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ABSTRACT
Existing security-policy-specification languages allow users
to specify obligations, but challenges remain in the composi-
tion of complex obligations, including effective approaches for
resolving conflicts between policies and obligations and allow-
ing policies to react to other obligations. This paper presents
PoCo, a policy-specification language and enforcement system
for the principled composition of atomic-obligation policies.
PoCo enables policies to interact meaningfully with other poli-
cies’ obligations, thus preventing unexpected and insecure
behaviors that can arise from partially executed obligations or
obligations that execute actions in violation of other policies.
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1 INTRODUCTION
Security-policy composition is a classic problem in software
security, due to conflicts that arise when policies have com-
peting requirements. To date, policy composition does not
have a complete solution; many languages are domain specific,
and the general-purpose solutions may compose obligations
in undesirable ways, such as allowing obligations to execute
even when they violate the constraints of other policies.

As software becomes more complex, the quantity and sever-
ity of security vulnerabilities increases [1]. Managing policies
that mitigate these vulnerabilities becomes challenging as the
complexity increases; enforcement may devolve into a patch-
work of security mechanisms affecting each other in unex-
pected or hard-to-understand ways, or policies may expand to
become complex, monolithic specifications that conflate cross-
cutting concerns. As the complexity of policies increases, so
does the likelihood of errors within the policies.

Following standard software-engineering practices, it is
simpler to maintain modules of related functionality, where
each security concern can be addressed in isolation, and then
build more complex policies as compositions of the modules.
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When policies are simple enough, as with classic safety prop-
erties [2], composition is trivial because the only decision
made is whether to permit or deny a given action; such de-
cisions can be composed with boolean operators. However,
these simple policies are insufficiently expressive in practice
because they do not allow policies to propose alternative or
additional actions to be executed. These actions, referred to as
obligations [3], complicate the process of composing policies.

Obligations enable policies that are impossible with safety
properties. For example, a policy that grants or denies fund
transfers may also include an obligation to log such requests
for auditing, or a policy to prevent unintended file deletion
may include an obligation to prompt the user for confirmation
before rendering a decision on a file deletion request.

The challenge of handling conflicts in obligation-based poli-
cies is well known (e.g., [4–6]), but neglecting to do so could
lead to unexpected behavior or security vulnerabilities. Con-
sider policies Pa and Pb that respectively disallow file down-
loads and window pop-ups. Pa also defines an obligation to
pop up a warning when a user attempts a file download, which
violates Pb . A policy P that composes Pa and Pb using con-
junction (i.e., enforcing both Pa and Pb ) should disallow all
downloads and pop-ups. However, without validating Pa ’s
obligation with Pb ’s constraints, P would allow pop-ups.

Beyond these direct policy conflicts, some policies also re-
quire the ability to react to other policies’ obligations. For
example, a policy limiting the number of files open needs ac-
cess to an accurate count of currently open files—including
those opened and closed by other policies’ obligations. If this
open-file-limiting policy cannot observe and react to actions
performed by other policies’ obligations, it cannot be enforced.

Contributions. This paper presents PoCo (short for Pol-
icy Composition), a new policy-specification language and
enforcement system that:
• Allows for principled (i.e., with provable guarantees)
composition of complex atomic obligations
• Supports pre-, post-, and ongoing-obligations
• Allows policies and their obligations to be effectful and
specified in a Turing-complete language
• Uses static analysis to enable conflict resolution be-
tween policies and other policies’ obligations
• Allows policies to control and react to obligations
• Supports custom policy-composition operators

As far as we are aware, PoCo is the first system to provide
support for atomic obligations, including conflict resolution
and allowing policies to react to obligations.

Organization. The remainder of this paper is organized
as follows: Section 2 discusses goals for the PoCo enforcement
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system, Section 3 system design, Section 4 policy structures,
Section 5 policy composition, Section 6 the system implemen-
tation, Section 7 related work, and Section 8 conclusions.

2 GOALS
For obligation-based policies to be expressive and composable,
an ideal enforcement system would support 1) pre-, post-, and
ongoing obligations, 2) atomic obligations, 3) obligations with
side effects, 4) Turing-complete policy specification, 5) conflict
resolution between policies and obligations, 6) complete me-
diation of obligations, and 7 ) custom composition operators.

Obligation-Type Support. Obligations can be partitioned
into categories based on time of execution: pre-, post-, and
ongoing- [7–9]. A pre-obligation is fulfilled before a decision
about an event is enforced. For example, in the file-deletion
policy, the confirmation obligation must be enforced before
deciding to permit or deny the deletion because the decision
depends on the result. A post-obligation is fulfilled after the
decision is enforced, as in a policy that logs failed transactions.
An ongoing-obligation is performed asynchronously, as in a
policy that monitors system resource usage. If any type is
absent, there is a class of policies that cannot be enforced.

Atomic Obligations. An atomic obligation requires that
either all or none of the obligation’s actions are executed.
Atomicity can be extended to include the decision to permit
or deny an event after the obligation executes. For many poli-
cies, atomicity is necessary for correctness. In the file-deletion
policy, if the confirmation obligation is executed, the decision
entered by the user must also be followed. Otherwise, the pol-
icy may incorrectly deny a deletion that the user confirmed
or permit a file deletion that the user canceled.

Obligations with Side Effects. Related work (e.g., [5])
requires obligations to be side-effect free, making some policies
unenforceable. For example, any obligation that prompts the
user or makes a remote call causes side effect(s) that cannot be
undone; any mechanism that relies on rolling back obligations
may be unable to manage such effectful obligations correctly.

CompleteMediation of Obligations. Policies sometimes
need to react to obligations. For example, the open-file-limiting
policy needs access to the number of open files. Excluding files
opened or closed during obligation execution may cause the
policy to have an inaccurate count, leading to incorrect en-
forcement. The ability tomonitor all events, including those ex-
ecuted by policy obligations, is called complete mediation [10].

Turing Completeness. Turing-complete languages en-
sure expressiveness, at the cost of non-guaranteed termina-
tion (discussed in Section 3.6). Tools, like PoCo, that aim for
general-purpose policy specification, prioritize expressiveness
and leave it to the policy author to limit non-termination.

Conflict Resolution. Several types of conflicts exist in
policy enforcement; policies may disagree on a permit/deny
decision, an obligation may be disallowed by another policy,
or multiple policies may have obligations for the same event.
Disagreement between policies on a permit/deny decision is
simplest and can be resolved with Boolean algebra. However,
when an obligation violates the rules of another policy, or the
ordering of obligations is important, the resulting behavior
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Figure 1:Obligations are either pre-on-action or pre-on-result

can be inconsistent with the policies’ behavior in isolation; it
is important to handle these conflicts in a predictable manner.

Custom Composition Operators. There is an infinite
number of strategies to compose policies. Some policies need
higher priority; other policies may only trigger under certain
conditions; the decision of one policy may only matter when
another agrees; etc. It is, therefore, desirable to allow custom
logic for composing policies.

3 THE POCO MONITOR ARCHITECTURE
PoCo’s enforcement mechanism operates as a monitor that
observes a target application’s security-relevant actions (e.g.,
system or function calls) and the results of these actions, as
shown in Figure 1. These actions and results can trigger the
monitor to respond based on the logic of the enforced policies.

3.1 Monitor Operation
The PoComonitor observes all security-relevant events—actions
and results—and broadcasts each event to all policies. Policies
take each trigger event e and suggest an obligation to be ex-
ecuted before e is processed. This obligation, which may be
empty, can implement supplemental logic or alter e to meet
the policy’s goals. In PoCo, security-relevant events are in-
ferred from the logic of enforced policies and can be further
refined by the policy author. This ensures that the monitor
only broadcasts the events required for policy enforcement.

The PoCo monitor can execute any number of obligations
before relinquishing control back to the target application
by returning a result to it. After relinquishing control, PoCo
cannot execute additional obligations until receiving a new
event. The monitor, therefore, operates in a loop, with each
iteration performing the following steps:

(1) Input security-relevant event e
(2) Collect obligations from policies in response to e
(3) While there are obligations to process
(a) Select an obligation o
(b) Collect and process policies’ votes on o
(c) If o is approved, execute o
(d) Collect obligations triggered in response to o

(4) If a new output event has been set, execute or return it
(5) Otherwise, output the original input event

This repeats until the output event is a result to be returned
to the target application. With this design, the monitor main-
tains control of execution until all approved obligations have
executed, that is, the pool of pending obligations is exhausted.
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3.2 Monitor Configuration
Before examining the PoCo language, it is useful to have a high-
level understanding of the options available for composing
policies; a more detailed discussion appears in Section 5. Three
elements can be supplied to the PoCo monitor: a list of policies
to enforce, a vote combinator to combine policies’ votes on an
obligation into a single permit/deny decision, and an obligation
scheduler to prioritize obligations for execution. The PoCo
monitor can be viewed as an obligation dispatcher; it decides
which obligations to execute and in what order. The monitor’s
parameters allow these decisions to be customized.

3.3 Obligations
The literature on policy enforcement has many definitions of
obligation [3–9, 11]. Generally, an obligation is one or more
actions required to execute under certain circumstances with
specific timing in relation to security-relevant events. When
conflict resolution is introduced, the idea that an obligation
is guaranteed to execute must become less strict. When an
obligation conflicts, the only options are to execute the obliga-
tion (i.e., ignore the conflict), execute the parts of the obligation
that do not conflict (i.e., non-atomic obligations), or do not
execute the obligation (i.e., execution is not guaranteed).

Since PoCo’s goal is to resolve conflicts among atomic obli-
gations, the only option is to not execute conflicting obli-
gations. Other works have referred to this concept as “sug-
gestions” since they are not guaranteed to execute [4]. How-
ever, even XACML—which does not provide obligation conflict
resolution—suffers from non-guaranteed execution under cer-
tain circumstances [12, Section 7.18]. Therefore, we have opted
to use the term obligation over such a variant with the under-
standing that the monitor is obligated to attempt execution.

3.4 Pre-obligation Completeness
Although the categories pre-, post-, and ongoing- are standard,
they can all be implemented as pre-obligations by expanding
the domain of security-relevant events to include actions and
results. We refer to this property as pre-obligation completeness.

With this expanded definition of events, pre-on-action and
pre-on-result obligations can be defined. An obligation o is pre-
on-action to action a if o is fulfilled after a is requested by the
application but before the monitor makes a decision regarding
a. An obligation o is pre-on-result to result r if o is fulfilled after
r is returned from the system but before the monitor makes a
decision regarding returning r to the application.

Pre- and pre-on-action obligations are equivalent as are
post- and pre-on-result obligations. Ongoing obligations can
be defined using pre-on-action and pre-on-result obligations in
any multi-threaded environment. This means that only pre-
on-action and pre-on-result obligations are needed to support
all standard obligation categories and, as such, these are the
only obligations that are implemented in PoCo.

3.5 Complete Mediation of Obligations
Complete mediation—the ability to monitor events executed
by other policies—is a desirable trait when enforcing obliga-
tion policies. Complete mediation generally means that each

event can be responded to individually. We refer to this design
as event-by-event complete mediation. At least one existing
system has provided event-by-event complete mediation but
without allowing for atomic obligations [4]. In fact, as The-
orem 1 shows, it is impossible to have both event-by-event
complete mediation and atomic obligations.

Theorem 1. Event-by-event complete mediation and atomic
obligations cannot both be achieved simultaneously.

Proof. For all monitorsm, ifm allows event-by-event complete
mediation of policy obligations, thenm must allow all policies
that it enforces to examine and react to each event in an obliga-
tion o as it executes. If any ofm’s policies alter any event in o,
then o was not executed atomically.

Therefore, PoCo enforces obligation-by-obligation complete
mediation, meaning that every policy can monitor and react
to every other policy’s atomic obligations (rather than every
individual event within those obligations).

3.6 Non-termination of Policy Enforcement
By including branching, looping, and variables, PoCo is Tur-
ing complete, which introduces possible non-termination in
enforcement code; e.g., policies may contain infinite loops. In
addition, allowing policies to react to each other introduces an
additional path to non-termination—two policies may generate
an infinite sequence of obligations in response to each other’s
obligations (e.g., one policy monitors network connections
and logs them to a file while another monitor’s file writes and
opens a network connection on each). This non-termination
cannot be statically detected. This design prioritizes policy
expressiveness over guaranteed enforcement termination.

3.7 PoCo Language Formalization
To express PoCo’s core features in a precise and unambiguous
manner and enable formal type-safety reasoning, the formal
syntax and semantics for the PoCo Language were defined in
the companion technical report [13]. PoCo is formalized as a
functional language due to the inherently simpler specification
compared to object-oriented languages such as Java. Using
these semantics, the PoCo language was proven type safe
through standard type-preservation and progress lemmas [14].

We have also proven four properties of PoCo obligations:
1) obligations are atomic 2) obligations allow conflict reso-
lution 3) policies react to obligations 4) pre-obligations can
implement post- and ongoing obligations. These proofs can
also be found in the companion technical report [13].

4 POCO POLICIES
PoCo policies are granular pieces of logic that specify obli-
gations in response to events. Each security-relevant event
is broadcast to all enforced policies. The following policies
will serve as examples throughout this section. 1) Pf ile dis-
allows users from opening the secret.txt file. 2) Ppostloд logs
each file-open action after it occurs. 3) Pconf irm requires each
file-open action to be confirmed through a pop-up window.
4) Pt ime disallows popups unless 100 seconds have passed
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since the last popup. These examples illustrate the core fea-
tures of PoCo policies.

4.1 The onTrigger Policy Function
The first component of a PoCo policy, onTrigger, is an obli-
gation which executes prior to security-relevant actions or
results. The onTrigger takes an event as input and specifies
logic to run before it is executed or returned. onTrigger may
also set an output event, which is PoCo’s final response to a
trigger. Ultimately, PoCo must cede control to allow the appli-
cation or system to continue executing. If no policy specifies
an output event, the monitor uses the trigger to cede control.

For example, Pf ile ’s onTrigger examines the trigger event
e . If e is fopen(secret.txt) then Pf ile ’s onTrigger sets exit
as the output event, meaning that the monitor should cede
control to the system to execute the exit action. Pf ile does
not specify an output event when e is not fopen(secret.txt),
thus allowing irrelevant events to execute normally. Hence,
Pf ile ’s onTrigger is defined as follows.

fun onTrigger(e:Event):Unit =
(case e of act a =>

if a.name == "fopen"
∧ tryCast(String ,a.arg) == "secret.txt"

then
setOutput(event(act("exit",

makeTypedVal(Unit ,unit) ) ) ); unit
else unit

| res r => unit )

Output events are treated specially because the monitor
must reach agreement on how to cede control. One of the ob-
jectives of any system for composing run-time policies must be
to determine the output event for each trigger. Output actions
cede control to the system; output results cede control to the
application. Prior work has defined monitors that operate in
this way, interposing between application and executing sys-
tem and responding to trigger events with output events [15].

As seen in Pf ile ’s onTrigger, setting the output event is
done with setOutput. This call commits the monitor to us-
ing that output event. Once setOutput has been called for a
trigger event, additional calls return f alse indicating that the
output cannot be overwritten. A policy may call getOutput or
outputNotSet to get the current state; policy logic determines
what happens if the output event is already set.

This ability to permanently set the output event is required
for some policies’ correctness. For example, Pconf irm tests
whether the trigger, e , is a file-open action. If it is, then an
obligation is specified to confirm e . Based on the result, the
output is set to e (indicating the file open must be executed)
or unit (indicating an empty result must be returned in lieu
of opening the file). If it were possible for the output to not
be used, the user could opt to allow a file open and it not
execute, or the user could opt to disallow the file open and it
execute anyways. This level of control also enables policies to
self-manage when they conflict with other policies.

4.2 The vote Policy Function
The second part of a policy is the vote function, which votes on
whether an obligation should be executed. The vote function

takes an obligation and returns a boolean indicating approval
or disapproval. For example, Pf ile tries to prevent secret.txt
from being opened, even by other obligations. Therefore, Pf ile
looks for fopen(secret.txt) in the obligation and, if found, it
votes to disallow the obligation. Otherwise, Pf ile votes to
allow it. Hence Pf ile ’s vote is:

fun vote(cfg:CFG):Bool =
¬call(containsAct , (cfg=cfg , name="fopen",
arg=(inarg makeTypedVal(String , "secret.txt"))

:(arg:TypedVal + none: unit), count =1)))

To ensure obligation atomicity, vote analyzes obligations
before execution—specifically, policies vote on obligations’
statically generated Control Flow Graphs (CFGs). These CFGs
are conservative approximations since computing the exact
CFG for an arbitrary program is undecidable. Because it is
not always possible to determine the arguments to actions
statically, it is necessary to allow obligation CFGs to identify
such arguments as unresolved and allow policies to specify
how to handle them.

4.3 The onObligation Policy Function
The third component of a policy is an obligation that responds
to other obligations. This allows policies to react to other
obligations. onObligation analyzes the results of all security-
relevant actions performed during an obligation’s execution,
called a result trace (rt). For example, Ppostloд logs each file
opened in other obligations with an onObligation as follows:
fun onObligation(rt: ResList):Unit =

(let results=ref rt in
while(¬empty(! results )) {

let event = head(! results) in
results := tail(! results );
if event.act.name == "fopen"
then call(log ,event)
else unit

end }
end)

PoCo cannot insert obligations before execution of a trig-
gering obligation without creating inconsistency. Prior to exe-
cution of obligation o1, a decision on whether to execute it is
made. Inserting obligation o2 prior to o1 may alter this deci-
sion to permit o1. If PoCo re-queried policies after o2 and the
decision was to not execute o1, it is possible that o2 should not
have been proposed. To have predictable behavior, voting on
and execution of an obligation must be an atomic unit.

To summarize, there are two ways to specify obligations:
onTrigger for obligations in response to trigger events, and
onObligation for obligations in response to other obligations
(which may be onTrigger or onObligation). The vote func-
tion enables policies to approve or disapprove of obligations.

4.4 Parameterized Policies and Local State
As in other works [4, 16], PoCo enables abstraction over com-
mon policy patterns to aid in code reuse by allowing functions
to instantiate policies based on arguments. For example, the
set of policies to disallow a specific action can be abstracted
over by accepting the disallowed action as an argument. Other
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uses could be to specify directory paths, port numbers, or any
other data that may be relevant to a specific policy.

Without the ability to keep state, any policy that needs
to “remember” earlier events cannot be enforced [17]. PoCo
policies utilize let environments and memory references to
manage this data. Pt ime tracks the last time a popup was
displayed and exits the application if it opens another popup
within 100 seconds. The last occurrence of the popup can be
stored in a memory reference initialized by a let environment.
For interested readers, the PoCo technical report [13] presents
complete specifications of these policies. Their construction
follows directly from the components described in this section.

5 POLICY COMPOSITION
The PoCo monitor handles composition of policies by sched-
uling obligations, dispatching the output event, and handing
control to the application or system.

Conflicts in composition fall into two categories. The first
is from obligation o attempting an action that policy p disal-
lows. In PoCo, this manifests as p’s vote function returning
“deny” on o. This conflict is handled by a vote combinator that
combines all votes into a final permit or deny decision. The
second is a timing issue between obligations; If the execution
of obligation o1 renders the execution of obligation o2 unde-
sirable, execution of o1 should cause o2 not to execute. This
conflict is handled by using the obligation scheduler to execute
the most vital obligations first.

Using the parameters provided allows both types of conflicts
to be handled in the manner that the policy architect decides is
the best fit for their use case. The following sections consider
each of these configuration parameters in turn.

5.1 Vote Combinator
The Vote Combinator or VC is a function for combining the
boolean outputs of the policies’ vote functions into a deci-
sion on if an obligation should be executed. In addition to the
vote of each policy, the VC may need the policy name to im-
plement combinators that give preference to specific policies.
Therefore, the type of this argument is (name : Strinд ×vote :
Bool )List → Bool .

A VC can implement any logic that is desired. For example,
one could write a VC that executes an obligation if a specified
policy, say Pol1, does not veto it. This VC would look like:
fun VCvote(votes:(name:String×vote:Bool)List):Bool=

let output = ref true in
let rvotes = ref votes in

while(¬empty(! rvotes )) {
case head(! rvotes) of

some v =>
if v.name == "Pol1"
then output := v.vote
else unit

none unit => unit;
rvotes := tail(! rvotes )} end; !output end

The PoCo implementation includes built-in VCs that can be
used in their entirety or as a building block to create other
VCs. For example, one could implement a VC that allows an
obligation if either the first policy allows it or all other policies
allow it using the built in conjunction and disjunction VCs.

onTrigger
CFGs

onObligation
CFGs

Figure 2: PoCo obligation flow— obligations are generated by
policies, prioritized by the obligation scheduler and voted on.

A convenient side effect of PoCo’s event-broadcasting and
voting mechanism is that policy conflicts are obvious during
execution of the VC; votes to disallow an obligation or any vote
that gets overruled by the VC are conflicts between policies.
It is, therefore, straightforward to detect and act on these
conflicts dynamically by adding logic to the VC.

5.2 Obligation Scheduler
The Obligation Scheduler or OS is a function that orders obliga-
tions based on specific criteria. This prioritization is important
because it determines the single output event for a given input
event. Lower-priority obligations will not be able to set the
output event if an obligation of higher priority has already set
it. Like the vote function for policies, the OS works with CFG
representations of obligations, therefore the type for the OS is
(pol : Pol × c f д : CFG )List → (pol : Pol × c f д : CFG )List .

The OS allows arbitrary logic to perform its function. One
example OS could be a strict ordering of policies. If the policy
writer wants to prioritize the obligations in the order that the
policies were provided to themonitor, they could simply return
the same list. The PoCo implementation includes example OSs
including this default ordering:

fun OSdefault(obs:(pol:Pos × cfg:CFG)List):
(pol:Pos × cfg:CFG)List = obs

Other interesting ways of ordering obligations may include
prioritizing simpler obligations, weighting specific actions, or
applying priorities to the policies.

5.3 Monitor Operation
Now that all monitor inputs have been described, let’s exam-
ine how PoCo uses them during policy composition. For each
security-relevant event, PoCo uses the specified OS to gener-
ate an ordered list of obligations based on their CFGs. These
obligations are pushed onto a stack that holds all obligations
waiting to execute.

To process an obligation, PoCo pops the top obligation off
the stack and collects votes on it from all policies. The VC
composes these votes into a single permit/deny decision. A
denied obligation will be discarded; a permitted obligation will
be executed, and its result trace will be dynamically collected.
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To avoid time-of-check to-time-of-use (TOCTOU) vulnerabil-
ities, the voting on and execution of an obligation happen
sequentially in a single thread. PoCo uses the result trace and
policies’ onObligations to determine if the executed obliga-
tion triggers additional obligations. As with the onTriggers,
each obligation is pushed onto the stack. This ensures that
obligations generated by other obligations are executed as
soon as possible after execution of the trigger. Then PoCo re-
peats this process until the obligation stack is empty. Figure 2
illustrates this process.

6 IMPLEMENTATION AND CASE STUDY
We have implemented a prototype of PoCo to evaluate and re-
fine its design. The implementation, written in Java, consists of
3,299 lines of code and is available online [18]. To demonstrate
the expressiveness and analyze the performance of PoCo, we
replicated the case study that was used to validate Polymer
[4], which is the most directly comparable work.

6.1 Implementation
The PoCo compiler builds a trusted application by inlining
security-enforcement code into an untrusted application us-
ing AspectJ [19], an aspect-oriented extension to Java. The
AspectJ compiler inlines code, called advice, that executes be-
fore and/or after methods specified with pointcuts [20]. The
decision to use AspectJ over manual byte code re-writing was
made for simplicity and because byte code re-writing to en-
force runtime policies has already been accomplished by other
projects [4] so there is no novelty in a new implementation.

The PoCo compiler is comprised of four modules: the point-
cut extractor, policy converter, static analyzer, and AspectJ com-
piler. Following the flow of code translations, the PoCo com-
piler takes a list of policies specified in .pol files and uses
the pointcut extractor to create an AspectJ (.aj) file with all
methods monitored by the policies as its pointcut set. Next, the
policy converter reconstructs the .pol files into Java (.java)
files and creates a policy-scheduler file using the specified
obligation scheduler and vote combinator (in .os and .vc files
respectively). Then the static-analyzer creates CFGs to rep-
resent the actions that may be invoked for each obligation.
Finally, the AspectJ compiler inlines the policy-enforcement
code into the target application.

6.2 Case Study
To evaluate the implementation, we replicated Polymer’s case
study [4] by implementing ten policies to prevent unsafe be-
havior in an email client. Encoded in 1138 lines of PoCo (avail-
able online at [18]), these policies were enforced on Pooka [21],
an open-source email client, without modifying the applica-
tion’s source code. All policies show identical behavior in
PoCo and Polymer. When enforcing these policies, the moni-
tor 1) allows only POP and IMAP email protocols (or HTTP(S)
with user confirmation); 2) logs incoming emails, flags emails
from unknown addresses as spam, and warns users about
potentially dangerous attachments; 3) confirms recipients of
outgoing emails, adds a BCC and logs them; and 4) monitors

memory usage and prevents dynamic class loading, reflection,
or system calls.

PoCo performance was measured as the run-time overhead
incurred by the system during application and email loading
on a MacBook Pro laptop. Overhead was measured for four
scenarios: no enforced policies, one Trivial policy, ten Trivial
policies, and the entire composed email policy, thereby es-
tablishing how much overhead is due to the monitor versus
individual policies. The empirical results demonstrate that the
monitor’s overhead is relatively low. With one trivial policy
and ten trivial policies, the average overheads for loading the
client are 0.87% and 1.54%, respectively, and the overheads for
loading an email are 0.39% and 5.06%. The overhead of policy
enforcement is dominated by obligation logic, which varies by
policy. Obligations can run for an arbitrarily long time, so the
overhead of a composed policy is almost entirely dependent
on the complexity of its obligations.

7 RELATEDWORK
eXtensible Access Control Markup Language [22] allows policies
to be composed in XML. XACML allows policies to return one
of four result values and, optionally, an obligation, to express
its response to a request. Due to its stateless nature and rela-
tively simple rule structure, XACML has been widely adopted
and has been implemented into commercial and open-source
software products. However, even with significant research
extending XACML to overcome its limitations [23–27], it is
still lacking in some areas. Stateless policies are less expressive
than stateful policies [17] and cannot express simple policies
such as “disallow network sends after file reads” [28].

Polymer is an object-oriented language with well-defined se-
mantics that allows policy composition for Java programs [4].
Polymer policies issue “suggestions” indicating what they
want the monitor to do. By separating policies into an effect-
free query method and an effectful accept method, Polymer
ensures that querying a policy will have no permanent effect
when its suggestion is not followed. Because Polymer imple-
ments event-by-event complete mediation, it cannot ensure
obligation atomicity (Theorem 1).

Ponder composes access-control and general-purpose poli-
cies [6, 29] based on logical relations between policies and
hierarchical relationships between subjects’ policies. Complex
obligations are specified with concurrency operators. If any
action in an obligation violates a policy, the target application
halts. Like Polymer, Ponder inspects actions individually, so
the execution of an obligation can be interrupted which pre-
vents obligation atomicity. Ponder does not allow policies to
react to obligations; the only allowed response to a conflict is
to halt the application, which may be unacceptable in practice.

Security Policy Language (SPL) enables composition of au-
thorization policies using policy combinators [5, 30] to resolve
conflicts. SPL requires obligations to be atomic as conflicts
are resolved by resetting the application state to before the
execution of the trigger action. For this solution to work, obli-
gations must be pure (free of side-effects), because effectful
actions generally cannot be rolled back. Excluding effectful
obligations significantly limits SPL’s expressiveness.
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Heimdall uses compensatory actions in response to failures
in obligations [31]. However, there may not always exist an
effective compensation for security violations; a policy may
prevent future leakage of sensitive data but be unable to com-
pensate for data that has already been leaked. Heimdall does
not support conflict resolution between policies and obliga-
tions; obligations are not validated against other policies be-
fore execution. When an obligation is not fulfilled, Heimdall
executes the compensatory action of the obligation. Enforced
policies are unable to react to the executed obligations.

Rei identifies conflicts between pre-on-result obligations and
prohibition policies and offers two ways to resolve them [32].
The first is to specify priorities among policies or rules and the
second is to set negative/positive-modality on actions, entities,
or policies. The authors do not address conflicts in complex
obligations specifically, but the context suggests that actions
are handled individually, and thus complex obligations would
not be atomic. It is also unclear if Rei is able to react to other
policies’ obligations since the exact details of how obligations
are enforced are not included.

No previous works that we are aware of have been able to
accomplish all goals set for PoCo (Section 2). SPL and Heimdal
do not handle effectful obligations as they rely on rollback
mechanisms, only SPL allows resolution of conflicts among
atomic obligations and none of the previous work that we are
aware of allows policies to react to other atomic obligations.

8 CONCLUSIONS
PoCo is a policy-specification language and enforcement sys-
tem that enables principled composition of atomic obligations.
It is Turing complete and supports effectful pre-, post-, and
ongoing-obligations. PoCo employs static analysis to allow
policies to validate the obligations of other policies before
they are executed. PoCo also allows policies to react to com-
pleted obligations and enables custom operators to define how
policies should be prioritized and combined. Taken together,
these techniques enable a versatile composition of atomic
obligations with the most granular complete mediation possi-
ble (Theorem 1). PoCo has been implemented and evaluated by
enforcing a case-study composition of ten policies for securing
an email client. We have also defined the formal syntax and
semantics for the PoCo Language and proven it to be type
safe and that it supports atomic obligations, conflict resolution
between obligation policies, and allows policies to react to
obligations. As far as we are aware, PoCo is the first system
to provide support for atomic obligations, including conflict
resolution and allowing policies to react to obligations.
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