
Large-Scale Analysis of GitHub and CVEs to Determine Prevalence of
SQL Concatenations

Kevin Dennis, Bianca Dehaan, Parisa Momeni, Gabriel Laverghetta, and Jay Ligatti
Computer Science and Engineering, University of South Florida, Tampa, Florida, USA

{kevindennis, bad7, parisamomeni, glaverghetta, ligatti}@usf.edu

Keywords: Security Metrics, Web Applications, Structured Query Language, Code Injection Attacks

Abstract: SQL Injection Attacks (SQLIAs) remain one of the top security risks in modern web applications. Vulnerabil-
ities to SQLIAs arise when unsanitized input is concatenated into dynamically constructed SQL statements.
Because existing prepared statement implementations cannot insert identifiers into prepared statements, pro-
grammers have no choice but to concatenate dynamically determined identifiers directly into SQL statements.
If an identifier is not sanitized before concatenation, a kind of SQLIA called a SQL Identifier Injection Attack
(SQL-IDIA) is possible.
To investigate the prevalence of SQL concatenations in real code, we conducted, to our knowledge, the largest
analysis of open-source software to date. We crawled 4,762,175 files in 944,316 projects on GitHub to identify
SQL statements constructed using concatenation and potential SQL-IDIAs.
Our crawler classified 42% of Java, 91% of PHP, and 56% of C# files as constructing SQL statements via
concatenation. It further found that 27% of the Java, 6% of the PHP, and 22% of the C# files of these con-
catenations contain identifiers. Manual analysis indicates that the automated SQL-IDIA classifier achieved
an overall accuracy of 93.4%. Further testing suggests approximately 22.7% of web applications may be ex-
ploitable via a SQL-IDIA. PHP applications were particularly exploitable at 38% of applications.

1 INTRODUCTION

Injection attacks remain one of the top security risks
in modern web applications. The 2021 Open World-
wide Application Security Project Top Ten list (Open
Web Application Security Project, 2021) ranked in-
jection attacks in the top three with the second most
recorded occurrences. Injection attacks occur when
untrusted and unsanitized input is used to generate
an output program (Ray and Ligatti, 2012). One
of the most common examples of injection attacks
are SQL injection attacks (SQLIAs), where untrusted
and unsanitized input gets inserted into SQL queries.
This input insertion is typically performed using con-
catenation but may be accomplished using equivalent
string-builder functions or string interpolation. For
the sake of brevity, as string interpolation is primarily
syntactic sugar for concatenation (i.e., interpolation
is a form of concatenation), the term concatenation in
this paper also refers to interpolation unless otherwise
noted.

SQLIAs can be mitigated using a variety of
techniques, with prepared statements, also known
as parameterized queries, being the standard de-

fense (Open Web Application Security Project, 2018;
Clarke-Salt, 2012). However, modern prepared-
statement implementations are incomplete. SQL
Identifier Injection Attacks (SQL-IDIAs) (Cetin et al.,
2019) are a subset of SQLIAs where the user data is
inserted into a portion of the SQL statement reserved
for a SQL identifier, such as a table or column name.
To our knowledge, no public implementation of pre-
pared statements supports identifier insertions.

This paper investigates the prevalence of SQL
concatenations in real code, performing, to our
knowledge, the largest analysis of open-source soft-
ware to date, relying solely on GitHub’s code-
search application programming interface (API) to
identify program source files for security analysis.
Our crawler analyzed a total of 4,762,175 files in
944,316 GitHub projects to classify their usage of
SQL concatenation. These files contained Java, PHP,
or C# source code; these languages were chosen
for their prevalence and well-established database
libraries/frameworks. We also further classified
whether the concatenations are into portions of SQL
statements reserved for identifiers.

Our automated GitHub crawler and analyzer clas-

sified 42% of Java, 91% of PHP, and 56% of C# web-
application files as constructing SQL statements via
concatenation. It further found that 27% of the Java,
6% of the PHP, and 22% of the C# files that concate-
nate to construct SQL statements concatenate identi-
fiers. Manual analysis of a random sampling of these
files indicates that the automated SQL-IDIA classi-
fier achieved an overall accuracy of 93.4%. After
confirming the classifier’s accuracy, we determined
approximately 22.7% of the web applications meet
the additional requirements to be exploitable via an
SQL-IDIA. PHP applications were particularly ex-
ploitable, with 38% of applications being exploitable.
The repository owners of these applications were in-
formed of the vulnerabilities.

We also manually analyzed all 1,775 CVE reports
of SQLIAs from 2022. We found that 153 (8.6%) of
these 1,775 reports are for SQL-IDIAs, providing fur-
ther evidence that SQL-IDIAs comprise a nontrivial
portion of SQLIAs. We therefore recommend that ex-
isting implementations of prepared statements expand
to cover insertions of identifiers. Previous work has
described and analyzed a non-public proof-of-concept
implementation of prepared statements with coverage
of identifiers (Cetin et al., 2019).

This paper also presents a modification to the orig-
inal definition of SQL-IDIAs (Cetin et al., 2019). The
definition is improved to allow SQL identifier lists,
enabling our classifier to recognize locations reserved
for a comma-separated list of identifiers. This new
definition is a strict generalization of the original. An
additional 658 Java and 174 C# files were correctly
classified due to this updated definition.

This paper makes the following contributions:

• an analysis of concatenation in SQL statements,
and of SQL-IDIA vulnerabilities, in millions of
GitHub files across multiple languages;

• an improved definition of, and classifier for, SQL-
IDIAs, capturing an additional 800 potentially
vulnerable files on GitHub;

• a manual classification of all SQLIA CVE reports
published in 2022, to investigate the prevalence of
SQL-IDIAs.

The remainder of the paper is organized as fol-
lows: Section 2 presents the necessary background
material on SQLIAs and SQL-IDIAs, Section 3 pro-
vides a generalized definition of SQL-IDIAs, Sec-
tion 4 describes the GitHub crawler and SQL-IDIA
classifier experiment, Section 5 describes the analysis
of CVE reports for SQL-IDIAs, and Section 6 makes
closing remarks.

2 BACKGROUND AND RELATED
WORK

This section describes previous efforts made to ex-
tract data from GitHub, and related work on SQLIAs.
Given their prevalence, several papers have focused
on SQLIAs, including attempts to classify SQLIAs
from GitHub.

2.1 Obtaining Data from GitHub

Several attempts have been made to archive GitHub
data, generally with the goal of making the data more
accessible. Projects like GHTorrent (Gousios and
Spinellis, 2012) and GH Archive (Grigorik, 2023) al-
low users to download the data set or access the data
online. Lean GHTorrent allows users to request data
dumps on demand (Gousios et al., 2014) and GH
Archive makes their data available as a public data
set on Google BigQuery. However, neither of these
services offers the data needed to complete the exper-
iment described in this paper; the data available are
primarily metadata about the users, projects, and var-
ious events. While some useful data can be extracted
from commit comments and diffs, the GitHub search-
code API provides a larger set of up-to-date files for
analysis.

In addition, the GHTorrent service appears to be
deprecated, the GHTorrent web page is no longer
available, and the once-active GHTorrent Twitter ac-
count has not posted since March 2021. The origi-
nal papers describing the GHTorrent service (Gousios
and Spinellis, 2012), however, served as inspiration
for automating the crawling process.

An illustration of the general workflow for the
GitHub crawler and the classifier is shown in Figure 1.
This workflow follows the same high-level structure
of other tools such as GHTorrent but uses the GitHub
code-search API exclusively. The database tracks all
files individually and includes the commit that each
file was last updated on.

2.2 SQLIAs and SQL-IDIAs

Applications are vulnerable to SQL Injection Attacks
(SQLIAs) when untrusted user input is inserted into
SQL statements such that, when passed to the DBMS,
the user input is interpreted and executed as SQL
code, rather than noncode such as string or numeric
literals. In fact, previous work showed that any con-
catenation of unsanitized input into a SQL statement
constitutes a SQLIA vulnerability (Ray and Ligatti,
2012). Typically, such attacks occur when user in-
put is directly concatenated into the query string, but

Figure 1: Workflow for the GitHub crawler and classifier

these attacks are also possible when the SQL state-
ments are built using alternative techniques for con-
catenating strings, such as with format strings or
string interpolation. The basic mechanics of SQLIAs
are well understood (Halfond et al., 2006; Ray and
Ligatti, 2014).

SQL-IDIAs are a subset of SQLIAs where the un-
trusted user input is inserted into a location where an
identifier is expected (Cetin et al., 2019). Identifiers
in SQL include the names of tables, columns, indexes,
databases, views, functions, procedures, or triggers.
The present paper provides and uses an updated def-
inition of SQL-IDIAs that is based on the original
definition of (Cetin et al., 2019). The updated defi-
nition, provided in Section 3.2, allows for identifier
lists; for example, the query SELECT a, b FROM c, d,
which retrieves columns a and b from the Cartesian
product of tables c and d, contains a list of column
names and a list of table names. This broader defi-
nition of SQL-IDIAs allows for the classification of
attacks that would otherwise go unnoticed.

Several solutions have been developed to miti-
gate SQL injection and code injection attacks in gen-
eral. Dynamic methods (Ray and Ligatti, 2012) and
tools (Halfond and Orso, 2005; Bandhakavi et al.,
2007; Son et al., 2013) that attempt to catch injections
at runtime have been proposed but may incur large
performance overheads and have not seen widespread
adoption. Similarly, static methods (Nagy and Cleve,
2017) that perform information-flow analyses to iden-
tify where untrusted user input is concatenated into
output SQL programs have not been adopted due to a
high false-positive rate (Johnson et al., 2013). The
two mitigation strategies that have seen the widest
acceptance are input sanitization and prepared state-
ments.

Input sanitization refers to any attempts to filter
out, escape, or otherwise remove special characters,
control symbols, and other non-data values in un-
trusted user input. The filtered value is inserted di-
rectly into the output program. The security of the ap-
plication is now dependent on the filtering process be-
ing implemented correctly. Such techniques are diffi-

cult to implement as there are a large number of sym-
bols and edge cases that must be accounted for. Using
existing well-tested implementations is more reliable,
but may introduce their own complexities. For ex-
ample, the esc like function for escaping a string
in a LIKE statement in WordPress (WordPress, 2023)
might reasonably be assumed to output an escaped
string that is safe to insert into SQL code, but the
documentation explains it is not and describes how
the data must be further sanitized or prepared state-
ments must be used. Other potential downsides in-
clude second-order injection attacks, where filtered
data is stored in a database and later reused without
filtering the data again (Anley, 2002).

Object-Relational Mapping (ORM) libraries ab-
stract the entire process of writing SQL queries
into the object-oriented paradigm. For exam-
ple, a developer using an ORM library might ob-
tain the names of all users by writing code like
Users()->select("name")->execute(). The ORM li-
brary then handles the entire process of constructing
the query, connecting to the database, and returning
the results. The ORM is then also responsible for
constructing the SQL statement securely using input
validation or prepared statements, which may not be
a reliable assumption (e.g., CVE-2022-4082).

Prepared statements are considered the standard
defense for preventing SQLIAs (Open Web Applica-
tion Security Project, 2018; Clarke-Salt, 2012), pre-
venting injection attacks by providing a clear distinc-
tion between code and noncode in the constructed
SQL statements. Instead of concatenating or other-
wise inserting noncode (e.g., a string or numeric lit-
eral) directly into the constructed statement, the pro-
grammer inserts a placeholder, typically a question
mark, where the noncode should appear. The non-
code value is then passed alongside the constructed
statement to the DBMS, which begins executing the
statement and referring to the noncode value when a
placeholder is encountered. Prepared statements can
be used to prevent other types of injection attacks but
require that the output programming language and the
corresponding interpreter provide support for them.

However, current implementations do not sup-
port placeholders in locations where SQL identifiers
are expected, making them insufficient for prevent-
ing SQL-IDIAs (Cetin et al., 2019). If there is a
need for dynamic, user-defined identifiers in con-
structed queries, another mitigation technique must
be deployed in addition to prepared statements. A
simple scenario where such a need may arise is us-
ing a user-provided column to order the returned data
by: "SELECT * FROM users ORDER BY " + orderCol.
The incompleteness of prepared statements is dis-
cussed further in Section 3.1.

3 SQL IDENTIFIER INJECTION
ATTACKS

This section reviews the theoretical incompleteness of
prepared statements and the definition of SQL-IDIAs.
Modern prepared-statement implementations, such
as the MySQL Java Database Connectivity (JDBC)
driver, provide support for only a subset of all poten-
tial symbols that may appear in a constructed SQL
statement. This section also generalizes the existing
definition of SQL-IDIAs (Cetin et al., 2019) to cap-
ture strictly more attacks.

3.1 Prepared Statement Incompleteness

In a constructed output program, all symbols fall into
exactly one of two categories; a symbol is either a
code symbol or a noncode symbol (Ray and Ligatti,
2012). Code symbols are those that define computa-
tion. In SQL, code symbols include keywords such
as SELECT, FROM, and JOIN, operators such as + and
-, and identifiers. Non-code symbols include closed
values (Ray and Ligatti, 2012; Ray and Ligatti, 2014),
such as string, integer, and date literals.

Prepared-statement implementations such as
MySQL JDBC appear to be complete with respect to
insertions of complete literals. The JDBC implemen-
tation includes support for replacing a placeholder
with any of the possible types of SQL literals.
However, as discussed in previous sections, only
allowing insertions of complete literals is insufficient
and limits the expressiveness of programmers. Of
particular interest for the present paper is that the
JDBC implementation, and all other public DBMS
implementations of which we are aware, lack support
for defining placeholders for identifiers and replacing
placeholders with identifiers. This incompleteness
enables SQL-IDIAs.

3.2 SQL-IDIAs with Identifier Lists

The original definition of SQL-IDIAs presented
in (Cetin et al., 2019) was limited to applications
that concatenate a single identifier into a SQL state-
ment. However, SQL does not have such a limit;
some identifiers may appear in a list, including the
two most popular identifier types, column and table
names. Classifiers based on the original definition
would fail to classify such instances as SQL-IDIAs
and would instead incorrectly classify them as generic
SQLIAs.

Definition 1. An identifier list consists of a se-
quence of one or more identifiers separated by com-
mas, with initial and/or terminating commas also al-
lowed.

The following items are examples of identifier
lists, where ε represents the empty string.

id1

id1, id2, id3

ε, id2, id3, ε

The following items are examples of input that
would not be considered identifier lists.

0, 1, id1

SELECT, ORDER BY, id1

id1, ε, id2, id3

Definition 2. An application is vulnerable to a
SQL-IDIA iff the application constructs a SQL state-
ment S by concatenating an untrusted input i into S
and there exists an identifer list l such that concate-
nating l into S in place of i causes S to be a valid SQL
statement.

Definition 2 has been generalized from (Cetin
et al., 2019) to allow for identifier lists rather than
just single identifiers. Several vulnerable applications
enumerated in the CVE list are not instances of SQL-
IDIAs using the narrower, earlier definition but are
correctly classified as SQL-IDIAs using this paper’s
generalized definition.

A SQL-IDIA occurs when a SQL-IDIA-
vulnerable application—which would produce a valid
SQL statement by concatenating a user-input iden-
tifier list into the statement—instead concatenates
an input identifier list to produce an invalid SQL
statement or concatenates a non-identifier list input.

Definition 3. A SQL-IDIA occurs in a SQL-IDIA-
vulnerable application iff the concatenated input i
provided dynamically either is not an identifier list
or is an identifier list that, when concatenated into
S, makes S an invalid SQL statement.

$sql = "SELECT * FROM records ORDER BY
↪→ id " . userInput;

$stmt = $conn->prepare($sql);
$stmt->execute();

Figure 2: A SQL-IDIA-vulnerable application expecting a
list of columns as input.

Definition 2 and Definition 3 assume for simplic-
ity that an application accepts a single input. How-
ever, both definitions can be straightforwardly gener-
alized to allow for an arbitrary number of inputs.

Figure 2 presents an application program that is
vulnerable to a column-name-based SQL-IDIA. The
intent is for users to set the sorting order by specifying
ASC or DESC. However, an identifier list may be sub-
stituted instead, as described in Definition 2, resulting
in a query that orders by multiple columns. The fol-
lowing 3 examples demonstrate how this application
may be attacked.

1. An attacker may input , SLEEP(1000). This in-
put is not an identifier list, but the resulting SQL
statement is valid and causes the database to sleep
for 1000 seconds, a denial of service. This exam-
ple input demonstrates that the attacker can ex-
ecute malicious code; more complex attacks are
also possible, for example, by using subqueries or
other known techniques.

2. An attacker may input , SELECT, which is also
not an identifier list but in this case produces a
statically invalid SQL statement. Depending on
the environment, this attack might leak metadata
(e.g., through error messages) or deny service to
other users.

3. An attacker may input an identifier list that like-
wise produces an invalid SQL statement. In this
case, the SQL statement may be invalid because
the identifiers are undefined (e.g., specifying a
column name not present in the schema), or due to
an incorrect list size. Using the code in Figure 2,
if an attacker inputs , foo, assuming foo is not a
column defined in the schema, this injection will
result in a runtime error, which again may leak
metadata or result in denial of service.

Definition 3 considers all of these examples to be
SQL-IDIAs.

Proposition (SQL-IDIA Definition Generaliza-
tion). Definition 3 strictly generalizes the definition
of SQL-IDIAs in (Cetin et al., 2019).

Proof Consider an arbitrary application, A, that
is vulnerable to SQL-IDIAs using the definition
of (Cetin et al., 2019). By that previous definition,
A builds a SQL statement S where there exists some

user input, a single identifier i, such that when A con-
catenates i into S, it makes S a valid SQL statement.
Because Definition 1 allows for an identifier list to be
composed of a single identifier, i must be a valid iden-
tifier list as well. Therefore, A meets the requirements
of Definition 2, and any SQL-IDIA on A according
to (Cetin et al., 2019) also satisfies Definition 3. On
the other hand, the application in Figure 2 allows in-
jections of identifier lists but not single identifiers, so
it exhibits SQL-IDIAs according to Definition 3 but
not according to (Cetin et al., 2019).

4 CONCATENATION ON GITHUB

Over 4,762,175 files uploaded to GitHub were ana-
lyzed to investigate the prevalence of SQL concate-
nations in real code. The process starts by finding
source files to analyze by querying the GitHub API.
The identified source files are then passed to the clas-
sifier program, which classifies instances in the source
files where concatenation is used to construct SQL
queries.

4.1 Crawling GitHub’s API

GitHub, as the largest public code hosting service
with 94 million users and 85.7 million reposito-
ries (State of the Octoverse, 2023), provides an enor-
mous set of data for analysis. GitHub grants all
authenticated users the ability to quickly search for
specific strings in source files across the uploaded
repositories, an impressive feat given the data size.
The GitHub API does limit code searches to the first
1000 results, requiring a workaround; other limita-
tions with the API are described in Section 4.4.1.

For each target programming language (Java,
PHP, and C#), the most popular database library was
selected for analysis, and the GitHub API was used
to locate files with calls to the function in that library
that executes a SQL command. For example, the Java
Database Connectivity (JDBC) API was chosen for
Java, and the GitHub API was queried for Java files
containing the string executeQuery. The popular-
ity of each library was determined by checking the
total number of results reported by the GitHub API.
GitHub reported about 3.6 million entries for JDBC.

To overcome the API’s limit of 1000 results for a
query, the crawler program splits the data into subsets
based on file size. The API allows users to specify
the minimum and maximum file size and will only
return files that are between the specified range. By
decreasing the range width, the number of files in a

subset can be fit into the result limit; we refer to these
subsets as “frames”.

4.2 SQL Classifier

After identifying files for classification using the
GitHub API, the classifier program downloads and
analyzes the files to find potential misuse of concate-
nation in the construction of SQL statements. The
classifier sources relevant code files from GitHub and
determines the usage of prepared statements or con-
catenation in each file using a number of regular ex-
pressions. For example, the following PHP code con-
tains string interpolation in a SQL statement via the
$table variable.

$sql = "SELECT * FROM $table";

As the classifier is primarily focused on identify-
ing SQL statements inside a source file’s string liter-
als, the classifier has been designed to support new
languages without changing the underlying classifier
program. The classifier has abstracted language-level
identifiers or symbols from the regular expressions,
allowing for these to be dynamically changed depend-
ing on the source file’s language. Some examples of
the abstracted features include identifier naming re-
quirements (e.g., PHP requires variables to start with
a dollar sign) and the various concatenation symbols
used by different languages.

The classifier program first identifies all instances
where the file constructs SQL code and then classifies
the file into one of four categories: none, hardcoded,
string concatenation, or string interpolation. The
“none” classification means that the file contained no
SQL statements, “hardcoded” means all SQL state-
ments were hard coded or used prepared statements,
“string concatenation” means one or more statements
were constructed using concatenation, and “string in-
terpolation” means one or more statements were con-
structed using string interpolation or concatenation.

Next, all locations in SQL statements that contain
or expect a SQL identifier are classified into the same
categories, with the addition of a “string concatena-
tion list” category which represents misconstructions
based on Definition 3 (and not single identifiers). Any
identifier types not found in the file are marked with
the “none” classification (e.g., the file contains no
SQL that calls a stored procedure).

4.3 GitHub Results

The crawler successfully obtained a total of 4,762,175
files from GitHub. The number of files per program-
ming language is presented in Table 1. These files

Table 1: Files and projects reviewed per language

Total Files Unique files
containing SQL Projects

Java 2,372,363 1,273,078 461,896
PHP 1,587,766 1,083,294 307,089
C# 802,046 526,921 175,331
Total 4,762,175 2,883,293 944,316

10 20 30 40
File Size (MB)

0.0

0.5

1.0

Pe
rc

en
ta

ge
of

Fi
le

s

Java
PHP
C#

Figure 3: Cumulative percentage of files by size

were spread across a total of 944,316 projects on
GitHub. Not all of the files obtained were unique. By
comparing the hashes of the obtained files, duplicate
files were identified and ignored. To avoid skewing
the analysis, all of the results presented in this paper
are based on the data set of unique files containing
SQL.

No limits were placed on the maximum size of
the file that GitHub might return. The size frame was
increased until no results were returned. The cumu-
lative percentage of files by file size can be seen in
Figure 3. The largest file obtained was a one-gigabyte
Java file. However, the graph shows that the vast ma-
jority of files obtained were under 40 MB in size, with
about 95% of files appearing below 40 MB for each
language. The remaining 5% was scattered haphaz-
ardly between 40 MB and 1 GB. Thus, the graphs
presented in this paper are restricted to under 40 MB
to prevent them from being skewed by these outliers.

The classifier identified that, of the unique files
that contain SQL, 144,461 (11.3%) Java files, 63,239
(5.8 %) PHP files, and 66,026 (12.5%) C# files con-
tained at least one incidence where an identifier was
concatenated or interpolated during the construction
of a SQL statement. Column and table names were
the most common identifiers. Table 2 presents the
number of constructions for non-identifier and iden-
tifier locations. For each location, the constructions
are further grouped by their type, which can be hard-
coded, string concatenation, or string interpolation.
Ideally, this table would include the number of files
that use a prepared-statement implementation, how-
ever, we found that it was typical for such libraries to

Table 2: Concatenation in SQL statements by location in unique files

Any non-identifier location Identifiers
Hardcoded Concatenated + Interpolated Hardcoded Concatenated + Interpolated

Java 732k 534k + 6k = 540k 1.1M 143k + 0.7k = 144k
PHP 96k 101k + 904k = 1M 1.0M 21k + 44k = 65k
C# 230k 180k + 117k = 297k 461k 47k + 19k = 66k
Total 1M 815k + 1.0M = 1.8M 2.6M 211k + 64k = 275k

Table 3: Statistics of the unique files analyzed

% of files
with

concat.

% of files
with

identifier
concat.

% of files with
concat. that

have identifier
concat.

Java 42.5% 11.3% 26.7%
PHP 91.1% 5.8% 6.4%
C# 56.4% 12.5% 22.2%
Total 63.3% 9.5% 15.0%

0 10 20 30
File Size (in MB)

0.0

0.1

0.2

Fi
le

s
w

ith
ID

co
nc

at
(%

)

Java
PHP
C#

Figure 4: Percentage of unique files with SQL identifier
concatenations by file size

be called, but not utilized (i.e., no placeholders were
used and data was appended using concatenation).

Table 3 details the statistics of the unique files an-
alyzed. The classifier classified 42% of Java, 91%
of PHP, and 56% of C# web-application files as con-
structing SQL statements via concatenation. It further
found that 27% of the Java, 6% of the PHP, and 22%
of the C# files that concatenate to construct SQL state-
ments concatenate identifiers.

Files classified as having concatenation were also
sorted by file size to determine whether there is a cor-
relation between file size and the likelihood of con-
catenation occurring. Figure 4 presents the results.

4.4 Discussion

The obtained results demonstrate that SQL identifiers
make up a small, but significant, portion of all SQL
misconstructions using concatenation. While the ma-
jority of identifiers are hardcoded into the string, the
number of concatenated identifiers still presents a po-

tential risk for SQL-IDIAs. Table identifiers were the
most commonly concatenated, followed by column
identifiers.

String interpolation was almost nonexistent in
Java programs as it is not supported natively. C# and
PHP had a larger number of instances of string inter-
polation, as both languages support it natively. String
interpolation is common in PHP, with over 83% of
files utilizing it to construct their SQL statements.
PHP had the highest concatenation rate which is re-
flected in the CVE analysis in Section 5, where the
majority of vulnerability reports were observed to be
WordPress applications.

There seems to be a strong correlation between the
size of files and the percentage of files that concate-
nate an identifier. This is likely a result of larger code
bases serving a more complex purpose, with a larger
number of queries that must be dynamic in nature.

An additional 658 Java files and 174 C# files were
classified correctly due to the updated SQL definition
in Section 3.2 (Definition 3). All of these files con-
catenated values into a location reserved for a SQL
identifier list. These files would not have been classi-
fied correctly without the updated definition.

4.4.1 Limitations

The amount of files that can be obtained is limited
by the somewhat unpredictable results of the GitHub
code-search API. This behavior can be seen even us-
ing the code-search feature available on the GitHub
website. When searching for a string and viewing the
code results, GitHub will report the number of code
results at the top of the page. Refreshing the page
repeatedly will show various different numbers due
to the run time limits placed on the query. An accu-
rate estimate of the number can be obtained by taking
the maximum value seen over a long period of time,
particularly during non-peak hours. This issue is also
present when retrieving the results, but is offset by the
large amount of available data.

The use of regular expressions to identify con-
catenation may be insufficient if developers construct
queries in particularly creative ways. However, given
the results of the manual analysis in Section 4.5, this
issue does not seem to be significant in the context

Table 4: Results of manual analysis of randomly sampled GitHub files

Total
Files

True
Pos.
(T P)

False
Pos.
(FP)

True
Neg.
(T N)

False
Neg.
(FN)

FP Rate(
FP

FP+T N

) FN Rate(
FN

FN+T P

) Precision(
T P

T P+FP

) Accuracy(
T P+T N

Total

)
Java 385 319 12 45 9 0.21 0.027 0.964 0.945
PHP 385 332 14 24 15 0.368 0.043 0.960 0.925
C# 385 290 18 69 8 0.207 0.027 0.942 0.932
Aggregate 1,155 941 44 138 32 0.242 0.033 0.955 0.934

of SQL-IDIAs, as developers appear to largely follow
predictable coding patterns and behaviors.

4.5 Classifier Verification

As with all other static analyzers, the classifier is nei-
ther sound nor complete, as programmers can be quite
creative in how they construct their SQL statements.
A random sampling of the data was manually verified
to determine the accuracy of the classifier. Each lan-
guage was verified independently and the ideal sam-
ple size for each language subset was determined to
be 385 for a precision level of 95% using Cochran’s
formula (Woolson et al., 1986). MySQL’s RAND func-
tion was used to randomly select the files for analy-
sis. As no other classifier for SQL-IDIAs exists that
would enable an automated comparison, the verifica-
tion was instead performed by downloading the file,
reviewing the source code, and verifying that the con-
struction of SQL output programs in the file corre-
sponded with the flagged results. For example, if the
classifier reported that a file contained string interpo-
lation of a column identifier, but no string interpola-
tion had occurred, this would be a false positive. The
classifier exhibited a false negative when it failed to
detect concatenation in an output SQL program that
was located in the file.

While observing the accuracy of the classifier, the
files were also reviewed to determine whether the ap-
plication was vulnerable to a SQL-IDIA. In order for
the application to be exploited, the concatenated value
must be sourced from user input. This was evalu-
ated separately from the classifier accuracy. From this
single-file analysis, about half of the files can be de-
termined to use obfuscated, hardcoded values or em-
ploy input sanitization. The remaining files concate-
nate values that originate from other source files or
from user input in the analyzed file and thus may be
vulnerable.

Based on this analysis, the classifier had an over-
all precision of 95.5% and an overall accuracy of
93.4%. False positives mostly arose due to SQL-like
statements in comments, logging, or error messages.
False negatives came from programmers constructing

or formatting their SQL output in an unusual or unpre-
dicted fashion. The results of the manual verification
are shown in Table 4.

During analysis, we observed several programs
with comments about their inability to use identifiers
with prepared statements. They attempted to over-
come this limitation by escaping special characters
in the identifiers manually. This practice is often not
sufficient for preventing injection attacks (Cetin et al.,
2019), and programmers who use prepared statements
may not be familiar with sanitization APIs.

4.6 Vulnerability Exploitation

With the classifier having been verified to exhibit sat-
isfactory accuracy, we tested whether the potentially
unsafe code could really be exploited; the unsafe code
is only exploitable if the output SQL code can be ma-
nipulated by the attacker and is not dead code. That
is, the concatenated values must be derived from user
input without proper validation, and the code must be
reachable during normal execution. While both static
and dynamic tools exist to detect SQLIAs more re-
liably, these tools cannot reliably detect SQL-IDIAs;
an example of sqlmap (sqlmapproject, 2023) (an au-
tomated SQLIA detection and exploitation tool) fail-
ing to exploit a SQL-IDIA vulnerable application is
shown later in this section. To determine how many
of these identified applications may be exploitable, a
subset of the applications manually verified were in-
stalled and tested. For all repositories determined to
be exploitable, their owners were notified of the vul-
nerabilities.

The following assumptions were made: 1) all
databases/tables that are referenced in the code ex-
ist and contain at least one entry, 2) the application
code is unmodified, 3) the application runs with the
standard configuration provided (if applicable), and
4) only the file chosen as part of the random analysis
is considered. Projects that did not compile or could
otherwise not be installed and exploited within two
hours were recorded as “Not Exploitable”, but these
applications may still be exploitable if these issues
were corrected or more time was allocated. Programs

Table 5: Types of applications analyzed

Interface Purpose TotalStudent Tutorial Other
Web 1 2 18 21
Standalone 5 2 14 21
Other 1 1 6 8
Java Total 7 5 38 50
Web 4 2 34 40
PHP Total 4 2 34 40
Web 1 0 26 27
Standalone 4 2 21 27
Other 0 1 7 8
C# Total 5 3 54 62

were otherwise marked “Not Exploitable” if the vul-
nerable code was dead code or if the concatenated val-
ues were not derived from user input, statically com-
pared to an allow list, or dynamically verified. The
application was marked as “Exploitable” if SQL code
could be injected and malicious behavior observed.

Only web applications were considered; a vul-
nerable serverless GUI or text application has less
value because the exploited database is on the user’s
machine. The breakdown of applications by lan-
guage, interface type, and purpose is shown in Ta-
ble 5. The other interface category includes li-
braries/frameworks, client-server apps, or build sys-
tems. All PHP applications were web applications.
The purpose category differentiates applications that
were student projects or tutorials. Relevant mark-
ers for being classified as a student application in-
cluded referencing a course, grade, or rubric directly
or an assignment directory structure (e.g., a folder
named “Assignment1”). Tutorial/beginner code con-
sisted of hello-world type programs or other obvious
references (such as the repository owner being a tuto-
rial site).

A total of 152 applications were inspected for ex-
ploitation. Of the 152, 50 were Java applications,
40 were PHP applications, and 62 were C# applica-
tions. Only a small number of applications were stu-
dent projects or tutorials. All of the PHP applications
were web applications, while only 21 Java and 27 C#
projects were web applications. Of the web applica-
tions, there were a total of 20 SQL-IDIA-vulnerable
applications that were confirmed to be exploitable: 4
out of 21 Java (19%), 15 out of 40 PHP (38%), and
1 out of 27 C# (4%). Only 2 of the exploitable ap-
plications were student programs (1 PHP and 1 C#);
the others all appeared to serve a more professional
purpose. A summary of the vulnerable applications
grouped by the vulnerable identifier type is shown in
Table 6. Note that the total numbers will not sum
to the number of applications because an application

Table 6: SQL-IDIA-exploitable applications by Identifier
Type

Table Column Column
(ORDER BY)

/ Total # / Total # / Total
Java 1 / 14 0 / 3 3 / 6
PHP 4 / 24 2 / 14 9 / 11
C# 0 / 14 0 / 21 1 / 5
Total 5 / 52 2 / 38 13 / 22

may include a combination of identifiers. Multiple in-
stances of a single type in an application were counted
once. These numbers are a lower bound, because only
the randomly-chosen file was considered; several ap-
plications were vulnerable in other files.

Column identifiers used in ORDER BY statements
were the most likely to be vulnerable, with 12 of
the 20 SQL-IDIA-vulnerable applications specifically
containing an ORDER BY concatenation vulnerability.

While the focus was on exploiting SQL-IDIA-
vulnerable applications, a number of other vulnerable
applications were observed during the process. A to-
tal of 25 other applications were exploitable but not
via identifiers (7 Java, 14 PHP, and 4 C#). This num-
ber is a very conservative minimum; since SQLIAs
were not a focus, these applications were only discov-
ered passively and because they were very obvious.

A total of 13 applications were not exploitable be-
cause the identified concatenation occurred in dead
code. The functions concatenated an argument into
a SQL output program but were not called. Most of
these functions were alternative queries sorting data
using the ORDER BY statement. For example, a fo-
rum application allowed finer user sorting, but the
search interface was not yet implemented. If used
without a mitigation technique, the functions would
be exploitable. Furthermore, 2 applications exported
non-sanitizing string libraries that client applications
could use incorrectly (by assuming the libraries sani-
tize).

Combining these categories, 60 exploitable and
problematic applications were identified out of 152
(20 SQL-IDIAs, 25 other SQLIAs, 13 dead-code con-
catenations, and 2 non-sanitizing libraries).

Figure 5 demonstrates a SQL output program for
an exploitable PHP application that could not be de-
tected using sqlmap (sqlmapproject, 2023). The $c
variable is user input interpolated directly into the
output SQL program. The intended content of this
$c variable should be “users” or “crew”, querying ei-
ther the customers or employees table using the same
code. Any subquery injected into this location would
not be syntactically valid without a table alias, and
sqlmap does not include this technique in a scan. Two

$sql="SELECT * FROM $c WHERE ...";

(a) Truncated PHP code from one of the exploited pro-
grams.

(SELECT SLEEP (10000)) as t --

(b) The malicious input; the table alias is necessary to be
syntactically valid.
Figure 5: One of the exploited applications that could not
be detected using sqlmap (sqlmapproject, 2023).

other instances were not detectable using sqlmap and
were also exploited using a minor syntactic change:
the first used a column alias, and the second modified
an INSERT statement by injecting a SELECT statement
to specify the data (instead of the VALUES keyword).

5 SQL-IDIAS IN CVES

MITRE’s Common Vulnerabilities and Exposures
(CVE) List (MITRE Corporation, 2020) tracks pub-
licly known cybersecurity vulnerabilities. Of the
200,946 CVE entries added from 1999 to 2023,
11,766 (5.9%) were SQLIAs, making it the sixth most
prevalent vulnerability type as ranked on the CVE De-
tails site after code execution (23.1%), denial of ser-
vice (14.9%), overflow (11.8%), cross-site scripting
(12.9%), and information gain (6.8%) (CVE Details,
2019). In 2022, 1,789 SQLIA entries were added,
making up 7.1% of the 25,227 vulnerabilities reported
that year. This is the largest recorded number of
SQLIAs in one year, beating the previous record of
1,101 in 2008 by a large margin. It also more than
doubles the 741 reported in 2021.

To determine the prevalence of SQL-IDIAs, we
analyzed 1,775 SQLIA CVEs by hand. Note this
number slightly differs from the overall mentioned
previously, as we analyzed all CVEs published (not
reported) in 2022. Of the 1,775 SQLIAs published in
2022, 1,507 were also reported in 2022; the remain-
ing 268 were published in 2022 but reported earlier.
The publication date was chosen as it is a static set
of CVEs. More CVEs first reported in 2022 may be
published much later, making that number unreliable.
For example, one of the vulnerabilities published in
2022 has a CVE label from 2013.

In our analysis, SQLIAs are considered SQL-
IDIAs when they satisfy Definition 3. Such a clas-
sification cannot always be made from the vulnerabil-
ity description alone as they rarely provide sufficient
technical detail. To determine whether the CVE rep-
resents a SQL-IDIA, the CVE must reference source
code or a proof of concept (PoC) attack. We there-

fore excluded the 15% of 2022 SQLIA CVEs that
lacked reference source code or a PoC. If source code
is available, the classification can be determined by
finding the injection point and reviewing the query.

5.1 SQL-IDIAs in CVEs

To demonstrate how real SQL-IDIAs have appeared
in applications and to demonstrate how they can
be classified, this subsection describes two example
SQL-IDIAs found in vulnerabilities reported to the
CVE List. To demonstrate the difference between
classifying with source code and with a PoC, the
first example, CVE-2020-8520, contains a PoC and
the source code. The second example, CVE-2020-
9268, only references a PoC. These examples are
from 2020, and not part of the data set; the two were
part of our training set for the researcher performing
the manual analysis.

CVE-2020-8520 is for a jQuery Datatables tuto-
rial by PHPZag using PHP and MySQL. All of the
source code is available for download and described
in detail in a blog post (PHPZag Team, 2023). Three
SQLIAs against this program have been discovered
and included in the CVE list, one of which is a SQL-
IDIA. The application, uses MySQLi, a PHP exten-
sion for interfacing with MySQL databases with pre-
pared statements, but these features are not used.

The application creates a table named
live records. Line 29 of the file Records.php,
which retrieves the data stored in the live records
table based on the user’s request, contains the
following PHP code:

$sqlQuery.=’ORDER BY ’ . $_POST[’order
↪→ ’][’0’][’column ’] . ’ ’ . $_POST
↪→ [’order ’][’0’][’dir ’] . ’ ’;

This PHP statement appends user input (via the
global variable $ POST) directly to an ORDER BY
statement. Clearly, untrusted input can be injected
into this query, and there exists an identifier list
(specifically any combination of id, name, skills,
address, designation, or age) such that concate-
nating that list into the query creates a valid SQL
statement. The CVE can thus be classified as a SQL-
IDIA.

CVE-2020-9268 details a vulnerability found in
an online tool. This app, SoPlanning, provides ser-
vices for planning teamwork periods. For this exam-
ple, only the PoC attack linked directly in the CVE
is considered. An automated tool, sqlmap (sqlmap-
project, 2023), was used to discover and exploit the
vulnerability. Sqlmap is used to analyze the by GET
parameter in the following URL (which is partly in
French):

0 10 20 30 40 50 60 70 80 90 100

PoC Only

Source
Only

PoC and
Source

Advisory
Only

4.3

8.2

72.2

15.2

Percent of CVE entries
Figure 6: Resources available for classification in 1775
SQLIA CVE entries from 2022

0 10 20 30 40 50 60 70 80 90 100

Non-SQL-
IDIAs

SQL-IDIAs

ID misuse

91.4

8.6

19.0

Percent of CVE entries
Figure 7: Classified SQLIA CVE entries for 2022

/soplanning/www/projets.php?order=
↪→ nom_createur&by=ASC

Based on the names of these parameters, it appears
that injection on the by GET parameter is a SQL-IDIA
in an ORDER BY statement. In addition, the valid value
ASC appears in ORDER BY statements, and one of the
sqlmap suggestions is for an ORDER BY statement. As
ORDER BY statements must be followed by an identi-
fier list, this CVE is vulnerable to a SQL-IDIA.

5.2 CVE Results

Of the 1,775 SQLIA CVEs published in 2022, 72.2%
had a PoC and source code available, 8.2% had only
the source code available, 4.3% had a PoC only, and
15.2% had only an advisory. Figure 6 shows the avail-
able references in SQLIA CVEs from 2022. Figure 7
presents the results of the 1505 classifiable CVEs,
classifying them as SQL-IDIAs or SQLIAs. SQL-
IDIAs make up 8.6% of classifiable SQLIAs and at
least 6.8% of all the SQLIA CVEs published. About
19% of those vulnerable projects constructed SQL
statements incorrectly using identifiers.

5.3 Discussion

Although SQL-IDIAs are not the majority of reports,
all of the other CVE SQLIAs analyzed could have
been prevented using prepared statements. In many

cases, the vulnerable application used a library pro-
viding prepared statements but did not employ them.
CVE-2020-8520, the training example described in
detail, does not take advantage of prepared state-
ments using MySQLi despite passing the query to
the prepare function that takes a parameterized SQL
statement. Thus, the reported SQLIAs that are not
SQL-IDIAs are preventable using existing technolo-
gies that are readily available.

Developers not employing readily available pre-
pared statements was a common issue across CVEs.
About 19.0% of the CVEs had source code that con-
catenated an identifier elsewhere in the code (exclud-
ing the vulnerable location reported in the CVE), with
the majority using prepared statements correctly in
other locations. Vulnerabilities that were observed in
large code bases were often caused by a single miss-
ing use of prepared statements; making concatenation
poor practice by supporting SQL identifiers in pre-
pared statements may help reduce such occurrences.

The percentage of SQL-IDIA vulnerabilities
found in the universe of classifiable SQLIA vulnera-
bilities (8.6%) is less than the percentage of identifier
concatenations found in the universe of GitHub SQL
concatenations (14%) as described in Section 4.3. Fu-
ture work might explore such gaps further, to try to
make statistical inferences and conclusions about how
accurately classifiable CVE reports represent the vul-
nerabilities present in large open-source data sets.

6 CONCLUSIONS

SQL concatenations, which form the basis for SQL
injection attacks, are prevalent in web applications.
In total, 63% of web applications analyzed contained
SQL concatenations.

SQL identifier concatenations comprised approxi-
mately 15% of SQL concatenations. Given that our
automated GitHub crawler and code analyzer clas-
sified approximately 275K files as containing SQL
identifier concatenations, with a precision rate of
95.5%, we estimate our automated framework found
approximately 262K—over a quarter of a million—
web-application files vulnerable to SQL-IDIAs. Of
these 262K files, 62K are likely to meet all of the ad-
ditional requirements to be exploited in practice.

These results were not equally distributed across
the three analyzed languages. PHP applications were
particularly exploitable at 38% of applications but
also had the overall lowest percentage of identifier
concatenations at 6%. While this is likely partially
due to the very high number of overall concatena-
tions in PHP, with 91% of files concatenating SQL

values, SQL-IDIAs are quite a concern for PHP due
to the relatively high opportunities for exploiting con-
catenations in practice. Compared to Java and C#,
we hypothesize PHP’s vulnerability is largely due to
the common use of string interpolation. However, all
three languages remain susceptible to SQL-IDIAs and
would benefit from support for identifiers in prepared
statements.

Based on these analyses, we recommend that ex-
isting prepared-statement implementations expand to
cover insertions of identifiers. For example, previ-
ous work has described and analyzed a non-public
proof-of-concept implementation of prepared state-
ments with coverage of identifiers (Cetin et al., 2019).

Potential directions for future work include ex-
panding a large-scale open-source DBMS such as
MySQL to include support for identifiers in prepared
statements, and incorporating these additions into
front-end APIs for commonly used languages.

REFERENCES

Anley, C. (2002). Advanced SQL injection in SQL server
applications. Technical report. https://crypto.stanfor
d.edu/cs155old/cs155-spring11/papers/sql injection
.pdf.

Bandhakavi, S., Bisht, P., Madhusudan, P., and Venkatakr-
ishnan, V. N. (2007). CANDID: Preventing SQL in-
jection attacks using dynamic candidate evaluations.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS). https://doi.org/
10.1145/1315245.1315249.

Cetin, C., Goldgof, D., and Ligatti, J. (2019). SQL-
identifier injection attacks. In IEEE Conference on
Communications and Network Security (CNS). https:
//doi.org/10.1109/CNS.2019.8802743.

Clarke-Salt, J. (2012). SQL Injection Attacks and Defense.
Elsevier, 2nd edition.

CVE Details (2019). Vulnerability distribution of CVE se-
curity vulnerabilities by types. https://www.cvedetails
.com/vulnerabilities-by-types.php. Retrieved October
15, 2023.

Gousios, G. and Spinellis, D. (2012). GHTorrent: GitHub’s
data from a firehose. In IEEE Working Conference on
Mining Software Repositories (MSR). https://doi.org/
10.1109/MSR.2012.6224294.

Gousios, G., Vasilescu, B., Serebrenik, A., and Zaidman,
A. (2014). Lean GHTorrent: GitHub data on demand.
In Proceedings of the Working Conference on Mining
Software Repositories (MSR). https://doi.org/10.114
5/2597073.2597126.

Grigorik, I. (2023). GH Archive. https://www.gharchive.or
g. Retrieved April 26, 2023.

Halfond, W. G. J. and Orso, A. (2005). AMNESIA: Anal-
ysis and Monitoring for NEutralizing SQL-Injection

Attacks. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE). https://doi.org/10.1145/1101908.1101935.

Halfond, W. G. J., Viegas, J., and Orso, A. (2006). A clas-
sification of SQL-injection attacks and countermea-
sures. In Proceedings of the IEEE international sym-
posium on secure software engineering, volume 1.

Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R.
(2013). Why don’t software developers use static anal-
ysis tools to find bugs? In Proceedings of the Inter-
national Conference on Software Engineering (ICSE).
https://doi.org/10.1109/ICSE.2013.6606613.

MITRE Corporation (2020). CVE - common vulnerabili-
ties and exposures. https://cve.mitre.org/. Retrieved
October 15, 2023.

Nagy, C. and Cleve, A. (2017). A static code smell de-
tector for SQL queries embedded in Java code. In
IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM). https:
//doi.org/10.1109/SCAM.2017.19.

Open Web Application Security Project (2018). SQL injec-
tion prevention - OWASP cheat sheet series. https:
//www.owasp.org/index.php/SQL Injection Prevent
ion Cheat Sheet. Retrieved October 15, 2023.

Open Web Application Security Project (2021). OWASP
top ten – 2021. https://owasp.org/www-project-top-t
en/. Retrieved April 26, 2023.

PHPZag Team (2023). Live add edit delete datatables
records with Ajax, PHP and MySQL. https://www.
phpzag.com/live-add-edit-delete-datatables-records
-with-ajax-php-mysql/. Retrieved October 15, 2023.

Ray, D. and Ligatti, J. (2012). Defining code-injection at-
tacks. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL). https://doi.org/10.1145/2103656.2103678.

Ray, D. and Ligatti, J. (2014). Defining injection attacks. In
Proceedings of the International Information Security
Conference. https://doi.org/10.1007/978-3-319-132
57-0 26.

Son, S., McKinley, K. S., and Shmatikov, V. (2013). Diglos-
sia: Detecting code injection attacks with precision
and efficiency. In Proceedings of the ACM SIGSAC
Conference on Computer & Communications Security
(CCS). https://doi.org/10.1145/2508859.2516696.

sqlmapproject (2023). sqlmap. https://github.com/sqlmapp
roject/sqlmap. Retrieved October 15, 2020.

State of the Octoverse (2023). The global developer com-
munity. https://octoverse.github.com/2022/develope
r-community. Retrieved April 26, 2023.

Woolson, R. F., Bean, J. A., and Rojas, P. B. (1986). Sample
size for case-control studies using Cochran’s statistic.
Biometrics, 42(4):927–932. https://doi.org/10.2307/
2530706.

WordPress (2023). wpdb::esc like. https://developer.word
press.org/reference/classes/wpdb/esc like/. Retrieved
April 26, 2023.

