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Abstract. SQL Injection Vulnerabilities (SQLIVs), one of the top security risks
in modern web applications, arise when unsanitized input is concatenated into
dynamically constructed SQL statements. Because existing prepared statement
implementations cannot insert identifiers into prepared statements, programmers
have no choice but to concatenate dynamically determined identifiers directly
into SQL statements. This incompleteness of prepared statement implementa-
tions enables a kind of SQLIV called a SQL-Identifier Injection Vulnerability
(SQL-IDIV). This article investigates the absolute prevalence of SQL concate-
nations and SQL-IDIVs via what is, to our knowledge, the largest analysis of
open-source software to date. We crawled 4,762,175 files in 944,316 projects on
GitHub to identify SQL statements constructed using concatenation. We further
classified whether each concatenation constitutes a SQL-IDIV. Our crawler clas-
sified 42% of Java, 91% of PHP, and 56% of C# files as constructing at least one
SQL statement via concatenation. It further found that 27% of the Java, 6% of
the PHP, and 22% of the C# files that concatenate to construct at least one SQL
statement concatenate identifiers. Manual analysis indicates that our automated
SQL-IDIV classifier achieved an overall accuracy of 93.4%. Further vulnerabil-
ity testing suggests approximately 22.7% of the web applications meet all of the
additional requirements to be exploitable in practice via SQL-identifier injection.
PHP applications were particularly exploitable at 38% of applications. We also
investigated the prevalence of SQL-IDIVs relative to other software vulnerabili-
ties by analyzing all 3,757 CVE reports of SQLIVs published in 2022-2023, and
finding that at least 8% of these reports pertain to SQL-IDIVs. We observed that
the prevalence of SQL-IDIVs has risen from 2022 to 2023.
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1 Introduction

Code injection vulnerabilities remain one of the top security risks in modern web ap-
plications. The 2021 Open Worldwide Application Security Project (OWASP) Top Ten
list [47] ranked injection vulnerabilities in the top three with the second most recorded
occurrences. Injection vulnerabilities arise when untrusted and unsanitized input is used
to generate an output program [50]. One of the most common examples of injection vul-
nerabilities are SQL injection vulnerabilities (SQLIVs), where unsanitized input gets

* The first two authors contributed equally to this work.
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inserted into SQL queries. This input insertion is typically performed using concatena-
tion but may be accomplished using equivalent string-builder functions or string inter-
polation. For the sake of brevity, as string interpolation is primarily syntactic sugar for
concatenation (i.e., interpolation is a form of concatenation), the term concatenation in
this article also refers to interpolation unless otherwise noted. Previous work showed
that any concatenation of unsanitized input into a SQL statement constitutes a SQL
injection vulnerability [50].

As an example, the following C# code is vulnerable to SQL injection.

v a r password = Reques t . form ( " password " ) ;
v a r s q l = "SELECT * FROM Accounts WHERE Password = ’" +

↪→ password + " ’ " ;

If the provided password is ’OR 1=1 -, the constructed SQL query will be:

SELECT * FROM Accounts WHERE Password = ’ ’ OR 1=1 −−’

Using this injection, an attacker can bypass password authentication, retrieving all
rows in the Accounts table. Many additional SQL injection techniques exist [23].

SQL-Identifier Injection Vulnerabilities (SQL-IDIVs), first formally defined as SQL-
Identifier Injection Attacks (SQL-IDIAs) in [6], are a subset of SQLIVs where the user
data is inserted into a portion of the SQL statement reserved for a SQL identifier. Identi-
fiers in SQL include the names of tables, columns, indexes, databases, views, functions,
procedures, or triggers. The following C# code contains a SQL-IDIV.

v a r column = Reques t . form ( " column " ) ;
v a r s q l = "SELECT * FROM Accounts ORDER BY " + column ;

This code is intended to allow the user to specify the column by which to order the
output. The expected user input is a column name from the Accounts table. An example
malicious user input is as follows.

F i r s tName UNION SELECT * FROM Admins

The output SQL program, given the malicious user input, is as follows.

SELECT * FROM ACCOUNTS ORDER BY Fir s tName UNION SELECT *
↪→ FROM Admins ;

Assuming that the Accounts table and the Admins table have the same schema, this
injection causes the output program to return all records from the Admins table.

Prepared statements are considered the standard defense against SQLIVs, as they
separate the user data from the output program [46]. However, modern prepared state-
ment implementations are incomplete. As discussed in Section 3, we surveyed 10 public
implementation of prepared statements, and found that none of them support identifier
insertions. These implementations, and all other prepared statement implementations
that lack support for identifier insertion, do not adequately mitigate SQL-IDIVs [6].

To estimate the need or potential impact of adding support for identifier insertion
to prepared statement implementations, this article investigates the prevalence of SQL
concatenations and SQL-IDIVs. We propose the following research questions:
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1. RQ1 (Absolute Prevalence). What is the prevalence of SQL concatenations and
SQL-IDIVs in publicly available code?

2. RQ2 (Relative Prevalence). What is the prevalence of SQL-IDIVs, relative to
other software vulnerabilities, in publicly available vulnerability reports?

To address RQ1, we performed what is, to our knowledge, the most comprehen-
sive analysis of open-source software to date. Our automated Github crawler analyzed
4,762,175 files in 944,316 GitHub projects to classify their usage of SQL concatena-
tion. These files contained Java, PHP, or C# source code; these languages were chosen
for their popularity (each language returned several million results during initial test-
ing) and their well-established database libraries/frameworks. We also further classified
whether the concatenations are into portions of SQL statements reserved for identifiers.
We found that 42% of Java, 91% of PHP, and 56% of C# web-application files construct
SQL statements via concatenation. Furthermore, we found that 27% of the Java, 6% of
the PHP, and 22% of the C# files that concatenate to construct SQL statements concate-
nate identifiers. Manual analysis of a random sampling of these files indicates that the
automated SQL-IDIV classifier achieved an overall accuracy of 93.4%. After confirm-
ing the classifier’s accuracy, we attempted to exploit a subset of the applications and
determined approximately 22.7% of the web applications meet all of the additional re-
quirements to be exploitable in practice via SQL-identifier injection. PHP applications
were particularly exploitable at 38% of applications. The repository owners of these
exploitable applications were informed of the vulnerabilities.

To address RQ2, we manually analyzed all 3,757 CVE reports of SQLIVs published
in either 2022 or 2023, finding that at least 300 (8%) of these 3,757 reports are for
SQL-IDIVs. We observed that 8.6% of the classifiable CVE reports from 2022 were
for SQL-IDIVs compared to 12.7% in 2023. These results provide further evidence that
SQL-IDIVs comprise a nontrivial portion of SQLIVs and indicate that the prevalence
of SQL-IDIVs appears to be increasing.

This article presents a definition of SQL-IDIVs that is modified from the original
definition of SQL-IDIAs [6]. The definition is improved to allow SQL identifier lists,
enabling our classifier to recognize not only SQL-statement locations reserved for iden-
tifiers but also locations reserved for a comma-separated list of identifiers. This updated
definition is a strict generalization of the original and encompasses SQL-IDIVs that
would not have been detected otherwise. Our crawler correctly classified 658 Java and
174 C# files due to this updated definition.

This article contributes:

– An analysis of 10 popular prepared statement implementations in Java, PHP, C#,
and JavaScript, and a catalog of the various SQL types they support (Section 3).

– An improved definition of SQL-IDIVs that allows our classifier to correctly classify
an additional 832 potentially vulnerable files on GitHub (Section 4).

– An analysis of the absolute prevalence of concatenation in SQL statements and
SQL-IDIVs across 4,762,175 GitHub files (Section 5).

– An analysis of the performance of GitHub’s code-search API (Section 5.2).
– An analysis of the relative prevalence of SQL-IDIVs via a manual classification of

all 3,757 SQLIV CVE reports published in 2022 or in 2023 (Section 6).



4 K. Dennis et al.

This article draws heavily from our earlier paper, which originally appeared in the
21st International Conference on Security and Cryptography (SECRYPT 2024) [12].
We extend that earlier work as follows:

– Section 2 now provides a more detailed and up-to-date overview of related work
and includes a new discussion on the limitations of a WordPress input sanitization
function.

– Additional methodological details for analyzing prepared statement incompleteness
are now provided in the largely new Section 3.

– Section 5 now includes a new analysis of the performance of GitHub’s code-search
API.

– Section 6 now includes results from an all-new, manual classification of the 1,982
SQLIV CVE reports published in 2023.

– Section 7 now discusses additional avenues for future work.
– Our crawler code and manual analysis data are now publicly available [29,30,31].

This article also contains the following presentational improvements to the earlier
conference paper:

– This article now uses the term “SQL-identifier injection vulnerabilities” (SQL-
IDIVs) throughout, rather than the older term “SQL-identifier injection attacks”
(SQL-IDIAs), in order to more accurately convey that these vulnerabilities can ex-
ist without being exploited.

– This article’s experimental results are now organized around two new research
questions, RQ1 and RQ2, which are concerned with the absolute and relative preva-
lence of SQL-IDIVs. These research questions introduce a common theme that ties
together the experimental designs and results.

2 Background and Related Work

This section reviews previous efforts made to extract data from GitHub and surveys
SQLIV mitigation techniques. Given their prevalence, several papers have focused on
SQLIVs, including attempts to classify SQLIVs from GitHub.

2.1 Obtaining Data from GitHub

GitHub is the largest public code hosting service with over 100 million developers
and over 420 million repositories as of November 2024 [16]. The data available from
GitHub is of prime interest to researchers, and several attempts have been made to
archive the data and make it more accessible. GHTorrent [17] and GH Archive [21]
allow users to view or download GitHub data. Lean GHTorrent [19] is an evolution
of GHTorrent that can retrieve data dumps on demand. However, none of these tools
offer the data necessary for the present article’s experiment. The tools primarily provide
metadata about GitHub users, projects, and various other events. While some useful data
can be extracted from commit comments and diffs, this article makes use of the GitHub
code-search API to obtain a larger set of up-to-date files for analysis.
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In addition, the GHTorrent service appears to be deprecated: the GHTorrent web
page [18] is no longer available and the once-active GHTorrent Twitter (X) account [14]
has not posted since March 7, 2021. The original papers describing the GHTorrent
service [17], however, served as inspiration for automating our crawling process. For
example, the project data extracted from GitHub is stored in a MySQL database using a
schema with similarities to the schema employed by GHTorrent. Several other services,
such as the SearchCode [4] service, while still available, appear to be incomplete, with
only partial or outdated results, and suffer from unpredictable downtime.

More recent work in the field of MSR (Mining Software Repositories) has produced
additional code-search tools. GitHub Search (GHS) [10] continuously mines GitHub
repositories, allowing them to be queried based on various attributes. However, GHS
does not support projects written in PHP, one of the languages of interest for the present
article. PyDriller [53] is a Python framework that provides detailed information about
repositories, such as commits, diffs, and source code. Input repository names must be
supplied to PyDriller manually (they must be of type string or list of strings), making
the tool unsuitable for the automated, large-scale nature of this article’s study.

Prior works with goals similar to our own have examined datasets smaller than
the dataset studied in the present article, either by design or due to the GitHub API
restrictions. In [69], the GitHub code-search API was employed to search for publicly
available configuration files that may leak passwords, secret keys, or other sensitive
data. This search was limited to a small data set due to the GitHub API only returning
a maximum of 1000 results. The crawler program designed for our work overcomes
this limitation by utilizing the GitHub API’s file size feature, described in more detail
in Section 5.1. This technique would likely be insufficient for searching configuration
files because such files would be expected to concentrate highly over a small file-size
range.

GitHub has been leveraged for other studies focusing on SQL injection attacks.
In [62], a total of 117 vulnerabilities were identified across 64,415 PHP source files by
comparing the syntactic artifacts of publicly available tutorial code to code on GitHub.
The study concludes that there is a substantial link between insecure tutorials and in-
secure web-application vulnerabilities. The present article, rather than starting from
known vulnerable code, starts by identifying public code that interacts with a DBMS
and then analyzes that code. The findings of [62] may inform why the analyzed code
does not make use of available mitigation strategies. In addition, the technique may be
unable to identify SQL-IDIVs due to a lack of representation in tutorials.

2.2 SQLIV Mitigation Techniques

Several solutions have been developed to mitigate SQL injection and code injection
vulnerabilities in general. Dynamic methods [50] and tools [2,22,52] that attempt to
catch injections at runtime have been proposed but may incur large performance over-
heads and have not seen widespread adoption. Some dynamic methods, such as SQLPs-
dem [70], rely on rule-based attack matching, potentially restricting their ability to mit-
igate zero-day attacks. Static methods [41] that perform information-flow analyses to
identify where untrusted user input is concatenated into output SQL programs have not
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been adopted due to a high false-positive rate [24] and their inability to detect all types
of vulnerabilities [56].

Object-Relational Mapping (ORM) libraries abstract the entire process of writing
SQL queries into the object-oriented paradigm. For example, a developer might use
code like Users()->select("name")->execute() to obtain the names of all users.
The ORM library then handles the entire process of constructing the query, connecting
to the database, and returning the results. The ORM is also responsible for constructing
the SQL statement securely using input validation or prepared statements. These imple-
mentations are not without their own vulnerabilities; a CVE report reviewed as part of
this project was for an ORM implementation one of the authors had used extensively
and believed to be secure at the time [3,37].

Techniques of artificial intelligence and machine learning have been applied to
SQLIV mitigation. In [26] and [34], kernel functions and support vector machines are
used to classify SQL queries as benign or malicious. Another study [57] trained a neural
network to detect SQL injections in URLs. An IDS that detects SQL injection attacks
was developed in [32], making use of temporal classification methods to improve clas-
sification accuracy. All of these approaches focus on detecting existing SQL injections,
as opposed to preventing new injections from occurring.

Input validation, also known as input sanitization, refers to any attempts to filter out,
escape, or otherwise remove special characters, control symbols, and other non-data
values in untrusted user input. The filtered value is then concatenated directly into the
output program. The OWASP SQL Injection Cheat Sheet notes that input sanitization
alone cannot prevent all SQL injections in all situations [46]. This limitation of input
sanitization arises due to the large number of input symbols and edge cases that must
be accounted for. Even well-tested input validation implementations are not always
reliable. For example, the esc_like function for escaping a string in a LIKE statement
in WordPress does not output a string that can be safely inserted into a SQL query.
As explained in the function’s documentation for version 4.0.0 (the latest version of
the function) [65], further input sanitization or prepared statement usage is required to
reliably prevent SQLIVs. In addition, storing filtered data in a database and later reusing
it without filtering the data again can lead to second-order injection vulnerabilities [1].

WordPress Prepare Function The prepare function from the wpdb class in Word-
Press [67] is particularly relevant to this article. This function performs SQL-escaping
on a given input string, outputting a sanitized string which may then be executed by a
DBMS as a SQL command. Format specifiers may be used as placeholders for user in-
put. Although the name “prepare” may suggest that this function is a prepared statement
implementation, this is not the case. The prepare function does not cause the DBMS
to precompile the given query string. Another function, such as query [68], must be
used to execute the sanitized query string output by prepare. An example invocation
of the function is shown below, where $data is obtained from user input:

$ s q l = $wpdb−> p r e p a r e ( " INSERT INTO Tab le VALUES(%d ) ; " ,
↪→ $ d a t a ) ;
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Originally, the function supported the %d, %f, and %s specifiers for integers, floats,
and strings, respectively. The 6.2.0 update (released on October 8, 2022) [33], added
support for the %i specifier, which acts as a placeholder for SQL identifiers.

The main documentation page for the wpdb class [66] discusses the prepare func-
tion. However, the main page does not include information on the %i specifier, listing
only the %s, %d, and %f specifiers in the possible placeholders. This hole in the docu-
mentation may contribute to a lack of awareness of the %i specifier among WordPress
developers, as reflected in multiple online tutorials not containing information about the
%i specifier [27,28,51]. Software vulnerabilities are often propagated through the reuse
of insecure tutorial code [62,63], so this gap in the documentation may inhibit the ef-
fectiveness of the %i specifier in practice. In any case, the reliance on input sanitization
is incomplete, as discussed above.

3 Prepared Statement Incompleteness

Prepared statements are considered the standard SQLIV mitigation technique [7,46], as
they provide a clear distinction between code and noncode in constructed SQL state-
ments. Instead of concatenating or otherwise inserting noncode (e.g., a string or numeric
literal) directly into the constructed statement, the programmer inserts a placeholder
symbol where the noncode should appear. The noncode value is then passed alongside
the constructed statement to the DBMS, which begins executing the statement and re-
ferring to the noncode value when a placeholder is encountered. Prepared statements
can be used to prevent other types of injection attacks but require that the output pro-
gramming language and the corresponding interpreter provide support for them. This
section presents an analysis of 10 prepared statement implementations (2 in Java, 2 in
PHP, 3 in C#, and 3 in JavaScript) and catalogs the various SQL types they support.

For Java, we reviewed Java Database Connectibity (JDBC), the standard Java API
for database access, and jOOQ, an alternative library.

– JDBC [48] includes support for replacing a placeholder with any of the possible
types of SQL literals. However, the library does not support defining placeholders
for identifiers and replacing placeholders with identifiers.

– In jOOQ, all SQL statements are prepared statements by default [25]. The De-
faultPreparedStatement class implements the standard Java PreparedStatement in-
terface [13]. Thus, jOOQ supports the same values in prepared statements as JDBC.

For PHP, we surveyed mysqli and PDO, neither of which supports identifier inser-
tions in prepared statements.

– The mysqli extension [58] contains the mysqli_stmt::bind_param function [59],
which binds variables to a prepared statement as parameters. The supported bind
variable types include int, float, string, and blob (binary large object). There is no
support for identifiers or replacing placeholders with identifiers.

– PDO (PHP Data Objects) [60] supports 6 types [61]: booleans, null values, integers,
strings, large objects, and recordsets.
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For C#, we reviewed three well-known prepared statement implementations: SqlDb-
Type, DbType, and MySqlDbType. None of these libraries support replacing placehold-
ers with SQL identifiers.

– SqlDbType [36] supports a total of 35 different types, all of which are SQL literals.
– DbType [35] supports 28 different types. These include various SQL literals as well

as the “Object” type (a generic type representing any reference or value type not
explicitly represented by another DbType value).

– MySqlDbType [49] supports 41 different types, including various literals, collec-
tions of literals (such as enums and sets of strings) and JSON.

For JavaScript, we reviewed one PostgreSQL library and two libraries for MySQL.
One of these libraries does not implement prepared statements, and the prepared state-
ment implementations for the other two libraries do not support identifier insertions.

– The node-postgres [5] package supports placeholders for null values, dates, buffers,
arrays, objects, and all other standard SQL types. The documentation explicitly
states that “PostgreSQL does not support parameters for identifiers.” It is recom-
mended to use the node-pg-format [11] package to sanitize input if dynamic identi-
fiers are needed for queries. However, the most recent commit for node-pg-format
was pushed on February 18, 2017; the repository was archived on March 25, 2022.

– The mysql [40] package does not support prepared statements (prepared statements
are included in the “Todo” section of the documentation). There are functions that
perform client-side escaping of SQL literals and SQL identifiers, but the documen-
tation cautions that these are not prepared statements.

– mysql2 [39] supports null values, doubles, booleans, datetimes, JSON, buffers, and
strings. Identifiers are not supported.

A summary of each library is given in Table 1. The results indicate that current
prepared statement implementations do not support placeholders in locations where
SQL identifiers are expected. If there is a need for dynamic, user-defined identifiers in
constructed queries, these libraries will be insufficient for preventing SQL-IDIVs [6].

4 SQL-IDIVs with Identifier Lists

In SQL, some identifiers may appear in a list, including the two most common identifier
types: table and column names. The original definition of SQL-IDIAs [6] is limited
to applications that concatenate a single identifier into a SQL statement. This section
presents a generalized definition of SQL-IDIVs which supports identifier lists.

Definition 1. An identifier list consists of a sequence of one or more identifiers
separated by commas, with initial and/or terminating commas also allowed.

Examples of identifier lists are shown below, where ε represents the empty string.

id1
id1, id2, id3
ε, id2, id3, ε
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Table 1: The data types supported by prepared statement libraries
Language Library Supported Types Reference(s)

Java
JDBC All SQL literals [48]
jOOQ All SQL literals [13,25]

PHP
mysqli int, float, string, and blob (binary large object) [58]
PDO boolean, null, int, string, large object, recordset [60,61]

C#
SqlDbType

Various SQL literals (including integers, floating-point
numbers, dates, times, chars, and strings)

[36]

DbType
Various SQL literals as well as “Object” (a generic
reference or value type)

[35]

MySqlDbType
Various SQL literals, JSON, sets of string
literals, and enums

[49]

JavaScript
node-postgres All standard SQL literals [5,11]
mysql None (library does not support prepared statements) [40]
mysql2 null, double, boolean, datetime, JSON, buffer, string [39]

The following items are not considered identifier lists because they contain non-
identifiers or violate the list format.

0, 1, id1
SELECT, ORDER BY, id1
id1, ε, id2, id3

Definition 2. An application contains a SQL-IDIV iff the application constructs
a SQL statement S by concatenating an untrusted input i into S and there exists an
identifer list l such that concatenating l into S in place of i causes S to be a valid SQL
statement.

A SQL-identifier injection occurs when a SQL-IDIV-containing application con-
catenates a non-identifier list, or an invalid-identifier list, into a SQL statement in place
of a valid identifier list.

Definition 3. A SQL-Identifier Injection occurs in a SQL-IDIV-containing applica-
tion iff the concatenated input i provided dynamically either is not an identifier list or
is an identifier list that, when concatenated into S, makes S an invalid SQL statement.

var sortOrder = Request.form("sortOrder");
var sql = "SELECT * FROM Accounts ORDER BY firstName " +

↪→ sortOrder;

Fig. 1: A SQL-IDIV-containing application expecting either ASC or DESC as input

Figure 1 presents an application program that contains a column-name-based SQL-
IDIV. The intent is for users to set the sorting order by specifying ASC or DESC. How-
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ever, an identifier list such as , lastName may be substituted instead, as described in
Definition 2, resulting in a query that orders by multiple columns. The following three
examples demonstrate how this application may be attacked.

1. An attacker may input , SLEEP(3600). This input is not an identifier list, but
the resulting SQL statement is valid and causes the database to sleep for 1 hour, a
sleep-based SQL injection that may result in denial of service. This example input
demonstrates that the attacker can execute malicious code; more complex attacks
are also possible, for example, by using subqueries or other known techniques [23].

2. An attacker may input , SELECT, which is also not an identifier list but in this case
produces a SQL statement that will fail to compile. Depending on the environment,
this attack might leak DBMS metadata (e.g., through error messages), allowing the
attacker to perform reconnaissance. The attack may also deny service to other users.

3. An attacker may input an identifier list that likewise produces an invalid SQL state-
ment. In this case, the SQL statement may be invalid because the identifiers are
undefined (e.g., specifying a column name not present in the schema), or due to an
incorrect list size. Using the code in Figure 1, if an attacker inputs , foo, assum-
ing foo is not a column defined in the schema, this injection will result in a runtime
error, which again may leak metadata or result in denial of service.

All of these examples are SQL-identifier injections by Definition 3.

Proposition 1 (SQL-Identifier Injection Definition Generalization). Definition 3
strictly generalizes the definition of SQL-IDIAs in [6].

Proof Consider an arbitrary application, A, that is vulnerable to SQL-IDIAs using
the definition in [6]. By that previous definition, A builds a SQL statement S where there
exists some user input, a single identifier i, such that when A concatenates i into S, it
makes S a valid SQL statement. Because Definition 1 allows for an identifier list to be
composed of a single identifier, i must be a valid identifier list as well. Therefore, A
meets the requirements of Definition 2, and any SQL-IDIA on A according to [6] also
satisfies Definition 3. On the other hand, Figure 1 shows an application that allows an
injection of an identifier list but not a single identifier, making it vulnerable to SQL-
identifier injection by Definition 3 but not by the definition of [6]. Thus, Definition 3
strictly generalizes the definition of SQL-IDIAs in [6].

5 Experiment I: SQL Concatenation and SQL-IDIVs on GitHub

To address RQ1, we obtained 4,762,175 files via GitHub’s code-search API and clas-
sified their usage of SQL statement concatenation. This section discusses the method-
ology and results of the GitHub experiment, along with our manual verification of the
results. Our GitHub crawler code, classifier regular expressions, and manual verification
data are available online [29,30,31].

5.1 Experiment I Methodology

An illustration of the general workflow for the GitHub crawler and the classifier is
shown in Figure 2 [12]. This workflow follows the same high-level structure of other
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tools such as GHTorrent but uses the GitHub code-search API exclusively. The database
tracks all files individually and includes the commit that each file was last updated on.
This commit-URL provides a static reference to the file and will not change as the file
is updated, allowing for the data to continue to be accessible over time. These files can
then be provided to the classifier for analysis. After analysis, the results are stored in
their own table, allowing the classifier to be run multiple times or swapped out entirely
without invalidating the stored files.

Fig. 2: Workflow for the GitHub crawler and classifier [12]

Crawling GitHub’s API The experiment began by crawling the GitHub API to iden-
tify files to analyze. GitHub grants all authenticated users the ability to quickly search
for specific strings in source files across the uploaded repositories. The GitHub API
limits code searches to the first 1000 results, requiring a workaround; other limitations
or challenges with the API are described in Section 5.3.

For each target programming language, a popular database library was chosen and
the GitHub API was used to locate files that contain calls to the library function that ex-
ecutes a SQL command. For example, JDBC was chosen for Java, and the GitHub API
was queried for Java files containing the string executeQuery. The library to use was
determined by the number of results from GitHub; GitHub reported about 3.6 million
entries for JDBC. The program recognizes and classifies several different libraries for
each language and libraries can be quickly added; this is described in detail in the next
subsection.

To overcome the API’s limit of 1000 results for a query, the crawler program splits
the data into subsets based on file size. The API allows users to specify the minimum
and maximum file size and will only return files that are between the specified range.
By decreasing the range width, the number of files in a subset can be fit into the result
limit; we refer to these subsets as “frames”. After retrieving the results for the current
frame, the minimum and maximum file size can be increased, and the next frame of files
can be requested. The crawler program automates this process, decreasing or increasing
the maximum file size to keep the frame size as close to 1000 results as possible.

Finally, the API results are paginated, with each page containing up to 100 files.
Thus, each frame can contain up to 10 pages of 100 results each, adding up to a maxi-
mum of 1000 files in the frame. Figure 3 demonstrates how the GitHub data is split into
frames and pages.
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Fig. 3: Division of GitHub data into frames by file size; each frame consists of 10 pages

GitHub places a restriction on the computation time allocated to any individual
query. This restriction is in addition to the normal limits on the number of requests
that an individual user can make in a given time frame. When the computation limit is
reached, the GitHub API returns the current results, even if those results are not com-
pleted. Ideally, pages would always contain 100 results, but due to the computation
limits, pages often contain significantly less than that. To take full advantage of the po-
tential downtime between individual API requests, the classification process described
in the following subsection was performed between subsequent API calls. After obtain-
ing a set of results, the results were immediately processed, allowing time for the API
limits to expire.

GitHub also allows for most of their API to be accessed using GraphQL [20], a
query language for APIs. Using GraphQL to query an API greatly increases perfor-
mance, as it allows users to specify exactly which data they need from a single endpoint,
and multiple resources can be retrieved in a single request. Unfortunately, this does not
include the code-search API. The crawler program uses GraphQL to retrieve all other
metadata from GitHub, such as project descriptions and star counts.

SQL Classifier After obtaining candidate files using the code-search API, the program
downloads and analyzes the files to find potential misuse of concatenation in the con-
struction of SQL statements. The classifier determines the usage of prepared statements
or concatenation in a given file using regular expressions. For example, the following
PHP code interpolates the $table variable into a SQL statement.

$ s q l = "SELECT * FROM $ t a b l e " ;

The classifier is primarily focused on identifying SQL statements inside string lit-
erals in source code. To that end, the classifier abstracts language-level syntax rules,
such as identifier naming conventions and the symbol used for concatenation, from its
regular expressions. This allows users to add support for new programming languages
without modifying the underlying classifier program.

The classifier first identifies all instances where the given file constructs SQL code
and then classifies the file into one of four categories: none, hardcoded, string concate-
nation, or string interpolation. The “none” classification indicates that given the file
contained no SQL statements, “hardcoded” means all SQL statements were hardcoded
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or used prepared statements, “string concatenation” means one or more statements were
constructed using concatenation, and “string interpolation” means one or more state-
ments were constructed using string interpolation or concatenation.

Next, all locations in SQL statements that contain or expect a SQL identifier are
classified into the same categories, with the addition of a “string concatenation list” cat-
egory which represents misconstructions that would only be detected using Definition
2. Any identifier types not found in the file are marked with the “none” classification
(e.g., the file contains no SQL that calls a stored procedure).

5.2 Experiment I Results

Crawler and Classifier Results The crawler successfully obtained a total of 4,762,175
files from GitHub. The number of files per programming language is presented in Ta-
ble 2 [12]. These files were spread across a total of 944,316 GitHub projects. We com-
pared the hashes of the obtained files to identify and filter out duplicates. To avoid
skewing the analysis, all of the results presented in this article are based on the data set
of unique files containing SQL. We henceforth ignore duplicate files and files without
SQL-statement construction.

Table 2: Files and projects reviewed per language [12]

Total Files
Unique files

containing SQL
Projects

Java 2,372,363 1,273,078 461,896
PHP 1,587,766 1,083,294 307,089
C# 802,046 526,921 175,331
Total 4,762,175 2,883,293 944,316

No limits were placed on the maximum size of the file that GitHub might return.
The size frame was increased until no results were returned. The cumulative percentage
of files by file size can be seen in Figure 4 [12]. The largest file obtained was a one-
gigabyte Java file. About 95% of the obtained files for all three languages were under
40 MB in size, with the remaining 5% scattered haphazardly between 40 MB and 1 GB.
The graphs presented in this article are restricted to under 40 MB to prevent them from
being skewed by large outliers.

The classifier identified that, of the unique files that contain SQL, 144,461 (11.3%)
Java files, 63,239 (5.8 %) PHP files, and 66,026 (12.5%) C# files contained at least one
instance where an identifier was concatenated or interpolated during the construction of
a SQL statement. Table and column names were the two most common identifiers for
all three languages. Table 3 [12] presents the number of constructions for non-identifier
and identifier locations. For each location, the constructions are further grouped by
their type, which can be hardcoded, string concatenation, or string interpolation. The
table does not include the number of files that construct SQL statements using pre-
pared statements libraries because such libraries were often called, but misused (i.e., no
placeholders were used and user input was concatenated to the query).
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Fig. 4: Cumulative percentage of files by size [12]

Table 3: Concatenation in SQL statements by location in unique files [12]
Any location Identifiers

Hardcoded Concatenated + Interpolated Hardcoded Concatenated + Interpolated
Java 732k 534k + 6k = 540k 1.1M 143k + 0.7k = 144k
PHP 96k 101k + 904k = 1M 1.0M 21k + 44k = 65k
C# 230k 180k + 117k = 297k 461k 47k + 19k = 66k
Total 1M 815k + 1.0M = 1.8M 2.6M 211k + 64k = 275k

Table 4 [12] details the statistics of the unique files analyzed. The crawler and ana-
lyzer classified 42% of Java, 91% of PHP, and 56% of C# web-application files as con-
structing SQL statements via concatenation. Of the files that concatenate to construct
SQL statements, 27% of the Java, 6% of the PHP, and 22% of the C# files concatenate
identifiers.

We sorted the files classified as containing concatenation by file size to determine
if there is a correlation between file size and the likelihood of concatenation occurring;
Figure 5 [12] presents the results.

GitHub API Performance While running the crawler to obtain files for classification,
we tracked and logged the crawler’s interactions with the GitHub API. The experiment
lasted 3 months and 3 days. The three languages were split across four different ma-
chines, each using a unique GitHub account. Over 100 GB of data was transmitted, with
over 1,000 hours dedicated just to networking. The GitHub data was split over 34,706
frames with a total of 128,264 pages.

The networking data can be further broken down into three groups depending on the
type of request: code search, GraphQL, and file downloads. The code-search category
contains calls to the GitHub code-search API, used to identify interesting code files
for classification. GraphQL requests represent the calls made to the GraphQL API,
which was used to download other metadata about the projects that contained the code
files. The last category represents requests to download the code files after identification
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Table 4: Statistics of the unique files analyzed [12]

% of files
with

concat.

% of files
with

identifier
concat.

% of files with
concat. that

have identifier
concat.

Java 42.5% 11.3% 26.7%
PHP 91.1% 5.8% 6.4%
C# 56.4% 12.5% 22.2%
Total 63.3% 9.5% 15.0%
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Fig. 5: Percentage of unique files with SQL identifier concatenations by file size [12]

using the GitHub API. Table 5 presents, by language, the total number of bytes, total
runtime, and the total number of individual requests for each networking category.

Notably, the crawler program never once hit the regular API limit of ten code
searches per minute. However, the program regularly hit the secondary limit, a limit
enforced when a user makes too many large requests in a short period. We found wait-
ing a minute was usually sufficient for the secondary limit to be lifted, but the exact
length of such a restriction is not predictable by design. We implemented the steps rec-
ommended by GitHub [15] to reduce the number of secondary limits, such as caching
results using the okhttp3 library [55], but it does not appear code-search results sup-
port caching; for more discussion on the unpredictability of the code-search API, see
Section 5.3. Figure 6 presents the total number of secondary rate limits that occurred
grouped by time of day and day of the week.

The number of files that were reported in each page was also recorded. Due to
GitHub’s early termination of expensive queries, many pages would not contain the
maximum 100 results. The API does allow users to specify the number of results re-
turned in a page, but the authors speculate this value is used when determining the max-
imum runtime for an individual query. For example, during early testing of the GitHub
API, dropping the number of results per page from 100 to 50 did not appear to increase
the overall number of results obtained. Over several runs, two pages of 50 results each
and a single page of 100 results will both only return about 60 total results on average.
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Table 5: Networking performance by language and type
Search Code GraphQL File Downloads

Bytes
(GB)

Time
(h)

Requests
Bytes
(GB)

Time
(h)

Requests
Bytes
(GB)

Time
(h)

Requests

Java 15.9 53.3 53,873 0.28 40.3 16,492 39.4 402.7 2,568,364
PHP 12.4 52.9 52,449 0.18 10.9 7,203 13.7 334.9 1,482,427
C# 5.6 15.2 17,999 0.15 10.6 3,174 17.0 149.2 1,068,642
Total 33.9 121.4 124,321 0.61 61.8 26,869 70.1 886.8 5,119,433
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Fig. 6: Total number of secondary rate limits encountered by time of week

Figure 7 presents the average number of results in a page grouped by time of day and
day of the week.

Although we hypothesized that GraphQL would be faster than the code-search API,
we found that the GraphQL queries were instead slower given the number of bytes
transmitted. Instead, the GraphQL performance stands out for the low overhead of the
transmitted data and the API’s reliability. The code-search API only returned about 50-
60 results on average for each request. Every single GraphQL query, on the other hand,
returned 100% of the requested data. Every project that was requested via the GraphQL
API was returned. In addition, every byte included in the GraphQL data was useful,
desired data as it was specifically requested. Of the almost 34 GB of code-search data,
only about 10% of that was actually desired. The search code response data is filled
with many long links to other API endpoints to retrieve potentially related data that was
not useful for this study.

The code-search API’s performance appears highly correlated to the typical work
week and is superior during off-peak hours. As shown in Figures 6 and 7, the API was
more reliable during the weekend and around 6:00 PM US Eastern Time. This time
of day is at the end of typical working hours in most of the U.S and outside of typical
working hours in many other places of the world; 6:00 PM US Eastern time is equivalent
to 10 PM in London, England, 3:30 AM in New Delhi, India, and 7:00 AM in Tokyo,
Japan. In addition to returning a larger number of results, the number of times the API
hit a secondary rate limit was also lower outside of these hours. There appears to be
a strong correlation between the rate-limiting and the number of returned results, with
the peak rate-limiting occurring simultaneously with the low number of results.
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Fig. 7: Average number of results returned in a page by time of week

5.3 Discussion

Addressing RQ1, our results show that 63% of the obtained files construct at least one
SQL statement using concatenation. Of these files, 15% concatenate SQL identifiers.
Table names were the most commonly concatenated identifier, followed by column
names.

String interpolation was almost nonexistent in Java programs but was common in
PHP, with over 83% of PHP files utilizing interpolation to construct their SQL state-
ments. PHP also had the highest concatenation rate, which is reflected in the CVE anal-
ysis in Section 6, where the majority of vulnerability reports were observed to be in
PHP web applications, commonly built using WordPress.

As shown in Figure 5 [12], file size is correlated with the likelihood of identifier
concatenation. We hypothesize that this is likely a result of large code bases serving a
more complex purpose, with a larger number of queries that must be dynamic in nature.

An additional 658 Java files and 174 C# files were classified correctly due to Defini-
tion 2. All of these files concatenated values into a location reserved for a SQL identifier
list and would be incorrectly classified according to the definition in [6].

Limitations The amount of files that can be obtained is restricted by the somewhat
unpredictable results of the GitHub code-search API. This behavior can be seen even
using the code-search feature available on the GitHub website. When searching for a
string and viewing the code results, GitHub will report the number of code results at
the top of the page. Refreshing the page repeatedly will show various different numbers
due to the run time limits placed on the query. An accurate estimate of the number can
be obtained by taking the maximum value seen over a long period of time, particularly
during non-peak hours.

This issue is also present when retrieving the results. Querying the results multiple
times will very likely return a different subset of data each time, which can not be
corrected due to the inability to order results. Combined with pages often returning
only a partial set of data, obtaining all the files in a given frame may require requesting
the same pages repeatedly, even during non-peak hours. This limitation is offset by the
large amount of available data; successfully downloading only 25% of the data may
give millions of files, depending on the search query and target language.
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Table 6: Results of manual analysis of randomly sampled GitHub files [12]

Total
Files

True
Pos.
(T P)

False
Pos.
(FP)

True
Neg.
(T N)

False
Neg.
(FN)

FP Rate(
FP

FP+T N

) FN Rate(
FN

FN+T P

) Precision(
T P

T P+FP

) Accuracy(
T P+T N

Total

)
Java 385 319 12 45 9 0.21 0.027 0.964 0.945
PHP 385 332 14 24 15 0.368 0.043 0.960 0.925
C# 385 290 18 69 8 0.207 0.027 0.942 0.932
Total 1,155 941 44 138 32 0.242 0.033 0.955 0.934

The use of regular expressions to identify concatenation may be insufficient if devel-
opers construct queries in particularly creative ways. However, given the results of the
manual classifier verification in Section 5.4, this issue does not seem to be significant
in the context of SQL-IDIVs.

5.4 Classifier Verification

We manually verified a random sampling of the files from each language to determine
the accuracy of the classifier’s regular expressions. The ideal sample size for each lan-
guage subset was determined to be 385 for a precision level of 95% using Cochran’s
formula [64]. MySQL’s RAND function was used to randomly select the files for analy-
sis. As no other classifier for SQL-IDIVs exists that would enable an automated com-
parison, the verification was instead performed by downloading the file, reviewing the
source code, and verifying that the construction of SQL statements in the file corre-
sponded with the classifier’s results. For example, a false positive occurred if the classi-
fier reported that a file contained string interpolation of a column identifier but no such
string interpolation existed in the file. The classifier exhibited a false negative when it
failed to detect concatenation in an output SQL program that was located in the file.

The classifier had an overall precision of 95.5% and an overall accuracy of 93.4%.
False positives, where a file was marked as constructing SQL with a concatenated value
but did not, generally arose due to SQL-like statements in comments, logging, or error
messages. False negatives, on the other hand, came from programmers constructing or
formatting their SQL output in an unusual or unpredicted fashion. The results of the
manual verification are shown in Table 6 [12].

5.5 Vulnerability Exploitation

The classifier was shown to be reliable in identifying files where potentially unsafe
concatenations had occurred, but the unsafe code is only exploitable if the output SQL
code can be manipulated by the attacker and is not dead code. The concatenated val-
ues must be derived from user input without proper sanitization and the code must be
reachable during normal program execution. While both static and dynamic tools exist
to reliably detect SQLIVs, these tools cannot reliably detect SQL-IDIVs; an example
of sqlmap [54] (an automated SQLIV detection and exploitation tool) failing to exploit
a SQL-IDIV-containing application is shown later in this section. In order to determine
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how many of the identified applications are exploitable in practice, we manually in-
stalled and tested a subset of the manually verified applications. For all repositories
determined to be exploitable, their owners were notified of the vulnerabilities.

The exploitation process is similar to a standard code audit. First, the code and
GitHub project is reviewed to determine if the project is a web application and if the
program dynamically generates a SQL output program using user input. If the code
is determined to likely implement a SQL-IDIV-containing application, the repository
is cloned and the application installed. In general, installing the applications involves
setting up the database schema for the application, filling the database with sample
data, and deploying the application on a web server. The database steps are similar
for all three languages, but the deployment process varies for each language and, for
Java, varies greatly depending on the build tools chosen by the developer (e.g., Maven,
Ant, Gradle). Once running, the application is navigated in the intended fashion until
the vulnerable code is executed; this process may be eased using standard debugging
tools or adding a line to print the output SQL program (the programs were otherwise
unaltered and any debugging print statements were removed for final confirmation of
the vulnerability). Finally, if the application is truly vulnerable, code is injected via the
identified vulnerable input to cause observable malicious behavior, typically a call to a
sleep function.

During the exploitation process, we assumed the following: (1) all databases and
tables that are referenced in the code exist and are populated with at least one entry,
(2) the application code is unmodified, (3) the application runs with the standard con-
figuration provided (if applicable), and (4) only the single flagged file chosen as part
of the random analysis is considered. Projects that failed to compile or could otherwise
not be installed and exploited within two hours were recorded as “Not Exploitable”,
but these applications may still be exploitable if the compilation issues were corrected
or more time was allocated. Programs were otherwise marked “Not Exploitable” if the
vulnerable code was dead code or if the concatenated values were not derived from user
input, statically compared to an allow list, or dynamically verified (that is, the database
schema was queried to ensure that the identifier existed). The application was marked
as “Exploitable” only if SQL code could be injected and malicious behavior observed.

Only web applications were considered relevant and exploited; while a serverless
GUI or text application may be vulnerable, there is generally little value in such exploits
as the exploited database would be on the user’s machine and could be modified in sim-
pler ways. The breakdown of applications by language, interface type, and purpose is
shown in Table 7 [12]. An application falls into one of three interface types: web ap-
plication, standalone application, or other (e.g., library/framework, client-server, build
system). All the PHP applications were web applications, so only a total row is shown
for PHP. The purpose category is used to differentiate applications that were clearly
student projects, tutorials, and sample/beginner code from other applications. Relevant
markers for being classified as a student application included referencing a course di-
rectly, including or referencing a grade or rubric, or an assignment directory structure
(e.g., a folder named “Test1”). Tutorial/beginner code consisted of “Hello world” pro-
grams or other obvious references to a tutorial (such as the repository owner having the
name of a tutorial site).
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Table 7: Types of applications analyzed [12]

Interface
Purpose

Total
Student Tutorial Other

Web 1 2 18 21
Standalone 5 2 14 21
Other 1 1 6 8
Java Total 7 5 38 50
PHP Total 4 2 34 40
Web 1 0 26 27
Standalone 4 2 21 27
Other 0 1 7 8
C# Total 5 3 54 62

Table 8: SQL-IDIV-containing applications by Identifier Type [12]

Table Column
Column

(ORDER BY)
# / Total # / Total # / Total

Java 1 / 14 0 / 3 3 / 6
PHP 4 / 24 2 / 14 9 / 11
C# 0 / 14 0 / 21 1 / 5
Total 5 / 52 2 / 38 13 / 22

We inspected 50 Java, 40 PHP, and 62 C# applications (152 total). Twenty-six appli-
cations were student projects or tutorials, and 21 Java and 27 C# projects were web ap-
plications. Twenty of the 88 (22.7%) web applications were confirmed to be exploitable
via SQL-identifier injection: 4 out of 21 Java (19%), 15 out of 40 PHP (38%), and 1
out of 27 C# (4%). Only 2 of the exploitable web applications were student programs
(1 PHP and 1 C#); all the others appeared to serve a more professional purpose. A sum-
mary of the vulnerable applications grouped by the vulnerable identifier type is shown
in Table 8 [12]. Note that the total numbers will not sum to the number of applications as
a single application may include a combination of all three possible identifiers. Multiple
instances of a single type in an application were only counted once. These numbers are
a lower bound as only the randomly selected file in each project was considered; several
applications were noticeably vulnerable in other files, but the examination was limited
to the randomly chosen subset of files.

Column names used in ORDER BY statements were the most likely to be vulnerable,
with 12 (60%) of the 20 injections occurring due to user input being concatenated into
an ORDER BY statement. Three of these exploitable applications would not have been
detected without the use of Definition 2.

While the focus was on exploiting SQL-IDIV-containing applications, a number
of other vulnerable applications were observed during the process. A total of 25 other
applications were exploitable but not via identifiers (7 Java, 14 PHP, and 4 C#). This
number is a very conservative minimum; since SQLIVs were not a focus, these appli-
cations were only discovered passively and because they were very obvious.
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In addition to these SQLIV-containing applications, 2 out of 3 Java libraries ana-
lyzed may cause an application to be vulnerable to a SQL-identifier injection as they
implemented no mitigation techniques. Since these are not applications themselves,
they are not exploitable; however, if a developer assumes the library sanitizes input and
passes user input without their own validation, the program would be exploitable. The
third library implemented dynamic validation by querying the database for valid table
names and comparing the input to those values.

A total of 13 applications were not exploitable because the identified concatenation
occurred in dead code. These applications contained functions that took an argument
and directly concatenated it into a SQL output program, but the functions were not
called and thus the applications were not exploitable. Although these projects were not
exploitable at the time of our manual analysis, they may be prone to exploitation in the
future. If a project involves a long-lived code base regularly updated by developers new
to the project, it is easy to imagine a scenario where feature creep results in the misuse
of functions not originally meant to be invoked.

Combining all of these different categories together, a total of 60 exploitable and
problematic applications were identified out of 152 (20 SQL-IDIVs, 25 other SQLIVs,
13 dead-code concatenations, and 2 non-sanitizing libraries).

The results of the crawler allowed for the exploitation process to be sped up dra-
matically. Using the crawler data, the vulnerable SQL statement in a given application
could be almost immediately identified and understood. After growing accustomed to
the process, a given application could be analyzed for vulnerability and documented
within 5-10 minutes (although installing the application and performing the exploit
generally took far longer). This process could be further optimized by taking advan-
tage of the full data set, which was not possible for sampling a random subset of the
data. For example, a non-random analysis could prioritize applications that use ORDER
BY statements or batch all files in a project (rather than analyzing a single file).

Figure 8 [12] demonstrates a SQL output program from one of the exploitable PHP
applications. The $c variable is user input interpolated directly into the output SQL
program. The intended value of this $c variable is either “users” or “crew”, allowing
the web page to show either customers or employees using the same code. Notably,
sqlmap could not detect any vulnerabilities in this code, regardless of the options used.
Any subquery injected into this location would not be syntactically valid without a
table alias, and sqlmap does not include this technique. Two other instances were not
detectable using sqlmap and were also exploited using a minor syntactic change: the
first used a column alias and the second modified an INSERT statement by injecting a
SELECT statement to specify the data (instead of the VALUES keyword).

6 Experiment II: SQL-IDIVs in CVEs

MITRE’s Common Vulnerabilities and Exposures (CVE) List [38] tracks publicly known
cybersecurity vulnerabilities. A total of 161,955 CVE records were published from
2014 to 2023, as listed in the CVE Details site [8]. Of these 161,955 vulnerabilities,
7,327 (4.5%) were SQLIVs [9]. In 2022, 1,789 SQLIV entries were reported, making
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$sql="SELECT * FROM $c WHERE ...";

(a) Truncated PHP code from one of the exploited programs.

(SELECT SLEEP (10000)) as t --

(b) The malicious input; the table alias is necessary to be syntactically valid.

Fig. 8: One of the exploited applications that could not be detected using sqlmap [12]

up 7.1% of the vulnerabilities reported that year and more than doubling the number of
2021 SQLIV CVEs (741) [9].

A CVE record’s date of publication is not necessarily equal to its reporting date.
For example, of the 1,775 SQLIV CVEs published in 2022, 1,507 were also reported
in 2022; the remaining 268 were published in 2022 but reported earlier. We chose to
analyze all SQLIV CVEs published (not reported) in 2022 or in 2023 to ensure that our
dataset is static.

To address RQ2, we analyzed the 1,775 and 1,982 SQLIV CVE records published
in 2022 and in 2023, respectively, to determine the number of these 3,757 SQLIV CVEs
that are for SQL-IDIVs. This section discusses the methodology and results of this CVE
analysis.

6.1 Experiment II Methodology

The CVE experiment consisted of two phases: (1) downloading relevant CVE records
and (2) classifying each record as pertaining to a SQLIV or a SQL-IDIV. Details of
each phase are given in the following subsections.

Downloading CVE Records To obtain SQLIV CVE records for analysis, we queried
the National Vulnerability Database (NVD) [42] maintained by the National Institute of
Standards and Technology. The NVD can be queried using various search parameters.
We used the following search parameters to obtain our dataset:

– Category (CWE): CWE-89 Improper Neutralization of Special Elements used in an
SQL Command (’SQL Injection’)

– Published Start Date: 01/01/2022
– Published End Date: 12/31/2023
– Ordered By: Publish Date Ascending

We wrote a Python script to automate this process. The script accepts a starting date,
an ending date, and an output file name. During execution, the script populates the given
file with the SQLIV CVE records published during the given timeframe. Our 2022 CVE
data file, 2023 CVE data file, and the CVE retrieval script are available online [30].



Measuring Prevalence of SQL-Concat and SQL-IDIV 23

Classifying CVE Records A CVE entry consists of (1) a CVE-ID, (2) a description
of the vulnerability, (3) a list of external references, (4) the assigning CVE Number-
ing Authority, and (5) the entry creation date. The vulnerability description generally
consists of only a few sentences and, while useful for classifying vulnerabilities into
broad vulnerability types, it lacks the detail necessary to finely classify vulnerabilities.
To overcome this limitation, we analyzed the list of external references. Examples of
reference materials include a link to the advisory or patch notes from the software au-
thors, a GitHub repository with the source code for open-source projects, and a proof
of concept (PoC) attack.

In our analysis, SQLIVs are considered SQL-IDIVs when they satisfy Definition 2.
This classification cannot always be made from the vulnerability description alone due
to a lack of technical detail. To determine whether the CVE represents a SQL-IDIV, the
CVE must reference either a PoC or freely available, online source code that pertains to
the same version of the software referenced in the CVE report. We therefore excluded
the 15% of 2022 SQLIV CVEs and 32.5% of 2023 SQLIV CVEs that lacked usable
source code and a PoC.

To provide clarity on the classification process, we present two example SQL-IDIVs
taken from our CVE dataset. The first example showcases the classification of a CVE
report that includes both a PoC and source code, and the second example demonstrates
the classification a CVE that provides only a PoC.

The first example is CVE-2023-7157, which details a vulnerability found in an in-
ventory management application written in PHP [44]. The CVE record includes a link
to a PoC, and the PoC includes a link to the project’s source code. The vulnerable code,
located at line 47 of the /ample/app/sell_return_data.php file, is shown below:

$ s t m t = $pdo −> p r e p a r e ( " SELECT * FROM s e l l _ r e t u r n WHERE 1
↪→ " . $ s e a r c h Q u e r y . " ORDER BY " . $columnName . " " .
↪→ $co lumnSor tOrde r . " LIMIT : l i m i t , : o f f s e t " ) ;

Although the code makes use of PDO’s prepare function, no placeholder is used
for columnName (PDO does not support identifier placeholders in prepared statements
regardless, as discussed in Section 3). In addition, the columnName variable is obtained
directly from user input without any sanitization via the following code:

$columnName = $_POST [ ’ columns ’ ] [ $columnIndex ] [ ’ da t a ’ ] ; / /
↪→ Column name

As noted in the CVE record, an attacker can manipulate the columns[0][data]
argument, leading to SQL injection. Since the untrusted user input is concatenated after
an ORDER BY statement, and ORDER BY statements must be followed by an identifier
list, this CVE pertains to a SQL-IDIV.

CVE-2023-2592 details a SQLIV present in an older version of the FormCraft
WordPress plugin [43]. The CVE record includes a link to a PoC. Although the current
version of the FormCraft code may be downloaded from the FormCraft web page [45],
this CVE pertains to an older version of the code. The code for this older version is no
longer accessible. Thus, a PoC is available for this CVE but not source code.
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The PoC explains that, in FormCraft versions below 3.9.7, there is a lack of saniti-
zation of the sortOrder query parameter in HTTP requests. SQL code can be injected
into the parameter, as shown in the following payload:

‘ s o r t O r d e r =ASC%2c ( s e l e c t * from ( s e l e c t ( s l e e p ( 2 0 ) ) ) a ‘

It appears that the intended value for the sortOrder parameter is either ASC or DESC.
This example attack uses an invalid identifier list to perform a sleep-based injection.
Note that %2c is the URL encoding for a comma. Since the vulnerable code appears
to concatenate user input into a location that would accept an identifier list, but not a
single identifier, the code constitutes a SQL-IDIV.

6.2 Experiment II Results
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Fig. 9: Resources available for classification of SQLIV CVE entries from 2022-2023

Of the 1,775 CVEs published in 2022, 1282 (72.2%) had both a PoC and source
code available, 146 (8.2%) had only source code available, 77 (4.3%) had only a PoC,
and 270 (15.2%) had only an advisory. In 2023, 1,982 SQLIV CVEs were published,
of which 668 (33.7%) had both a PoC and source code available, 334 (16.9%) had
only source code available, 336 (17%) had only a PoC, and 646 (32.6%) had only
an advisory. Figure 9 shows the classification resources available for the 2022-2023
SQLIV CVEs. We documented a total of 300 SQL-IDIVs: 130 from 2022 and 170
from 2023. Figure 10 presents the results of the 2,841 classifiable CVEs, classifying
them as SQLIVs or SQL-IDIVs.

6.3 Discussion

Addressing RQ2, our results show that SQL-IDIVs comprise at least 300 (8%) of
the 3,757 SQLIV CVEs published in 2022-2023. We could not classify 916 CVEs be-
cause they lack both a PoC and relevant source code, so the SQL-IDIV percentages
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Fig. 10: Classified SQLIV CVE entries for 2022-2023

are lower bounds. Although only 1,336 of the 2023 CVEs were classifiable compared
to the 1,505 from 2022, we documented more SQL-IDIVs from 2023 than in 2022. A
greater percentage of CVEs in 2023 were found to be for SQL-IDIVs than in 2022,
indicating that the prevalence of SQL-IDIVs appears to be increasing.

Approximately 17% of the classifiable CVEs pertain to an application that con-
catenates at least one identifier elsewhere in its source code (excluding the vulnerable
location referenced in the CVE record). Vulnerabilities that were observed in large code
bases were often caused by a single missing use of prepared statements.

The percentage of SQL-IDIV vulnerabilities found in the universe of classifiable
2022-2023 SQLIV vulnerabilities (10.6%) is less than the percentage of identifier con-
catenations found in the universe of GitHub SQL concatenations (15%) as described
in Section 5.2. Future work might explore this gap further, to try to make statistical
inferences and conclusions about how accurately classifiable CVE reports represent the
vulnerabilities present in large open-source data sets.

7 Conclusions and Future Work

SQL concatenations, which form the basis for SQL injection attacks, are prevalent in
web applications. In total, 63% of web applications analyzed contained SQL concate-
nations. SQL identifier concatenations comprised approximately 15% of SQL concate-
nations. Given that our automated GitHub crawler and code analyzer classified ap-
proximately 275K files as containing SQL identifier concatenations, with a precision
rate of 95.5%, we estimate our automated framework found approximately 262K web-
application files that contain at least one SQL-IDIV. Our manual vulnerability exploita-
tion indicates that, of these 262K files, 22.7% (62K) are likely to meet all of the ad-
ditional requirements to be exploited in practice. Furthermore, SQL-IDIVs comprise
at least 300 (10.6%) of the 3,757 SQLIV CVE records published in 2022-2023. We
observed that a greater percentage of 2023 CVEs were for SQL-IDIVs than in 2022,
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signaling an increase in SQL-IDIV prevalence. These results indicate that SQL-IDIVs
are nontrivially represented in open-source code and in public vulnerability reports.

There are multiple directions for future work. Previous work has described and an-
alyzed a non-public proof-of-concept implementation of prepared statements with cov-
erage of identifiers [6]. This work may serve as a model for expanding a large-scale
open-source DBMS such as MySQL or Postgres to include support for identifiers in
prepared statements. Incorporating these additions into front-end APIs for commonly
used languages would provide additional mitigation of SQL-IDIVs. Future work could
also examine input sanitization functions such as prepare in WordPress (discussed in
Section 2.2), studying their effectiveness compared to prepared statements. This av-
enue could include an analysis of published CVEs for the wpdb class, to identify any
known vulnerabilities in the prepare function. In addition, our GitHub crawler can be
modified to perform additional types of measurement analysis, such as an analysis of a
wider selection of languages or an investigation into the prevalence of SQLIV mitiga-
tion techniques (e.g., ORM libraries or input sanitization functions). Another possible
avenue for future work is to investigate the use of large language models (LLMs) to
classify cases of SQL-IDIVs in input code. The LLM’s training and test sets might con-
sist of the CVE records analyzed in the present article. This SQL-IDIV-detection LLM
could automate future CVE analysis and assist in detecting SQL-IDIVs in code.
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