An Evaluation of the Power Consumption of Coauthentication
as a Continuous User Authentication Method in Mobile Systems

Brandon Corn
Columbus State University
Columbus, GA, USA
corn_brandon@columbusstate.edu

Cagri Cetin
University of South Florida
Tampa, FL, USA
cagricetin@mail.usf.edu

ABSTRACT

Methods for continuous user authentication have become important
with the proliferation of mobile devices in m-Health and human-
centered systems. These methods must guarantee user identity with
high assurance, authenticate without explicit intervention, and be
power-aware. We present an evaluation of the power consumption
of collaborative authentication (coauthentication) as a continuous
authentication method. Coauthentication is a single-factor method
in which multiple registered devices work together to authenticate
a user, minimizing obtrusiveness while providing high user au-
thentication assurance. To evaluate coauthentication’s power con-
sumption, we conducted experiments using two Bluetooth-enabled
mobile devices and a stand-alone server in a local area network and
running coauthentication continuously for eight hours. We found
that the protocol uses approximately between 1.19% and 4.0% of the
total power used by the devices. These results give evidence of the
feasibility of using coauthentication as a continuous authentication
method in mobile devices from the power consumption perspective.

CCS CONCEPTS

« Security and privacy — Authentication; - Human-centered
computing — Ubiquitous and mobile computing,.

KEYWORDS

Authentication, Continuous authentication, Mobile systems, Power
consumption

ACM Reference Format:

Brandon Corn, Alfredo J. Perez, Ashley Ruiz, Cagri Cetin, and Jay Ligatti.
2020. An Evaluation of the Power Consumption of Coauthentication as a
Continuous User Authentication Method in Mobile Systems. In 2020 ACM
Southeast Conference (ACMSE 2020), April 2-4, 2020, Tampa, FL, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3374135.3385304

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACMSE 2020, April 2—4, 2020, Tampa, FL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7105-6/20/03...$15.00
https://doi.org/10.1145/3374135.3385304

Alfredo J. Perez
Columbus State University
Columbus, GA, USA
perez_alfredo@columbusstate.edu

Ashley Ruiz
Universidad Ana G. Mendez
Gurabo, PR, USA
aruiz139@email.suagm.edu

Jay Ligatti
University of South Florida
Tampa, FL, USA
ligatti@usf.edu

1 INTRODUCTION

A Continuous Authentication (CA) method is a security mecha-
nism that monitors user’s actions at a high frequency (in time)
and determines if a user is an authorized one [5]. CA methods are
advantageous over one-time mechanisms because the latter may
allow non-authenticated users to access protected resources if the
initial user does not properly log out of a session [9], or if the sys-
tem that makes use of the one-time authentication method does not
log out (or re-authenticates) the initial user during a session after
a long time. CAs are important for systems requiring assurance
that long tasks are conducted by an authorized user, which may be
the case of m-Health applications, for example, on the automated
medication delivery (dosage) on a patient outside a hospital [10].

Since CAs authenticate users continuously, these methods must
be reliable, user-friendly and power-efficient (especially in battery-
powered devices). In this work, we present an evaluation from the
power consumption perspective of collaborative authentication
(coauthentication) [8] when used as a CA method in mobile phones.
Coauthentication makes use of multiple devices which collaborate
to authenticate a user. The rest of this paper is organized as fol-
lows. Section 2 presents the related work. In section 3 we describe
the coauthentication method. Section 4 presents the methodology
and evaluation of the power consumption of coauthentication. In
section 5 we provide conclusions and future work.

2 RELATED WORK

Since the first works on CA methods, they have been based on
something that the user is, which is, the utilization of biometrics (or
patterns) obtained or inferred from the user when using a system.
According to Gonzalez-Manzano et al. [5], the first contributions
to CAs date back to mid 90’s with keystroke analysis for PCs used
to continuously monitor a user [12]. Since then, multiple biometric
CAs techniques have been researched based on face recognition,
gait analysis, touch dynamics, keystroke dynamics, user behavior
and sound for both PCs and mobile environments [7, 13].

Since biometric-based methods use machine learning techniques
to learn patterns to authenticate a user, they lead to issues such
as the collection of data for model training, the accuracy of these
methods to authenticate a user, and the possibility of active attacks
through adversarial machine learning [6], making them not usable

https://doi.org/10.1145/3374135.3385304
https://doi.org/10.1145/3374135.3385304

for certain classes of applications, or they may generate security
gaps.

In addition to the security and usability issues, a third factor usu-
ally ignored when evaluating CA methods is power consumption.
Whereas power is assumed to be negligible in PCs, in mobile envi-
ronments (especially for battery-powered devices such as mobile
phones and wearables), power is critical as it impacts the utilization
of the device [11]. In the past, it has been shown that the utilization
of a mobile phone’s camera (in the activation of the camera sensor
only) can deplete a cell phone battery’s in as little as 3.5 hours when
continuously used [2]. Finally, the continuous utilization of Ma-
chine Learning (ML) algorithms in mobile devices as traditionally
used has a negative impact in battery life when floating-point data
representation and operations are used (usually to extract features
needed for ML methods to work) [1]. Thus, biometric-based CAs
may generate significant power overhead in mobile devices.

3 COAUTHENTICATION

Collaborative authentication (coauthentication) [8] is a single-factor
user authentication technique in which multiple registered devices
work together to authenticate a user. Coauthentication does not
need passwords or any type of biometrics to authenticate a user,
yet it provides benefits against phishing prevention, replay, man-
in-the middle, device misplacement and denial-of-service attacks.
Coauthentication can be implemented through different protocols.
However, independently of its implementation, the method requires
the following type of devices:

o Authenticator: This device is typically a server that decides
to authenticate a user.

o Requestor: This device starts the authentication process.

e Collaborators: These devices are registered with the authen-
ticator, and they are needed to execute the coauthentication
protocol. At least one collaborator device is needed.

The full coathentication protocol for a requestor and one collab-
orator device is shown in Figure 1. Initially, requestor and collabo-
rator devices register with the authenticator to establish authenti-
cation secrets which are shared symmetric cryptographic keys. For
the authenticator A and requestor R, they share a secret key KR,
and the authenticator A and collaborator C share a secret key K z¢.
In this scenario, the protocol works as follows:

(1) Requestor R initiates the coauthentication method by send-
ing the authenticator AitsID and an encrypted authentication-
request message containing a challenge nonce N; (which
serves to authenticate A to R).

(2) Authenticator A receives and decrypts the request message,
finds that the requestor R is registered to a user having col-
laborating device C, creates a challenge nonce Nz (which
serves to authenticate R to A), generates two new keys (Kar

and K4g) to share with R (to rotate keys, to ensure forward
secrecy and prevent key-duplication attacks), and double
encrypts these data in a collaboration-request message to C,
the first (inner) encryption using K4g and the second (outer)
encryption using K4c. By double encrypting nonce Ny, the
authenticator ensures participation of both user devices’ se-
cret keys (Kar and K4¢) in the coauthentication.

(3) Collaborator C receives and decrypts the previous message,
verifies the identity of the requestor, and forwards the de-
crypted message (which is still ciphertext encrypted with
K AR) to requestor R through a private channel.

(4) Requestor R receives and decrypts this message using KR,
verifies the identity of the collaborator, and obtains No, I@,

and Kag. The requestor then generates and sends the au-
thenticator a collaboration-response message containing Ny
encrypted with its first updated key, K4r. The requestor

saves the second updated key, Im, for a future coauthenti-
cation request.

(5) Authenticator A receives the collaboration-response mes-
sage, decrypts, and verifies the collaborator’s identity and
that the received nonce matches the N it sent earlier. Be-
cause A has now verified participation of both keys Kar
and K 4¢, it sends an authentication-complete message, for
example containing a session key Kk, to the requestor R.

(6) Requestor R sends an acknowledgment to the authenticator.

In figure 1, message 3 is sent from the collaborator to the re-
questor using a private channel (i.e, a Bluetooth connection). Every
other message is sent via a public (shared) channel (i.e., WiFi, 5G,
SMS). When used as a CA method, the requestor performs the above
steps continuously as needed without user intervention (a zero-
interaction system [3]). Past research has demonstrated coauthen-
tication as a secure and usable user authentication method [8, 14].

4 METHODOLOGY
4.1 Experimental Testbed

The testbed that we used to measure the power consumption of
coauthentication is composed of the following devices:

o A WiFi access point to setup a Wireless Local Area Network
(WLAN) for the devices.

e Two Huawei MateSE smartphones which served as requestor
and collaborator running Android 8.0.

o A laptop that served as the authenticator. This laptop ran
Windows 10.

We used Battery Historian [4] which is a tool developed by
Google that generates data about power-related events on an An-
droid mobile phone. The tool works on the output of log reports
collected via the dumpsys command-line utility that is part of the
Android SDK tools. Battery Historian gives statistics about the fol-
lowing aspects of the device: history of battery-related events; de-
vice’s global statistics; approximate power use per UID and system
component; per-app mobile ms per packet; system UID aggregated
statistics; and app UID aggregated statistics (among others). Battery
Historian works by first using the dumpsys tool to obtain a log,
then uploading the log to the web-based app tool to analyse the
behavior of the app. In our experiments, we collected the logs for
the collaborator and the requestor devices.

The smartphones ran an Android application (Figure 2) that
implemented the coauthentication protocol, in particular the re-
questor and collaborator components of the protocol as described in
section 3 (Figure 1). The laptop executed the authenticator compo-
nents of the protocol. We instrumented the Android app to execute
the full coauthentication protocol continuously for eight hours

Authenticator

1)R. {AuthReq, NilKar

1R, {CoIiabResp.C. N2l

5)A Ksk, C, Ny o=
AR

6)R. {Acknowledge ment}Ksx

Requestor

2)A, (R, {CollabRegq, ¢, :’Vz‘

Collaborator

Kar Kaglg,

LR }KAC‘

3)A, {CollabReq. C. Na. Kar-KarIKar

Figure 1: The Full Coauthentication Protocol [8]

Co-Authentication-Android

AUTHENTICATE

COOPERATE

EXIT

Figure 2: An Android Screenshot of App used for Experi-
ments

(to assume a normal working day in which a device may not be
charged), issuing 9,675 requests approximately (1 request every
three seconds approximately). All the software was implemented
in Java. The only human intervention during the execution of the
experiments was the initial pressing of the Authenticate button for
the requestor device, and the Cooperate button for the collaborator
device.

The requestor and collaborator devices were connected via Blue-
tooth to exchange messages. The authenticator, requestor and col-
laborator were connected to the same WLAN via WiFi, with mes-
sages between them exchanged using TCP and HTTPS connections
(Figure 3). This scenario recreates when coauthentication may be
used for m-Health applications in a closed environment (i.e., a
home, a retirement facility, hospital). Based on the WiFi protocol
specification, when used in infrastructure mode (i.e., with base
station as intermediary), all data is forwarded to the base station,
then broadcast to its receiver. Every time the implementation was

HTTPS/TCP over WiF—————»-

~————HTTPS/TCP over Wifi—» |

WiFi Access Point \

LTTPSNCP over WF4D

Collaborator

Requestor

I'y

Bluetooth

Authenticator

Figure 3: Experimental Testbed

executed new TCP, HTTPS and Bluetooth connections were open
between the devices. However, the collaborator and requestor were
left paired.

We used the standard javax.crypto library with symmetric cryp-
tographic operations implemented with 256-bit Cipher Block Chain-
ing (CBC) mode Advanced Encryption Standard (256-bit CBC-mode
AES). All nonces, session keys and updated K4 keys were dynam-
ically generated using Java’s SecureRandom class, with sizes 64-bit
(nonces), 256-bit (session keys) and 256-bit (K 4g) respectively. The
initial keys were assumed to be shared before the execution of the
protocol and they were hard-coded.

Before conducting the experiments both devices were charged
to 100% battery capacity so that if the applications were to deplete
the power, we could observe how long the application ran before
the devices’ battery was without charge. Before the apps were run,
we reset the battery stats and cleared the logs of both devices so
that when analyzing the log reports, all the statistics pertained to
the experiment’s 8 hours data. Only essential background services
were in execution while the experiments were performed. During
the eight hours that the experiments were conducted, the app at
both mobile phones was in the foreground (i.e., app always in the
screen).

Table 1: Summary of measurements collected via Battery
Historian for the coauthentication Android app

Measure Requestor Collaborator
Est. power use (pct) 3.53% 1.66%
Est. power use due to CPU (pct) 0.00% 0.00%
Total WiFi data transferred 4.42 MB 3.45MB
WiFi data received 1.95MB 3.06MB
WiFi data transmitted 2.48MB 401KB
Bluetooth power use 0.03% 0.06%

4.2 Results

We report the results of the execution of one of the experiments in
Table 1. The app was executed in both phones for eight consecutive
hours with minimum power consumption for both the requestor
and collaborator devices. At the end of the experiments, the device’s
batteries were discharged at 45% (requestor) and 43% (collaborator)
approximately, but this was due to how the coauthentication app
was implemented: the app was always in the foreground (screen was
always on). In Battery Historian, the power consumed due to screen
usage is reported differently than the stats presented in Table 1, thus
the table presents the actual power usage by the protocol itself. We
ran this experiment eight times with minimum power consumed
by the collaborator at 1.19% and maximum power consumed by
the requestor at 4%. The power consumed was consistent with the
results reported Table 1.

Most of the power consumed in the requestor was spent on trans-
mitting WiFi data. This can be seen from the protocol’s design as
the requestor sends three messages to the authenticator using the
WiFi network interface while the collaborator does not send any
app messages (only TCP/IP control messages are sent which ex-
plains the low quantity of WiFi data transmitted). The collaborator
device spent power transmitting Bluetooth data. Being developed
for Personal Area Networks (PANSs), Bluetooth has been optimized
for low-power consumption. It worth also mentioning that due to
the utilization of symmetric cryptographic keys in the protocol, the
power consumption due to CPU usage is negligible.

If coauthentication is used in a m-Health system, the collaborator
(or collaborators) would be sensor or devices located in the body of
a person or in close proximity (to minimize power in sending data
via a PAN), and the requestor may be a mobile phone or a medical
device with reliable power that collects data from the sensors. In
this scenario, coauthentication can be a great protocol for CA due
to its simplicity, usability and low-power consumption.

4.3 Limitations

In our experiments we evaluated the power consumption of coau-
thentication in a WLAN. When used with cellular networks, even
though the amount of data transmitted may not significantly change,
the utilization of the cellular interface may increase the power con-
sumption of the protocol depending on the geographical location
from where the requestor and collaborator devices implement-
ing/using the protocol are transmitting to the authenticator via
a cellular base station: the farther away a device is from a cellular
base station (i.e, antenna), more transmission power the mobile

devices use because they increase the power in their antenna to
reach the base station.

5 CONCLUSION AND FUTURE WORK

We have experimentally evaluated the power consumption of coau-
thentication when used as a continuous authentication protocol. We
found that the full coauthentication protocol consumes negligible
amount of power when used continuously. Since coauthentication
has been shown to be a reliable and usable protocol, we conclude
that given its low-power consumption, coauthentication is a suit-
able protocol for CA. As future work we plan to evaluate the power
consumption of variations in implementations of the protocol [8],
as well as evaluating the protocol when used with cellular networks.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valuable com-
ments and suggestions. This work is supported by the US National
Science Foundation and the US Department of Defense under grant
award 1560214, and by the US National Science Foundation under
grant award 1950416.

REFERENCES

[1] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Reyes-Ortiz. 2013. Energy Efficient
Smartphone-Based Activity Recognition using Fixed-Point Arithmetic. J. UCS
19, 9 (2013), 1295-1314.

F. Ben Abdesslem, A. Phillips, and T. Henderson. 2009. Less is More: Energy-

efficient Mobile Sensing with SenseLess. In Proc. 1st ACM workshop on Networking,

systems, and applications for mobile handhelds. ACM, Barcelona, Spain, 61-62.

[3] M. Corner and B. Noble. 2002. Zero-Interaction Authentication. In Proc. 8th
Annual International Conference on Mobile Computing and Networking (MobiCom
’02). ACM, New York, NY, USA, 1-11. https://doi.org/10.1145/570645.570647

[4] Android Developer. 2019. “Profile battery usage with Batterystats and Battery
Historian.

[5] L. Gonzalez-Manzano, J. De Fuentes, and A. Ribagorda. 2019. Leveraging User-
related Internet of Things for Continuous Authentication: A Survey. ACM Comput.
Surv. 52, 3, Article 53 (June 2019), 38 pages. https://doi.org/10.1145/3314023

[6] L.Huang, A.Joseph, B. Nelson, B. Rubinstein, and J. Tygar. 2011. Adversarial Ma-
chine Learning. In Proc. 4th ACM Workshop on Security and Artificial Intelligence
(AlSec °11). ACM, New York, NY, USA, 43-58. https://doi.org/10.1145/2046684.
2046692

[7] A.Klosterman and G. Ganger. 2000. Secure Continuous Biometric-enhanced Au-

thentication. Technical Report. Carnegie-Mellon University Dept. of Computer

Science.

J. Ligatti, C. Cetin, S. Engram, J. Subils, and D. Goldgof. 2019. Coauthentication. In

Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC ’19).

ACM, New York, NY, USA, 1906-1915. https://doi.org/10.1145/3297280.3297466

[9] K. Niinuma, U. Park, and A. Jain. 2010. Soft Biometric Traits for Continuous

User Authentication. IEEE Trans. Info. For. Sec. 5, 4 (Dec. 2010), 771-780. https:

//doi.org/10.1109/TIFS.2010.2075927

A. Perez, S. Zeadally, and N. Jabeur. 2018. Security and Privacy in Ubiquitous

Sensor Networks. Journal of Information Processing Systems 14, 2 (2018).

B. Priyantha, D. Lymberopoulos, and J. Liu. 2011. Littlerock: Enabling Energy-

efficient Continuous Sensing on Mobile Phones. IEEE Pervasive Computing 10, 2

(2011), 12-15.

[12] S. Shepherd. 1995. Continuous Authentication by Analysis of Keyboard Typing

Characteristics. In European Convention on Security and Detection, 1995. IET,

Brighton, UK, 111-114. https://doi.org/10.1049/cp:19950480

T. Sim, S. Zhang, R. Janakiraman, and S. Kumar. 2007. Continuous Verification Us-

ing Multimodal Biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence

29, 4 (April 2007), 687-700. https://doi.org/10.1109/TPAMI.2007.1010

J. Subils, J. Perez, P. Liu, S. Engram, C. Cetin, D. Goldgof, N. Ebner, D. Oliveira, and

J. Ligatti. 2019. A Dual-Task Interference Game-Based Experimental Framework

for Comparing the Usability of Authentication Methods. In 2019 12th International

Conference on Human System Interaction (HSI). IEEE, Richmond, VA, USA, 95-100.

[2

—
&

[10

[11

[13

[14

https://doi.org/10.1145/570645.570647
https://doi.org/10.1145/3314023
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1145/3297280.3297466
https://doi.org/10.1109/TIFS.2010.2075927
https://doi.org/10.1109/TIFS.2010.2075927
https://doi.org/10.1049/cp:19950480
https://doi.org/10.1109/TPAMI.2007.1010

	Abstract
	1 Introduction
	2 Related Work
	3 Coauthentication
	4 Methodology
	4.1 Experimental Testbed
	4.2 Results
	4.3 Limitations

	5 Conclusion and Future Work
	Acknowledgments
	References

