have disclosed the
identified vulnerability, we do not name the software here
because it is widely deployed, and because the vulnerability
has not been resolved (as of March 17, 2019).

The software has a web page used to search for employees
in a clinic. Users can type a search keyword through this web
page, and the software runs the code shown in abbreviated
form in Figure 7a. The keyword parameter is used with pre-
pared statements; therefore, a SQLIA is not possible through
this parameter. However, this program takes the userInput
parameter for the order-by clause from a hidden form in the
web page. Thus, attackers can perform SQL-IDIAs through
this order-by parameter by changing the source of the web
page in a web browser.

In our first example attack, we injected the SQL expres-
sion shown in Figure 7b through the order-by parameter to
determine whether a person named John Doe is a patient in
the clinic. If John Doe appears in the Demographic table, the
search result from the Contact table was sorted by the last
name; otherwise, the result was sorted by the first name. This
enabled us to determine that John Doe is a patient in the clinic.

To access other confidential information, we need to de-
termine the unique identifier (i.e., demographicNo) of
John Doe from the Demographic table. This identifier, which
manages the relations between tables, can be extracted by

String sql = "SELECT * FROM Contact WHERE
lastName LIKE ? ORDER BY " + userInput;

PreparedStatement stmt = conn.prepareStatement
(sql);

stmt.setString(1, keyword);
ResultSet rs = stmt.executeQuery();

(a) An abbreviated version of actual SQL-IDIA-vulnerable code in Electronic
Medical Record software.

(CASE WHEN (SELECT COUNT(*) FROM Demographic
WHERE firstName='John' AND lastName='Doe')
> 0 THEN Contact.lastName ELSE Contact.

firstName END)

(b) A malicious input through the userInput parameter to test the patient
name in the database.

(CASE WHEN (SELECT COUNT(*) FROM Demographic
WHERE firstName='John' AND lastName='Doe'
AND demographicNo<5) > 0 THEN Contact.
lastName ELSE Contact.firstName END)

(c) A malicious input through the userInput parameter to determine the
unique identifier of the patient in the database.

(CASE WHEN (SELECT COUNT(*) FROM Appointment
WHERE demographicNo=1 AND reasonCode<5) >
0 THEN Contact.lastName ELSE Contact.
firstName END)

(d) A malicious input through the userInput parameter to determine the
patient’s doctor-visit reason.

Fig. 7: SQL-IDIAs on Electronic Medical Record software.

injecting the code shown in Figure 7c. This code tests whether
the unique identifier of John Doe is less than 5. Performing
a binary search allowed us to determine the actual value (i.e.,
1) of the unique identifier.

The extracted unique identifier of John can be used to
obtain additional confidential information from other tables.
For example, the code presented in Figure 7d maliciously
detects John’s doctor-visit reason. We determined, via binary
search, that the reason code for John’s doctor visit was 7.



With manual inspection of the reason codes in the open source
project, we were able to determine that the visit was made for
HIV testing.

This technique is not limited to the attacks above. The same
technique can be used to extract different confidential informa-
tion about patients such as medication history, laboratory test
results, patient address, or the room that a patient is occupying.

F. Threats to Validity

Our GitHub-analysis methodology is based on pattern
matching in single files. This approach relies on the assump-
tion that concatenated variables are propagated from untrusted
inputs. This assumption was made because determining the in-
put source for concatenated variables would require techniques
such as data flow analysis [13] and compiler optimization [14].
These techniques require source files to be compiled, thus
they cannot be applied to our analysis. This limitation exists
because our dataset only contains independent source files, not
the whole projects and their dependencies.

To estimate the performance of our GitHub-analysis results,
we randomly selected and manually inspected 200 source files.
The false positive is determined when the tool says there
is a string concatenation in the file, but in reality (1) the
string concatenation is not used to form a SQL statement,
(2) the concatenated variable is inside of the file (e.g., a
SQL statement is concatenated with a static field), or (3) the
concatenated variable is commented out. The false negative is
determined when the tool says there is no string concatenation
in the file, but there is actually at least one SQL statement
that is created using string concatenation, and the concatenated
variable is coming from outside of the source file. To estimate
the accuracy, we calculated the proportion of true results (i.e.,
true positive and negative rates) in all results.

This methodology was used to estimate the performance of
our analysis. The false positive rate, false negative rate, and
the accuracy of our GitHub analysis are 18%, 7%, and 87%,
respectively. The obtained results are promising. However,
these results, similarly to existing research relying on GitHub
data, may suffer from different threats as discussed in [15].

V. EXTENDED PREPARED-STATEMENT API

To prevent SQL-IDIAs, we introduce a new extended
prepared-statement API. We also demonstrate the imple-
mentability, efficiency, and effectiveness of the extended API
by empirically evaluating a prototype implementation.

A. API Functions

To prevent SQL-IDIAs, we introduce the following two
functions that can be added to prepared-statement APIs (e.g.,
Java JDBC and PHP PDO).

• setColumnName(int parameterIndex,
String columnName): takes a column name
and its index as arguments

• setTableName(int parameterIndex,
String tableName): takes a table name and
its index as arguments

A possible implementation of these functions consists of
three main steps. First, these functions can be added to the
prepared-statement API and its corresponding database driver
(e.g., the MySQL JDBC Driver). The implementation of these
new functions in this step is similar to the existing prepared-
statement functions, such as setString. Typically, when
these new functions are called, their parameters can be stored
in an array with parameter indices. These indices indicate the
placeholder positions in SQL statements.

Second, the SQL-statement preparation phase for identifiers
can be implemented in the DBMS. The standard preparation
phase contains two main steps: (1) parsing the SQL statement,
and (2) generating an execution plan. The implementation of
the parsing step may require changing the SQL syntax of the
database in some cases. For example, the syntax does not need
to be changed if the databases allow placeholders anywhere
in the SQL-statement. The syntax has to be modified to allow
placeholders for table and columns if the database syntax only
allows certain clauses to have placeholders.

The execution-plan-generation step can include schema
verification and statement optimization. In the schema ver-
ification, the DBMS checks whether the table and column
names in the SQL-statements are valid. For example, given
the statement SELECT id FROM Customer, the DBMS
checks whether the Customer table is in the database and id
is an attribute of the Customer table. Although the DBMS
can still verify and optimize the non-parameterized table and
column names in this step, the verification of parameterized
table and column names must be performed while executing
the prepared statement.

The last step can involve filling the placeholders with
identifiers while executing the prepared statement. This step
starts by checking whether dynamic identifiers belong to the
schema. The checking operation is straightforward in the case
of column names because the DBMS only needs to ensure that
a given column belongs to an appropriate table. Dynamically
checking table names requires further verification including
verifying whether the table belongs to the schema as well
as ensuring that the already existing attributes in the SQL
statement belong to the given table. Once the verification
is complete, the DBMS can create an expression for each
parameterized identifier and place these expressions into the
prepared statement.

We only considered table and column names in our extended
API because our GitHub analysis showed that 96% of the
concatenated identifiers were table and column names.

B. Benefits of the Extended API

An illustration of the systems that are vulnerable to SQL-
IDIAs due to the usage of existing prepared-statement APIs is
shown in Figure 8a. As can be seen, an application (1) takes lit-
erals and identifiers as inputs, (2) fills placeholders with literals
using prepared statements, and (3) concatenates identifiers to
construct SQL statements. The identifier concatenation causes
applications to have SQL-IDIA vulnerabilities.
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Fig. 8: Preventing SQL-IDIAs with the extended prepared-statement API. Data propagated from untrusted inputs are illustrated
with dashed arrows. The solid unidirectional arrow indicates the trusted data flow.

As illustrated in Figure 8b, the extended API prevents SQL-
IDIAs by filling placeholders with identifiers using prepared
statements. Applications can create placeholders for identifiers
using the extended prepared-statement API, and the API only
allows these placeholders to be filled with valid identifiers.
Thus, attackers are not able to perform SQL-IDIAs.

The extended API prevents DBMSs from leaking sensitive
schema information by performing a default operation when
the input column or table name does not exist in the database.
For example, if a parameterized column name is used in an
order-by clause and the column name is invalid, the DBMS
will order the results by the first column in the table. This
operation prevents the information-leakage attack described in
Section III.

In addition, these extended API functions do not suffer
from the drawbacks of input-sanitation-based approaches. For
example, as described in Section VI, incorrect updates to
whitelists or blacklists may introduce false positives or false
negatives. The extended API functions eliminate such false
positives or negatives by dynamically verifying given table
and column names in databases before filling placeholders.

C. Empirical Evaluation

A prototype of the extended prepared-statement API was
implemented, and the implementation was compared with an
existing equivalent prepared-statement function as well as ad
hoc whitelisting solutions.

1) Implementation: We implemented a prototype of the
setColumnName function into the H2 JDBC library [16].
H2 is an open-source relational database management system
that is written in Java.

The implementation enables order-by clauses to have col-
umn names through the new setColumnName function. In
our implementation, we have not modified H2’s SQL syntax

String sql = "SELECT * FROM TestTable WHERE
col2 < 100 ORDER BY ? ASC";

PreparedStatement stmt = conn.prepareStatement
(sql);

stmt.setColumnName(1, userInput);
ResultSet rs = stmt.executeQuery();

Fig. 9: Usage of the new setColumnName function.

because it allows order-by clauses to have placeholders for
values; in fact, order-by clauses can take numerical column
indices as parameters with prepared statements.

Figure 9 shows a program that employs the implemented
setColumnName function. This program selects entries
from a table and orders them by the given column name. At
prepare time, when the prepare-statement function is executed,
the H2 DBMS parses the SQL statement and creates a query
structure having a placeholder for the order-by parameter.
When the setColumnName is executed, the DBMS stores
the column name parameter with its index in an array. Once the
execute-query function is executed, the DBMS first validates
the column name. If the given column name is invalid, i.e.,
does not belong to the table, the DBMS sorts the results by the
first column in the table to prevent information-leakage attacks
through error messages. If the column is valid, the DBMS
(1) dynamically creates a column expression, (2) appends this
expression to the query structure, and (3) executes the query.

2) Experimental Setup: We compared our
setColumnName implementation with three different
implementations: an existing prepared-statement function and
two different ad hoc implementations. Our implementation
executes the query shown in Figure 9, and the three other
implementations execute equivalent queries. Hence, all of the
implementations return the same result-set in the same order



Execution Time (ms)
Implementation Same Input Random Input Bad Input

New setColumnName 2.11 2.25 2.04
Existing setInt 2.13 2.29 1.11

Static Whitelist 2.08 2.18 2.29
Dynamic Whitelist 2.37 4.73 4.07

TABLE I: Average execution times of the implementations
over 100 runs.

when the input is the same.
To establish a baseline, we used the existing prepared-

statement API’s setInt function that takes an int-literal as a
parameter. By filling the placeholder shown in Figure 9 with
a column index using the setInt function, we were able to
create an equivalent query with setColumnName. We could
not use other existing prepared-statement functions because an
equivalent query cannot be created with any other functions.
We also compared our implementation with two different ad
hoc solutions. The first ad hoc implementation uses a static-
whitelist (i.e., a hash set that contains all column names in the
table). The second ad hoc implementation employs a dynamic-
whitelist by first querying whether the given column name
exists in the database and then executing the actual query.

The setColumnName and setInt implementations pre-
pare a statement once and execute the statement 100 times.
The ad hoc implementations prepare and execute the statement
100 times because column names had to be concatenated into
queries. In each execution, we measured the execution time,
that is, the real-time. For the first two prepared-statement
implementations, the real-time is measured from beginning to
setting placeholders and executing the query until finishing
obtaining a result-set from the database. For the ad hoc
implementations, the real-time is measured from beginning to
preparing a statement and executing the query until finishing
obtaining a result-set from the database.

We tested all four implementations using a uniform envi-
ronment. The testing database has a table that contains 100
columns and 1000 rows. Each cell of the table was filled with
a random number between 0 and 1000. These random numbers
were generated using the standard Java random number library.
We used the H2 DBMS to implement the database-relevant
operations. All experiments were performed on a MacBook
Pro laptop that runs macOS Sierra version 10.12.6 with 16GB
of memory and a 2.2GHz Intel quad-core i7 processor.

We conducted three sets of experiments to test the perfor-
mance of the implementations. In the first experiment, each
implementation was given the same column name or column
index. In the second experiment, a randomly chosen valid
column name or index was given to each implementation in
each run, to eliminate caching. In the last experiment, each
implementation was given a “bad” input, meaning a randomly
chosen column that is not an attribute of the table.

3) Experimental Results: Table I summarizes the perfor-
mance results of the four implementations. Our implemen-
tation has no extra performance overhead over the existing
prepared-statement setInt function when the input is the

same or a random input is provided. For the bad inputs,
setInt outperformed setColumnName because setInt
does not retrieve a result set from the table and instead
throws an exception containing sensitive schema information.
In contrast, our implementation returns a result set that is
sorted by the first column in the table to prevent information-
leakage attacks.

In all experiments, the new setColumnName func-
tion outperformed the dynamic-whitelist implementation.
The static-whitelist implementation slightly outperformed the
setColumnName function in two experiments. Although
this ad hoc approach has a slight performance advantage,
whitelisting approaches may introduce nontrivial complexities
into application code and may lead to false positives (see
Section VI).

To test the effectiveness of our implementation, we mounted
the order-by-based SQL-IDIAs described in Figures 2 and 7,
and the information-leakage attack described in Section III.
The new setColumnName function successfully prevented
all of these attacks.

To summarize, filling placeholders with column names (1) is
practical and efficient as compared to the existing ad hoc ap-
proaches, (2) does not introduce extra performance overheads
as compared to the existing prepared-statement functions, and
(3) is effective against SQL-IDIAs.

VI. RELATED WORK

Due to the popularity of SQLIAs, several dynamic and
static analysis methods have been proposed. Dynamic methods
(e.g., [6], [7]) and tools (e.g., [17], [18], [19]) aim to mitigate
injection attacks at runtime. However, none of them are widely
adopted at present due to high performance overheads.

Static analysis tools (e.g., [20], [21], [22]) are also not
widely adopted due to high false positives [23]. These
false positives result, for example, from imprecision in the
information-flow analyses used to determine how untrusted
inputs get concatenated into SQL-statement outputs.

Input sanitation is a more common technique for mitigating
SQLIAs. Input sanitation may entail whitelisting valid inputs,
blacklisting invalid inputs, or escaping special characters [2].
All of these techniques have well-documented drawbacks,
including:

• Whitelists and blacklists may introduce nontrivial com-
plexities into application code. For example, creating a
new database table may require dynamically changing a
whitelist or blacklist of valid table names usable within
SQL statements. In addition, incorrect or delayed dy-
namic updates to whitelists or blacklists may introduce
false negatives or positives [24], [3].

• When escaping special characters, some unexpectedly
encoded characters may not be properly recognized and
escaped, creating false negatives [25]. Examples include
SQL smuggling [26], character homoglyph injection [27],
and string literal injection without quotes [28].

• Escaping special characters may also introduce SQLIA
vulnerabilities. For example, escaping single quotes



in input strings (e.g., converting \';[code]-- to
\'';[code]--) may cause an application to out-
put the SQLIA-exhibiting statement DELETE FROM
table WHERE name='\'';[code]--' [25].

• Applications may be vulnerable to second-order injection
attacks when a sanitized input is stored in a database and
the stored input is reused without sanitation [28].

Due to these drawbacks, prepared statements are the standard
defense against SQLIAs [3].

There have been efforts to build automatic prepared-
statement-generation tools [29], [30], [31]. These tools ana-
lyze source code and convert concatenated SQL-statements
to prepared statements. Although some of the SQLIAs are
prevented, none of these tools can prevent SQL-IDIAs due to
the fact that prepared statements cannot fill placeholders with
identifiers. Utilizing the proposed extended prepared-statement
API can enable these tools to prevent SQL-IDIAs.

VII. CONCLUSIONS

This paper has defined SQL-IDIAs and demonstrated exam-
ple SQL-IDIAs on deployed software. To prevent SQL-IDIAs,
a new extended prepared-statement API was proposed. This
API

• extends the safe use of prepared statements by filling
placeholders with table and column names,

• prevents SQL-IDIAs,
• does not leak schema information on invalid inputs,
• does not have drawbacks that existing input-sanitation-

based solutions have,
• has been prototyped, and found to perform efficiently and

effectively, and
• can be utilized by the existing automatic prepared-

statement-generation tools.

The prevalence of SQL-IDIAs was determined by GitHub
SQL-construction analysis. The GitHub analysis showed that
15.7% of the SQL-constructing Java source files considered
are vulnerable to SQL-IDIAs. These SQL-IDIA vulnerabilities
can be prevented with successful adoption of the proposed
extended prepared-statement API.
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