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Abstract. A run-time monitor is a program that runs in parallel with
an untrusted application and examines actions from the application’s
instruction stream. If the sequence of program actions deviates from a
specified security policy, the monitor transforms the sequence or termi-
nates the program. We present the design and formal specification of a
language for defining the policies enforced by program monitors.
Our language provides a number of facilities for composing complex poli-
cies from simpler ones. We allow policies to be parameterized by values
or other policies, and we define operators for forming the conjunction and
disjunction of policies. Since the computations that implement these poli-
cies modify program behavior, naive composition of computations does
not necessarily produce the conjunction (or disjunction) of the policies
that the computations implement separately. We use a type and effect
system to ensure that computations do not interfere with one another
when they are composed.

1 Introduction

Any system designed to execute and interoperate with potentially malicious code
should implement at least two different sorts of security mechanisms:

1. A safe language and sound type checker to statically rule out simple bugs.
2. A run-time environment that will detect, document, prevent and recover

from those errors that cannot be detected beforehand.

Strong type systems such as the ones in the Java Virtual Machine [LY99] and
Common Language Runtime [GS01,Gou01,MG] are the most efficient and most
widely deployed mechanisms for ruling out a wide variety of potential security
holes ranging from buffer overruns to misuse of system interfaces.

To complement static checking, secure run-time environments normally use
auxiliary mechanisms to check properties that cannot be decided at compile
time or link time. One of the ways to implement such run-time checks is with
program monitors, which examine a sequence of program actions before they are
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executed. If the sequence deviates from a specified policy, the program monitor
transforms the sequence or terminates the program.

In this paper, we describe a new general-purpose language called Polymer
that can help designers of secure systems detect, prevent and recover from er-
rors in untrusted code at runtime. System architects can use Polymer to write
program monitors that run in parallel with an untrusted application. Whenever
the untrusted application is about to call a security-sensitive method, control
jumps to the Polymer program which determines which of the following will
occur:

– the application runs the method and continues with its computation,
– the application is terminated by the monitor,
– the application is not allowed to invoke the given method, but otherwise may

continue with its computation, or
– the monitor performs some computation on behalf of the application before

or after proceeding with any of the first three options (Figure 1).

This basic architecture has been used in the past to implement secure sys-
tems [DG71,ES00,ET99,GB01,PH00]. Previous work has shown that the frame-
work effectively subsumes a variety of less general mechanisms such as access-
control lists and stack inspection. Unfortunately, there has been a nearly uni-
versal lack of concern for precise semantics for these languages, which we seek
to remedy in this paper.

Application Monitor

sensitive_call

Fig. 1. Sample interaction between application and monitor: monitor allows application
to make a sensitive call.

We improve upon previous work in a number of ways.

– We present a new, general-purpose language for designing run-time security
policies. Policies are able to prevent actions from being executed, execute
their own actions, and terminate the offending program. In our language,
policies are first-class objects and can be parameterized by other policies
or ordinary values. We provide several interesting combinators that allow
complex policies to be built from simpler ones.



– We have defined a formal operational semantics for our language, which
turns out to be a variant of the computational lambda calculus [Mog91]. To
our knowledge, this is the first such semantics for a general-purpose security
monitoring language. It provides a tool that system architects can use to
reason precisely about their security policies.

– We provide a type system, which we have proven sound with respect to our
operational semantics. The type system includes a novel effect system that
ensures that composed policies do not interfere with one another.

– We have developed a preliminary implementation of our language that en-
forces policies on Java programs.

2 A Calculus for Composing Security Policies

In this section, we provide an informal introduction to our security policy lan-
guage.

2.1 Simple Policies

Our monitoring language is derived from Moggi’s computational lambda calcu-
lus [Mog91]; consequently, the language constructs are divided into two groups:
pure terms M and computations E. A computation runs in parallel with a tar-
get program and may have effects on the target’s behavior. We call a suspended
computation paired with an action set ({actions : A; policy : E}) a policy. A
policy is a term that, when its suspended computation E is run, will intercept
and manipulate target actions in the set A. We call this set of actions the regu-
lated set. For the purposes of this paper, a target action is a function or method
call that the target application wishes to execute. However, it is easy to imagine
a variety of other sorts of target program actions, such as primitive operations
like assignment, dereference, iteration, the act of raising particular exceptions,
etc., that might also be considered actions that are regulated by a security policy.

A First Example Consider the following policy, which enforces a limit on the
amount of memory that an application can allocate for itself.



fun mpol(q:int).
{
actions: malloc();
policy:

next →
case ? of
malloc(n) →
if ((q-n) > 0) then
ok; run (mpol (q-n))

else
halt

end
done → ()

}

A recursive policy, like the one above, is a recursive function (a term) with a
policy as its body. The recursive function argument q is a memory quota that the
application must not exceed. The only action manipulated by this policy is the
malloc action. The computation defining the policy begins with the (next →
E1 | done → E2) computation, which suspends the monitor until the target
is about to execute the next action in the regulated set (i.e., the next malloc
operation). At this point, the monitor executes E1. If the program terminates
before before executing another regulated action, E2 will be executed to perform
any sort of bookkeeping or application cleanup that is necessary. In this example,
we assume no bookkeeping is necessary so the monitor simply returns () to
indicate it is done.

The ok statement signals that the current action should be accepted, and
halt is the terminal computation, which halts the target program.

A recursive call to a policy involves two steps. The first step is a function ap-
plication (mpol (q-n)), which returns a policy (a suspended computation). To
run the suspended computation, we use the run statement (run (mpol (q-n))).
Sometimes, computations return interesting values (not just unit) in which case
we write let {x} = pol in E. This is the monadic let, which executes its pri-
mary argument pol, binds the resulting value to x and continues the computation
with E. We also use an ordinary let where convenient: let x = M in E.

Now that we have defined our recursive memory-limit policy, we can initialize
it with a quota (q0) simply by applying our recursive function.

memLimit = mpol q0

The type of any policy is M(τ) where τ is the type of the value that the
underlying computation returns. Hence, the type of memLimit is M(unit).

A Second Example In this example, we restrict access to files by controlling the
actions fopen and fclose. For simplicity, we assume that fclose takes a string
argument rather than a file descriptor. The first argument to the policy is a
function (acl) that returns true if the target is allowed access to the given file



in the given mode. The second argument is a list of files that the application
has opened so far. The code below uses a number of list processing functions
including cons (::), membership test (member), and element delete (delete).

fun fpol(acl:string->mode->bool, files:file list).
{
actions: fopen(), fclose();
policy:

let fcloses fs = {... fclose f ...} in
next →
case ? of
fopen(s,m) →
if (acl s m) then
ok; run (fpol acl (s::files))

else
run (fcloses files); halt

fclose(s) →
if (member files s) then
ok; run (fpol acl (delete files s))

else
sup; run (fpol acl files)

end
done →
run (fcloses files)

}

The main additional statement of interest in this policy is the sup statement.
We view an attempt to close a file that that has not been opened by the ap-
plication a benign error. In this case, we do not terminate the application, we
simply suppress the action and allow the application to continue (if it is able to
do so). In practice, the sup expression also throws a security exception that may
be caught by the target.

A second point of interest is the fact that our file-system policy is written so
that if the target terminates, it will close any files the target has left open. It
uses an auxiliary computation fcloses to close all the files in the list.

Once again, we must initialize our policy with appropriate arguments.

fileAccess = fpol (acl0,[]).

2.2 Composing Policies

One of the main novelties of our language is that policies are first-class values.
As a result, functions can abstract over policies and policies may be nested
inside other policies. Moreover, we provide a variety of combinators that allow
programmers to synthesize complex policies from simpler ones.



Parallel Conjunctive Policies A resource-management policy might want to en-
force policies on a variety of different sorts of resources, all defined independently
of one another. We use the conjunctive combinator M1∧M2 to create such a pol-
icy. For example, the following policy controls both file access and limits memory
consumption.

RM = fileAccess ∧ memLimit

When this policy is run, target actions are streamed to both fileAccess and
memLimit. Actions such as malloc, which are not relevant to the fileAccess
policy, are ignored by it and automatically deemed okay. The same is true of
actions that are not relevant to memLimit. The two computations may be seen
as running in parallel and if either policy decides to halt the target then the
target will be stopped.

The result of a parallel conjunctive policy is a pair of values, one value being
returned from each of the two computations. Hence, our resource manager has
type M(unit× unit).

Closely related to the parallel conjunctive policy is the trivial policy >, which
immediately returns (). The trivial policy is the identity for the parallel conjunc-
tive policy. In other words, M∧> accepts exactly the same sequences of program
actions as M .

Higher-order Policies Since policies are ordinary values, we can parameterize
policies by other policies. For example, rather than fix a particular resource
management policy once and for all, a system designer might prefer to design a
generic resource manager that is composed of a file-access policy and a memory
limit policy.

genericRM = λfa:M(unit).λml:M(unit).{let {x} = fa ∧ ml in ()}

The generic resource manager above abstracts two policies and returns another
policy that runs the two policies in conjunction, discards their results and returns
unit. We can apply the generic resource manager to the two policies we created
above.

strictRM = genericRM fileAccess memLimit

However, we might need a different policy for a different application. For in-
stance, for a more trusted application, we might choose not to limit memory,
but still control file access. In this case, we use the trivial policy instead of
memLimit.

laxRM = genericRM fileAccess >



Parallel Disjunctive Policies A parallel disjunctive policy M1 ∨τ M2 accepts a
sequence of operations and returns a result as soon as either M1 or M2 would
accept the sequence of operations and return. Both policies must agree to halt
the target in order to stop it. As in the conjunctive policy, target actions that
are not in the regulated set of one of the policies are simply passed over by that
policy and implicitly accepted. A disjunctive policy M1 ∨τ M2 has type M(τ)
when τ = τ1 + τ2, M1 has type M(τ1) and M2 has type M(τ2).

There are several uses for disjunctive policies. At the most basic level, a dis-
junctive policy can serve to widen an existing policy. For example, suppose we
have already implemented a policy for controlling arbitrary, untrusted applica-
tions (untrustedPol). Later, we might wish to develop a second policy for more
trusted applications that authenticate themselves first (authenticatedPol). By
using disjunction we allow applications either to authenticate themselves and
gain further privileges or to use the untrusted policy.

widenedPol = untrustedPol ∨τ authenticatedPol

It is likely possible to rewrite untrustedPol so that it grants extra privileges
when a user authenticates himself. However, modular design principles suggest
we should leave the code of the initial policy alone and create a separate module
(policy) to handle the details of authentication and the extended privileges.

Disjunctive policies also provide a convenient way to create Chinese wall
policies [BN89]. A Chinese wall policy allows the target to choose from one of
many possible policies. However, when one policy is chosen the others become
unavailable. For example, when designing a browser policy, we might expect two
different sorts of applets. One sort of applet acts like a proxy for a database
or service situated across the net. This kind of applet needs few host system
resources other than network access. It takes requests from a user and communi-
cates back to the online database. In particular, it has no use for the file system.
Another sort of applet performs tasks for the host system and requires access
to host data. In order to allow both sorts of applets to run on the host and yet
to protect the privacy of host data, we can create a Chinese wall policy which
allows either file-system access or network access but not both.

In the code below, we implement this policy. The patterns File.* and
Network.* match all functions in the interface File and Network respectively.
We assume the policies filePolicy and networkPolicy have been defined ear-
lier.



fileNotNetwork =
{
actions: File.*, Network.*;
policy:

next →
case ? of
File.* → run (filePolicy)
Network.* → halt

end
done → ()

}
networkNotFile =
{
actions: File.*, Network.*;
policy:

next →
case ? of
File.* → halt
Network.* → run (networkPolicy)

end
done → ()

}
ChineseWall = fileNotNetwork ∨τ networkNotFile

Like conjunction, disjunction has an identity: ⊥ is the unsatisfiable policy,
which halts immediately regardless of any program actions. The policy M ∨τ ⊥
accepts the same sequences of actions as M .

2.3 Interfering Policies

Composition of policies can sometimes lead to policies that are ill-defined or
simply wrong. For example, consider the conjunction of two file-system policies,
liberalFilePolicy and stricterFilePolicy. The first policy okays each file-
system action while the second policy suppresses some of the file-system actions.
What should the result be when one policy suppresses an action and another
concurrently allows (and potentially requires) it to occur?

A similar problem would occur if we attempted to compose our original
file-system policy fileAccess with a logging policy logPolicy that stores the
sequence of all actions that occur in a system in order to detect suspicious
access patterns and to uncover mistakes in a policy. Our original fileAccess
itself performs certain actions on behalf of the target, including closing target
files. If the logging policy operates concurrently with the file-access policy, it
cannot detect and log the actions performed by fileAccess.

We propose a twofold solution to such problems. First, we use a type and
effect system to forbid ill-defined or interfering policies such as the ones con-
sidered above. Second, we provide an alternative set of combinators that allow



programmers to explicitly sequence policies rather than having them execute in
parallel. This gives programmers necessary flexibility in defining policies.

Types and Effects Our type and effect system gives policies refined types with
the form MAr

Ae
(τ). The set of actions Ar includes all the actions regulated by

the policy. The second set Ae specifies the effect of the policy. In other words,
it specifies the actions that may be suppressed or initiated on behalf of the
program.

These refined types give rise to a new typing rule for parallel conjunctive
policies. In the following rule, the context Γ maps variables to their types in the
usual way.

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)
A1 ∩ A4 = A2 ∩ A3 = ∅

Γ `M1 ∧M2 :MA1∪A3
A2∪A4

(τ1 × τ2)

The constraint in the rule specifies that the effects of one of the policies must
not overlap with the set of actions regulated by the other policy. A similar rule
constrains the policies that may be composed using parallel disjunction.

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)
A1 ∩ A4 = A2 ∩ A3 = ∅

Γ `M1 ∨τ1+τ2 M2 :MA1∪A2
A3∪A4

(τ1 + τ2)

Rules for typing other terms and rules for typing computations are explained in
Section 3.

Sequential Combinators Sequential combinators allow programmers to explicitly
order the execution of effectful policies that apply to the same set of target
actions. The sequential conjunctive policy M1 4M2 operates as follows. The
policy M1 operates on the target action stream, creating an output stream that
may contain new actions that M1 has injected into the stream and may be
missing actions that M1 has suppressed. The policy M2 acts as it normally
would on the output of M1. Since this is a conjunctive policy, if either policy
decides to terminate the application then the application will be terminated. The
sequential disjunctive policy M15τM2 is similar: M2 operates on the output of
M1. In this case, however, both M1 and M2 must decide to terminate the target
in order for the target to be stopped. If one policy signals halt, the disjunction
continues to operate as if that policy has no effect on the target.

The typing rules for sequential combinators (shown below) are much more
liberal then the typing rules for parallel combinators. By explicit sequencing of
operations, the programmer determines how the conflicting decisions should be
resolved.

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M14M2 :MA1∪A3
A2∪A4

(τ1 × τ2)



Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M15τ1+τ2 M2 :MA1∪A3
A2∪A4

(τ1 + τ2)

Because sequential operators accept a wider range of policies than parallel
ones, they can be used to implement any policy that can be implemented with
parallel combinators. Parallel combinators, however, ensure the often-desirable
property that the two policies being composed do not interfere with each other.

3 Formal Semantics

This section describes the syntax and formal semantics of our calculus.

3.1 Syntax

The syntax of our formal language differs slightly from the syntax used in the
previous section. First, we use the metavariable a to range over actions and
consider them to be atomic symbols rather than decomposable into class name,
method name and arguments. Second, we write the regulated set for a policy
using superscript notation: {E}A is the simple policy with the regulated set A
and computation E.

There are also a number of differences in the computations. Our acase in-
struction chooses a control flow path based upon whether the current action
belongs to an arbitrary subset A of the current possible actions. If we want to
store or manipulate the current action, we use the primitive x → E to bind the
current action to the variable x, which may be used in E (intuitively, this takes
the place of pattern matching). To invoke one of the atomic program actions, we
explicitly write ins(a). Finally, for each of the policy combinators discussed in
the previous section, we add a corresponding computation. Each of these com-
putations is superscripted with the regulated sets for their subcomputations.
Figure 2 presents a formal syntax for our language.

3.2 Static Semantics

We specify the static semantics for the language using three main judgments.

Subtyping: ` τ1 ≤ τ2 The rules for subtyping are mostly standard. Unit, pairs,
sums and function types have their usual subtyping rules. We say the type of
actions act(A) is covariant in A since act(A) is a subtype of act(A′) when A ⊆ A′.
Policy types are covariant in their return type and effect set but invariant in their
regulated set. In other words, it is safe for policies to appear to have a larger
effect than they actually do, but they must regulate the set that they claim to
regulate.

A ⊆ A′
` act(A) ≤ act(A′) (Sub-Act)



(Types) τ ::= act(A) | τ1→ τ2 | unit
| τ1 × τ2 | τ1 + τ2 | MA1

A2
(τ )

(Behaviors) β ::= · | ins(a) | sup(a) | acc(a)

(Terms) M ::= x (variable)
| a (action)
| fun f :τ (x).M (recursive function)
| M1 M2 (application)
| () (unit)
| 〈M1,M2〉 (pairing)
| π1 M | π2 M (first/second projections)
| inlτ (M1) | inrτ (M2) (left/right injections)
| caseM1 (x→M2 | x→M3) (case)
| {E}A (simple policy)
| > (trivially satisfiable policy)
| M1 ∧M2 (parallel-conjunctive policy)
| M1 4M2 (sequential-conjunctive policy)
| ⊥ (unsatisfiable policy)
| M1 ∨τ M2 (parallel-disjunctive policy)
| M1 5τ M2 (sequential-disjunctive policy)

(Values) v ::= x | a | fun f :τ (x).M | ()
| 〈v1, v2〉 | inlτ (v1)
| inrτ (v2) | {E}A

(Computations) E ::= M (return)
| let {x} = Min E (let)
| ok;E (accept action)
| sup;E (suppress action)
| ins(M);E (call action)
| (next→ E1 | done→ E2) (next action)
| x → E (bind action)
| acase (? ⊆ A) (E1 | E2) (action case)
| caseM (x→E1 | x→E2) (case)
| any (trivial computation)
| E1 ∧A1,A2 E2 (parallel-conjunctive computation)
| E1 4A1,A2 E2 (sequential-conjunctive computation)
| halt (terminal computation)
| E1 ∨A1,A2

τ E2 (parallel-disjunctive computation)
| E1 5A1,A2

τ E2 (sequential-disjunctive computation)

Fig. 2. Syntax



A2 ⊆ A′2 ` τ ≤ τ ′

`MAr
A2

(τ) ≤MAr
A′2

(τ ′) (Sub-Monad)

Term Typing: Γ ` M : τ The term typing rules contain the ordinary introduc-
tion and elimination rules for functions, unit, pairs and sums. The treatment of
variables is also standard. The basic rule for actions gives an action a the single-
ton type act({a}). When this rule is used in conjunction with the subsumption
rule, an action may be given any type act(A) such that a ∈ A. The non-standard
typing rules for terms are given below.

Γ ` a : act({a}) (S-Act)

Γ ; � `Ar E : τ, Ae
Γ ` {E}Ar :MAr

Ae
(τ ) (S-Sus)

Γ ` > :M∅∅(unit) (S-Top)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2) A1 ∩ A4 = A2 ∩ A3 = ∅
Γ `M1 ∧M2 :MA1∪A3

A2∪A4
(τ1 × τ2) (S-ParCon)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M1 4M2 :MA1∪A3
A2∪A4

(τ1 × τ2) (S-SeqCon)

Γ ` ⊥ :M∅∅(τ ) (S-Bot)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2) A1 ∩ A4 = A2 ∩ A3 = ∅
Γ `M1 ∨τ1+τ2 M2 :MA1∪A2

A3∪A4
(τ1 + τ2) (S-ParDis)

Γ `M1 :MA1
A2

(τ1) Γ `M2 :MA3
A4

(τ2)

Γ `M1 5τ1+τ2 M2 :MA1∪A3
A2∪A4

(τ1 + τ2) (S-SeqDis)

Elementary policies (rule (S-Sus)) are given the type MAr
Ae

(τ) when the sus-
pended computation regulates the actions in Ar, has effect Ae and produces a
value of type τ . The trivial policy (rule (S-Top)) makes its decisions based upon
no regulated actions, has no effect and simply returns unit. The terminal policy
(rule (S-Bot)) also makes its decision based upon no regulated actions, has no
effect, but instead of returning a value, it immediately calls for termination of
the target. Since the terminal policy never returns, we allow its return type to
be any type τ .

Rules (S-ParCon) and (S-SeqCon) give types to the two conjunctive policies.
In each case, the type of the resulting computation involves taking the union of



the regulated sets and the union of the effects since a conjunctive policy makes
its decisions based on the regulated actions of both policies and potentially has
the effects of either policy. These combinators return a pair of values, which is
reflected in the type of the conjunctive combinator. The parallel conjunction is
constrained so that the regulated set of one conjunct is disjoint from the ef-
fect of the other and vice versa. This constraint prevents one conjunct from
inserting or suppressing actions that should be regulated by the other conjunct.
Typing for the sequential conjunction is more liberal. It allows one policy to
supersede another regardless of the effects of either policy. The rules for the
disjunctive combinators ((S-ParDis) and (S-SeqDis)) are analogous to their con-
junctive counterparts except that disjunctions return sums rather than pairs.

Computation Typing: Γ ;B `Ar E : τ, Ae The basic judgment for typing com-
putations may be read “Computation E produces a value with type τ and has
effect Ae in Γ when run against a target whose next action is in B.” B ranges
over non-empty sets A or the symbol �, which represents no knowledge about
the next action. The next action might not even exist, as is the case when the
target has terminated. We maintain this set of possible next actions so that we
know what actions to consider as possible effects of a suppress statement and
what actions may be bound to a variable in a bind statement. We do not con-
sider computation judgments to be valid unless either B ⊆ Ar or B = �. We
define B t Ar to be B if B ⊆ Ar and � otherwise. Finally, set intersect and set
minus operators ∩� and \� act like standard set operators, except that instead
of returning ∅ they return �.

The computation typing rules are given below.

Γ `M : τ
Γ ;B `Ar M : τ, ∅ (SE-Ret)

Γ `M :MA′r
A2

(τ ′) Γ, x:τ ′; � `Ar E : τ, A A′r ⊆ Ar
Γ ;B `Ar let {x} = Min E : τ, A ∪A2 (SE-Let1)

Γ ; � `Ar E : τ, A B 6= �
Γ ;B `Ar ok;E : τ, A (SE-Acc)

Γ ; � `Ar E : τ, A B 6= �
Γ ;B `Ar sup;E : τ, A ∪B (SE-Sup)

Γ `M : act(A′) Γ ;B `Ar E : τ, A

Γ ;B `Ar ins(M);E : τ, A ∪A′ (SE-Ins)

Γ ;Ar `Ar E1 : τ, A Γ ; � `Ar E2 : τ, A

Γ ;B `Ar (next→ E1 | done→ E2) : τ, A (SE-Next)

Γ, x:act(B);B `Ar E : τ, A B 6= �
Γ ;B `Ar x → E : τ, A (SE-Bind)



Γ ;B ∩� A′ `Ar E1 : τ, A Γ ;B \� A′ `Ar E2 : τ, A
A′ ⊆ Ar B 6= �

Γ ;B `Ar acase (? ⊆ A′) (E1 | E2) : τ, A (SE-Acase)

Γ `M : τ1 + τ2
Γ, x:τ1;B `Ar E1 : τ, A Γ, x:τ2;B `Ar E2 : τ, A

Γ ;B `Ar caseM (x→E1 | x→E2) : τ, A (SE-Case)

Γ ;B `Ar any : unit, ∅ (SE-Any)

Γ ;B tA1 `A1 E1 : τ1, A3 Γ ;B t A2 `A2 E2 : τ2, A4

A1 ∩A4 = A2 ∩A3 = ∅ A1 ∪A2 = Ar

Γ ;B `Ar E1 ∧A1,A2 E2 : τ1 × τ2, A3 ∪A4 (SE-ParCon)

Γ ;B tA1 `A1 E1 : τ1, A3 Γ ; � `A2 E2 : τ2, A4 A1 ∪ A2 = Ar

Γ ;B `Ar E1 4A1,A2 E2 : τ1 × τ2, A3 ∪ A4 (SE-SeqCon1)

Γ ;B `Ar halt : τ, ∅ (SE-Halt)

Γ ;B tA1 `A1 E1 : τ1, A3 Γ ;B t A2 `A2 E2 : τ2, A4

A1 ∩A4 = A2 ∩A3 = ∅ A1 ∪A2 = Ar

Γ ;B `Ar E1 ∨A1,A2
τ1+τ2 E2 : τ1 + τ2, A3 ∪A4 (SE-ParDis)

Γ ;B tA1 `A1 E1 : τ1, A3 Γ ; � `A2 E2 : τ2, A4 A1 ∪ A2 = Ar

Γ ;B `Ar E1 5A1,A2
τ1+τ2 E2 : τ1 + τ2, A3 ∪ A4 (SE-SeqDis1)

Γ ;B′ `Ar E : τ ′, A′ (B′ = � or B ⊆ B′) ` τ ′ ≤ τ A′ ⊆ A
Γ ;B `Ar E : τ, A (SE-Sub)

Terms have no effects, so they are well typed with respect to any next action
(SE-Ret).

The let rule (SE-Let1) requires M to be a policy with a regulated set that
is a subset of the current computation’s regulated set. When this policy returns,
we will have no information regarding the next action because the suspended
policy may have accepted or suppressed an arbitrary number of actions. As a
result, we check E in a context involving �.

Rules (SE-Acc) and (SE-Sup) have similar structure. In both cases, we must
be sure that the target has produced some action to be accepted or suppressed
(i.e., B 6= �). The main difference between the two rules is that we record the
effect of the suppression, whereas acceptance has no effect. The rule for invoking
actions (SE-Ins) adds A′ to the effect of the computation when the action called
belongs to the set A′ (in other words, when the action has type act(A′)).



The next/done construct adds Ar to the context for checking E1 and � for
checking E2 since we only take the first branch when we see an action in the
regulated set and we take the second branch when there are no more actions
(rule (SE-Next)). Rule (SE-Acase) takes the first or second branch depending
upon whether the current action is in the set A1. We refine the context in each
branch to reflect the information that we have about the current action.

Rule (SE-ParCon) places several constraints on parallel conjunction of com-
putations. Since the next action could be in the regulated set of the conjunction
but not in the regulated sets of both E1 and E2, E1 and E2 must both be well
typed either with respect to a subset of their regulated sets or with respect to �.
This is ensured by typing the subcomputations with respect to BtA1 and BtA2.
In addition, there is not allowed to be a conflict between the regulated actions
of one subcomputation and the effects of the other. Finally, the regulated set of
the conjunction must be the union of the regulated sets of the subcomputations.

The first rule for sequential conjunction (SE-SeqCon1) is similar, with two
exceptions. First, there is no constraint on the regulated and effect sets of the
subcomputations. Second, E2 must be well typed with respect to � because we
cannot make any assumption about what the next action will be (it may be an
action emitted by E1, or E1 may suppress all actions until the target has finished
executing).

The rules for the disjunctive operators (SE-ParDis and SE-SeqDis1) are iden-
tical to their conjunctive counterparts except that they have sum types rather
than pair types.

The subsumption rule for computations (SE-Sub) is invariant in regulated
sets, covariant in type and effect sets, and contravariant in the type of the next
action. It is always OK to consider that a computation has more effects than
it actually does. In addition, a computation typed with respect to the possible
next actions B′ continues to be well typed even if more information about the
next action is available.

3.3 Operational Semantics and Safety

We have defined a formal operational semantics and proven the safety of our
language using progress and preservation. This result not only guarantees that
the ordinary sorts of errors do not occur during evaluation but also rules out
various policy conflicts (such as one computation in a parallel conjunction ac-
cepting a target action while the other computation suppresses it). The proof is
quite long and detailed, but well worth the effort: it helped us catch numerous
errors in preliminary versions of our system. Please see our technical report for
details [BLW02a].

4 Discussion

4.1 Related Work

The SDS-940 system at Berkeley [DG71] was the first to use code rewriting to
enforce security properties. More recently, the advent of safe languages such as



Java, Haskell, ML, Modula, and Scheme, which allow untrusted applications to
interoperate in the same address space with system services, has led to renewed
efforts to design flexible and secure monitoring systems. For example, Evans
and Twyman’s Naccio system [ET99] allows security architects to declare re-
sources, which are security-relevant interfaces, and to attach properties, which
are bundles of security state and checking code, to these resources. Erlingsson
and Schneider’s SASI language [ES99] and later Poet and Pslang system [ES00]
provide similar power. Grimm and Bershad [GB01] describe and evaluate a flex-
ible mechanism that separates the access-control mechanism from policy in the
SPIN extensible operating system. Finally, the Ariel project [PH00] allows secu-
rity experts to write boolean constraints that determine whether or not a method
can be invoked.

A shortcoming of all these projects is a lack of formal semantics for the pro-
posed languages and systems. Without a formal semantics, system implementers
have no tools for precise reasoning about their systems. They also do not pro-
vide a general set of primitives that programmers can use to explicitly construct
complex policies from simpler ones.

A slightly different approach to program monitoring is taken by Lee et
al. [KVBA+99,LKK+99] and Sandholm and Schwarzbach [SS98]. Rather than
writing an explicit program to monitor applications as we do, they specify the
safety property in which they are interested either in a specialized temporal logic
(Lee et al.) or second-order monadic logic (Sandholm and Schwarzbach).

Many monitoring systems may be viewed as a specialized form of aspect-
oriented programming. Aspect-oriented languages such as AspectJ [KHH+01]
allow programmers to specify pointcuts, which are collections of program points
and advice, which is code that is inserted at a specified pointcut. Wand et
al. [WKD02] give a denotational semantics for these features using monadic
operations. Conflicting advice inserted at the same pointcut is a known problem
in aspect-oriented programming. AspectJ solves the problem by specifying a list
of rules that determine the order in which advice will be applied. We believe
that our language, which allows explicit composition of policies and makes it
possible to statically check composed policies for interference, is a more flexible
approach to solving this problem.

Theoretical work by Alpern and Schneider [AS87,Sch00] gives an automaton-
theoretic characterization of safety, liveness, and execution monitoring (EM)
policies. EM policies are the class of policies enforceable by a general-purpose
program monitor that may terminate the target, but may not otherwise modify
target behavior. This class of program monitors (called security automata) corre-
sponds precisely to our effect-free monitors, and consequently, as pointed out by
Schneider, they are easily composed. We have previously extended Schneider’s
work by defining a new class of automata [BLW02b,BLW02c], the edit automata,
which are able to insert and suppress target actions as well as terminate the tar-
get. Edit automata more accurately characterize practical security monitors that
modify program behavior. We proved such automata are strictly more powerful
than security automata.



4.2 Current and Future Work

In order to confirm that our policy calculus is feasible and useful, we have de-
veloped a practical implementation of it [BLW02a]. Polymer, our language for
writing policies, implements most of the policy calculus and allows the use of
many of the features and most of the syntax of Java. For simplicity, the target
programs we currently consider are Java source programs, but many of the tech-
niques we use can also be extended to handle Java bytecode. We have not yet
fully implemented static checking of effects.

Our immediate concern is to acquire more experience applying our tool to
enforcing security policies on realistic applications. We are interested both in
testing our tool on untrusted mobile programs as well as using it to make pro-
grams and services written by trusted programmers more robust. As an example
of the latter application, we intend to follow Qie et al. [QPP02] and use our tool
to control resource consumption and to help prevent denial of service in Web
servers.

Rather than having an external tool that rewrites Java programs to enforce
policies, we plan to internalize the rewriting process within an extension to
the Java language. We hope to develop techniques that allow programmers to
dynamically rewrite programs or parts of programs and to update or modify
security policies without necessarily bringing down the system. We believe the
idea of policies as first-class objects will be crucial in this enterprise.

We plan to investigate additional combinators that could be added to our
language. In particular, we are interested in developing a precise semantics for
fixed point combinators that extend our sequential operators. This would make
it possible to iteratively combine two policies without restricting their effects or
requiring that one supersedes the other.
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