
PoliSeer: A Tool for Managing Complex Security
Policies

Daniel Lomsak and Jay Ligatti

University of South Florida
Department of Computer Science and Engineering

{dlomsak,ligatti}@cse.usf.edu

Abstract. Few tools exist for decomposing complex security policies
into simpler modules. The policy-engineering tools that do exist either
encapsulate entire policies as atomic, indecomposable modules or al-
low fine-grained modularization but are complicated and lack policy-
visualization capabilities. This paper briefly presents PoliSeer, the first
tool we are aware of that allows complex policies to be specified, visual-
ized, modified, and enforced as compositions of simpler policy modules.

Key words: Security policies, policy engineering, policy visualization

1 Introduction

Although complex security policies are difficult to specify, analyze, and update,
they arise often in practice. For example, a system administrator or end user
may wish to enforce a complex collection of security constraints on an untrusted
application to limit its access to resources such as files, memory, and periph-
eral devices and to obligate it to audit security-relevant operations and employ
appropriate cryptographic protocols and intrusion detection on network commu-
nications. In general, software-security policies tend to become more and more
complex over time, due to the emergence of new attacks, users’ demands for
relaxations to overly tight policy constraints, and the development of new appli-
cation areas, like medical databases, which require domain-specific security and
privacy considerations [2].

1.1 Related Work

The trend of increasing complexity in software-security policies mirrors the trend
of increasing complexity in general software applications; however, many tools
and techniques exist to help software engineers specify, analyze, and update
complex software applications. One of the most common techniques is modular-
ization; engineers can modularize software into independent, reusable, individu-
ally testable components (packages, classes, functions, aspects, etc.) that can be
parameterized by, and can communicate with, other components through well-
defined interfaces. Decomposing complex software into simpler modules saves en-
gineers from having to manage software as a single, indecomposable code block.



2 PoliSeer: A Tool for Managing Complex Security Policies

Integrated development environments (IDEs) for software engineering typically
provide good support for navigating and visualizing software modules [7, 14, 15].

In contrast, we are not aware of any existing policy-engineering tools that
enable users to navigate and visualize arbitrary policy modules, or even to
build arbitrary policies straightforwardly as compositions of existing policy mod-
ules. Many policy-engineering tools do exist for specifying and managing—
without visualizing—arbitrary but uncomposable policies (e.g., [6, 8, 9]). Many
other tools exist for specifying, visualizing, analyzing, and/or composing poli-
cies, but only in particular domains; e.g., Policy Visualization Analysis tool
provides a GUI for managing SE Linux policies [16], Expandable Grid manages
access-control policies [13], Policy Mapper manages location-based access-control
policies [4], front ends for SPARCLE and PERMIS manage natural-language
access-control and privacy policies [5, 10], and Fang and Firmato manage firewall
policies [12, 1]. None of these tools allow policy engineers to specify, manipulate,
compose, visualize, or enforce arbitrary (including cross-domain) policies.

Another related tool is Polymer, which does allow cross-domain policies to
be specified and enforced as compositions of simpler policy modules [2]. Poly-
mer users specify runtime policies on Java-bytecode applications in the Polymer
programming language. Polymer policies exhibit universal composability; every
policy can be composed arbitrarily with other policies. Polymer achieves uni-
versal composability by (1) making all policies first-class objects (i.e., objects
that are treated like all other values, which can be passed as arguments to and
returned as results from methods) and (2) requiring all policy objects to imple-
ment a standard interface. A Polymer policy P can be parameterized by another
policy P ′, and when P has to decide whether and how to allow a security-relevant
application event A to occur, P may query P ′ for a response to A and use that
response to generate its own response. For example, a Conjunction policy might
be parameterized by two policies P1 and P2; the overall policy can enforce the
conjunction of P1 and P2 by always responding to security-relevant events with
the most restrictive of the responses of P1 and P2. In this case Conjunction
is a superpolicy, and P1 and P2 are subpolicies. As another example, an Audit
superpolicy may be parameterized by a policy P and a string S; then Audit can
blindly enforce P while logging all security-relevant events to file S. In this way,
policy engineers can build arbitrary, complex policies as compositions of simpler
subpolicies.

However, Polymer lacks policy-visualization capabilities, and policy engineers
cannot specify, analyze, or update policies straightforwardly in Polymer due to
its complicated static and dynamic semantics. The complications stem from
Polymer’s safeguards to ensure universal composability; policies must segregate
effects (observable state updates and I/O operations) out of query methods and
into accept and result methods. Segregating effects makes for complicated
control flow between policy methods, and policy engineers must understand this
control flow in order to specify, analyze, and update policies correctly. For ex-
ample, Figure 1 contains an email-client policy with query, accept, and result



PoliSeer: A Tool for Managing Complex Security Policies 3

methods, as specified in Polymer, while Figure 6 shows how the same policy
could be straightforwardly specified and visualized in PoliSeer.

package examples.mail;
import polymer.*;
import examples.*;
public class Email extends Policy {

private Policy p;
public Email(){

p = new Audit(new Conjunction(new Dominates(new Dominates(new Reflection(),
new Conjunction(new ClassLoaders(), new NoOpenClassFiles())),
new Dominates(new DisSysCalls(), new InterruptToCheckMem(10.0, 4000))),
new IsClientSigned(new Trivial(), new Dominates(new Dominates(new TryWith(
new ConfirmAndAllowOnlyHTTP(), new AllowOnlyMIME()), new Attachments()),
new Conjunction(new OutgoingMail("PoliSeer@cse.usf.edu"),
new AllowInsertedActions(new IncomingMail()))))), "email.log");

}
public Suggestion query(Action a) { return p.query(a); }
public void accept(Suggestion s) { p.accept(s); }
public void handleResult(Suggestion s, Object result, boolean wasExnThn) {

p.handleResult(s, result, wasExnThn);
} }

Fig. 1. Email-client policy specified in Polymer (taken from [3]). The same policy can
be specified and visualized in PoliSeer as shown in Figure 6.

1.2 Contributions

We briefly present PoliSeer, the first tool we know of that enables complex
policies to be straightforwardly specified, visualized, modified, and enforced as
compositions of simpler subpolicy modules. PoliSeer users can import universally
composable policies from a policy library, compose them in meaningful ways by
declaring arguments to policies, visualize and update policies holistically, and
generate code to enforce the composed policies. Our prototype implementation
of PoliSeer uses Polymer as an underlying language of universally composable
policies (i.e., our PoliSeer implementation imports and exports Polymer policies);
however, we have designed PoliSeer to be readily portable to any other system
with universally composable (first-class and parameterized) policies.

Interested readers will find a much more detailed presentation of PoliSeer in
our companion technical report [11].

2 The PoliSeer Interface

PoliSeer is a simple IDE for security policies. It provides a straightforward in-
terface for creating, visualizing, modifying, and enforcing complex policies.

2.1 The Main Window

The main PoliSeer window consists of two panels, as shown in Figure 2. The left
is the policy-selector panel; the right is the policy-tree panel.



4 PoliSeer: A Tool for Managing Complex Security Policies

Fig. 2. Main PoliSeer window divided into policy-selector and policy-tree panels. The
policy-tree panel is displaying the default, empty policy.

– The policy-selector panel allows users to navigate the file system to find
existing composable policies. Our implementation begins by populating the
policy-selector panel with all subdirectories and .poly files (i.e., Polymer
policy files) in the user’s home directory. The policy-selector panel uses
a standard interface for navigating the file system: clickable areas expand
and contract subdirectories. When a user expands a subdirectory, PoliSeer
searches for, parses, and displays all policy files in the newly visible direc-
tory. PoliSeer parses the policy files so it can display the types of parameters
each policy expects (in its constructor) next to that policy’s name in the
policy-selector panel, as shown in Figure 2.

– The policy-tree panel contains a visualization of the current policy. When
PoliSeer begins executing, it displays the empty policy as shown in Figure 2.
The empty policy consists of a single grayed-out node containing the text
<Policy>, which indicates that PoliSeer expects that node to be filled in
with a policy. In general, grayed-out nodes in a PoliSeer policy indicate
incompletions in the policy; the text in a grayed-out node indicates the
type of data that must be inserted into that node. In this way, PoliSeer
communicates to the user whether, and in what ways, policies are incomplete.
For example, Figure 3 shows a policy-tree panel for an incomplete, one-node
Audit policy parameterized by another Policy and a String; the policy
is incomplete until the user specifies a Policy and a String argument for
Audit.

2.2 Creating Policies

PoliSeer’s basic interface for creating policies is simple. Users may select a policy
in the policy-selector panel by left-clicking on the policy name. Having selected a



PoliSeer: A Tool for Managing Complex Security Policies 5

Fig. 3. Policy-tree panel showing a root Audit policy parameterized by another Policy
and a String, though no children have yet been specified.

policy P , the user may left-click on any landing area L in the policy-tree panel to
insert P into L. Valid landing areas are grayed-out <Policy> nodes and branch-
insertion points (BIPs) in the policy-tree panel. PoliSeer automatically displays
BIPs as small black squares in the policy-tree panel on every branch into which
a user could possibly insert a policy.

For example, Figure 2 shows PoliSeer as it begins, with an empty policy-
tree panel. A user may add the Audit policy as the root of the policy tree by
clicking on the Audit policy in the policy-selector panel and then clicking on
the grayed-out Policy node in the policy-tree panel. The policy tree in Figure 3
results from this addition; Audit has been added as the root node of the policy,
but two new grayed-out nodes have appeared because PoliSeer has parsed the
Audit policy and determined that it is parameterized by another Policy and
a String. The user may then insert a String as the right child of the Audit
policy by clicking on the grayed-out String node and entering the string in a
pop-up window. Figure 4 shows a complete policy tree that results from inserting
a (childless) policy and a string into the grayed-out nodes of Figure 3. Two BIPs
exist in Figure 4; a user may insert a policy node into this policy above the
Audit root or above the DisSysCalls child of Audit. To insert a Conjunction
policy between the Audit and DisSysCalls nodes, the user simply clicks on
the Conjunction policy in the policy-selector panel and then clicks on the BIP
between the Audit and DisSysCalls policies in Figure 4; the result is shown in
Figure 5.

Having created a (complete or incomplete) PoliSeer policy, a user may save it
to a .psr file (which is simply a serialization of the policy tree) with the File ->
Save Tree menu option and may generate Polymer code to enforce the policy in
a .poly file with the File -> Generate Policy Code option. Conversely, users
may resume creating, viewing, or modifying a saved .psr policy with the File
-> Load Tree option. When exporting an incomplete PoliSeer policy to a .poly
file, PoliSeer automatically parameterizes the exported policy by all missing
policy components (e.g., if the PoliSeer policy is complete except for missing one
child of a Conjunction superpolicy, then the exported policy will have a single
parameter, a policy that fills in for the missing child of Conjunction).



6 PoliSeer: A Tool for Managing Complex Security Policies

Fig. 4. Policy-tree panel showing
an Audit policy with subpolicy and
string arguments. This complete
policy disallows system calls (i.e.,
java.lang.Runtime.exec methods)
at runtime while logging all policy
decisions to a file named email.log.

Fig. 5. The same policy-tree panel
shown in Figure 4, except that the user
has now inserted a Conjunction policy
between the DisSysCalls and Audit

policies.

2.3 Visualizing Policies

As Figure 6 demonstrates, PoliSeer’s policy-tree panel can provide a useful high-
level visualization of complex policies decomposed into subpolicy modules. If
PoliSeer’s view of a policy tree is too high level, users can always choose the
View -> Policy Source menu option to obtain the source-code-level details of
the most recently selected policy.

2.4 Modifying Policies

PoliSeer users may also modify existing policy trees; please see our technical
report for details [11].

3 Conclusions

PoliSeer is the first tool we know of to allow policy engineers to specify, visu-
alize, modify, and enforce complex policies as arbitrary compositions of simpler
subpolicies. As described in our companion technical report [11], we have im-
plemented PoliSeer using the architecture in Figure 7, have measured the per-
formance of our implementation, and have designed and enforced an extensive
case-study policy with PoliSeer.

We view PoliSeer as a simple IDE for security policies, providing policy engi-
neers the same sorts of benefits that traditional IDEs provide software engineers
(convenience of creating high-level specifications and visualizations to minimize
errors in, or totally avoid, low-level programming tasks). We hope that with
continued research and development, policy IDEs will be as helpful for manag-
ing complex security constraints as standard IDEs have become for managing
complex software.

Acknowledgments. This research was funded in part by National Science
Foundation grants CNS-0742736 and CNS-0716343.



P
o
liS

eer:
A

T
o
o
l

fo
r

M
a
n
a
g
in

g
C

o
m

p
lex

S
ecu

rity
P

o
licies

7

Fig. 6. Full tree for an example email policy (taken from [3]).

Composed
Polymer

policy

Polymer
library

policies

Policies’
parameter

types

Composed
PoliSeer

policy

Polymer
code

parser

Polymer
code

generator

PoliSeer
GUI

Polymer-specific front and back ends

PoliSeer

Fig. 7. Architectural overview of PoliSeer implementation (described in our companion technical report [11]).



8 PoliSeer: A Tool for Managing Complex Security Policies

References

1. Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall manage-
ment toolkit. ACM Trans. Comput. Syst., 22(4):381–420, 2004.

2. L. Bauer, J. Ligatti, and D. Walker. Composing expressive run-time security poli-
cies. ACM Transactions on Software Engineering and Methodology, 18(3):1–43,
2009.

3. L. Bauer, J. Ligatti, and D. Walker. Polymer: A language for composing run-time
security policies, 2008. http://www.cs.princeton.edu/sip/projects/polymer/.

4. R. Bhatti, M. Damiani, D. Bettis, and E. Bertino. Policy mapper: Administering
location-based access-control policies. Internet Computing, IEEE, 12(2):38–45,
March-April 2008.

5. C. A. Brodie, C.-M. Karat, and J. Karat. An empirical study of natural lan-
guage parsing of privacy policy rules using the SPARCLE policy workbench. In
Proceedings of the second symposium on Usable privacy and security, pages 8–19,
2006.

6. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy specification
language. Lecture Notes in Computer Science, 1995:18–39, 2001.

7. S. Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evolu-
tion of Software. Springer-Verlag, Berlin, 2007.

8. D. Evans and A. Twyman. Flexible policy-directed code safety. In IEEE Security
and Privacy, 1999.

9. K. Havelund and G. Roşu. Efficient monitoring of safety properties. International
Journal on Software Tools for Technology Transfer (STTT), 6(2):158–173, 2004.

10. P. Inglesant, M. A. Sasse, D. Chadwick, and L. L. Shi. Expressions of expertness:
the virtuous circle of natural language for access control policy specification. In
Proceedings of the 4th symposium on Usable privacy and security, pages 77–88,
2008.

11. D. Lomsak and J. Ligatti. PoliSeer: A Tool for Managing Complex Security Poli-
cies. Technical Report CSE-SSec-112509, University of South Florida, 2009.

12. A. Mayer, A. Wool, and E. Ziskind. Fang: a firewall analysis engine. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 177–187, 2000.

13. R. W. Reeder, L. Bauer, L. Cranor, M. K. Reiter, K. Bacon, K. How, and H. Strong.
Expandable grids for visualizing and authoring computer security policies. In CHI
2008: Conference on Human Factors in Computing Systems, pages 1473–1482, Apr.
2008.

14. N. Saigal and J. Ligatti. Inline Visualization of Concerns. In Proceedings of the
International Conference on Software Engineering Research, Management, and Ap-
plications (SERA), Dec. 2009.

15. T. Schäfer, M. Eichberg, M. Haupt, and M. Mezini. The SEXTANT software
exploration tool. IEEE Transactions on Software Engineering, 32(9):753–768, 2006.

16. W. Xu, M. Shehab, and G.-J. Ahn. Visualization based policy analysis: case study
in selinux. In SACMAT ’08: Proceedings of the 13th ACM symposium on Access
control models and technologies, pages 165–174, New York, NY, USA, 2008. ACM.


