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Abstract

Well-known techniques exist for proving the soundness of subtyp-
ing relations with respect to type safety. However, completeness
has not been treated with widely applicable techniques, as far as
we are aware.

This paper develops some techniques for stating and proving
that a subtyping relation is complete with respect to type safety and
applies the techniques to the study of iso-recursive subtyping.

The common subtyping rules for iso-recursive types—the “Am-
ber rules”—are shown to be incomplete with respect to type safety.
That is, there exist iso-recursive types 71 and 72 such that 71 can
safely be considered a subtype of 7, but 71 <72 is not derivable
with the Amber rules.

This paper defines new, algorithmic rules for subtyping iso-
recursive types and proves that the rules are sound and complete
with respect to type safety.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—Data
types and structures

1. Introduction

When defining a subtyping relation for a type-safe language, one
takes into account both the soundness and the completeness of the
subtyping relation with respect to type safety. Soundness alone can
be satisfied by making the subtyping relation the least reflexive
and transitive relation over types (i.e., 71 is a subtype of 7 if and
only if 71=72); completeness alone can be satisfied by making the
subtyping relation the greatest reflexive and transitive relation over
types (i.e., all types are subtypes of all other types). These extremes
rather defeat the purpose of subtyping, which may be thought of as
allowing terms of one type to stand in for terms of another type
when it would be safe to do so. A standard strategy for defining a
subtyping relation would be to aim for the most complete definition
possible without sacrificing soundness.

Despite the importance of both soundness and completeness,
completeness has not been treated as widely as soundness. Well-
known techniques exist for proving the soundness of subtyping re-
lations with respect to type safety. Standard type-safety proofs in
languages with subtyping prove the soundness of the languages’
subtyping relations; an unsound subtyping relation would break
type safety by statically allowing (via a subsumption rule in the
type system) terms of some type 71 to stand in for terms of another
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type T2, when operations could be performed on T»-type terms that
are not defined for 7 -type terms, potentially leading to dynami-
cally “stuck” states.

This paper develops some techniques for stating and proving
that a subtyping relation is complete with respect to type safety and
applies the techniques to the problem of subtyping recursive types,
in particular, iso-recursive types.

Recursive types, along with product and sum types, are fun-
damental for typing aggregate data structures. A standard exam-
ple of a recursive type would be a natural-number-list type L =
pt.(unit+(nat x t)). The type variable ¢ refers to the nat-list
type (L) being defined. Lists of natural numbers according to this
definition could be empty (i.e., have type unit) or could be a natu-
ral number (the list head) paired with another list (the tail).

Iso-recursive (also called weakly recursive) types require pro-
grammers to manually roll and unroll (also called fold and unfold)
recursive types. Unrolling converts a term of type ut.7 to a term
of type [ut.7/t]T, while rolling performs the inverse conversion
(where [7/t]7" is the capture-avoiding substitution of 7 for ¢ in
7"). For example, a programmer could create a value of type L
defined above by writing rol1(inlynict(matx£)()); the inl value
has type unit+(natx L), so rolling it produces a value of type
L. Languages like ML and Haskell support iso-recursive types.
In contrast, type checkers in languages with equi-recursive (also
called strongly recursive) types automatically roll and unroll terms
as needed, so programmers don’t have to.

1.1 Related Work

Research into subtyping completeness has focused on proving sub-
typing algorithms complete with respect to definitions of subtyp-
ing relations (e.g., [6, 11, 15, 23]). Sekiguchi and Yonezawa also
proved a type-inference algorithm sound and complete in the pres-
ence of subtyped recursive types [19].

This paper approaches subtyping from a type-safety perspec-
tive, investigating the greatest subtyping relation possible without
violating type safety; however, other notions of when one type can
or should be a subtype of another may be preferred in other con-
texts. For example, subtyping may be based on particular behaviors
of objects in OOPLs [14, 17]. Another possibility is to consider the
denotation of a type 7 to be the set of terms of type 7; then a subtyp-
ing relation < is sound when 71 <7 = [11]C[r2] and complete
when [11]C[r2] = 71 <72 [25]. Using these definitions, Vouillon
has shown that the standard subtyping variance rules for function,
union, and intersection types are sound and complete (under some
assumptions but overall for a broad class of languages) [25]. In
contrast with these other approaches to subtyping, soundness and
completeness in this paper are structural properties that, like nor-
mal type safety, specify relationships between languages’ static and
(here, SOS-style [18]) dynamic semantics.

The research on subtyping recursive types seems to have fo-
cused more on equi-recursive than iso-recursive systems. For exam-
ple, Amadio and Cardelli presented rules and an algorithm for sub-
typing equi-recursive types [1]. The rules and algorithm are proved
sound and complete with respect to type trees that result from “in-
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finitely unrolling” equi-recursive types (i.e., the rules and algorithm
determine 7 <7y precisely when the type obtained by infinitely un-
rolling 71 is a subtype of the type obtained by infinitely unrolling
T2). Other papers have since refined equi-recursive subtyping anal-
yses and algorithms (e.g., [4, 6, 8, 9, 12, 22]).

For subtyping iso-recursive types, the most commonly used
rules are the Amber rules [5]:

Su{t<t'y <t A :
MBER
Sk ptr < put'r Suft<tire<t

AMBER2

These rules are elegant: “a recursive type rec(¢)7’ is included in
a recursive type rec(w)U, if assuming ¢ included in v implies T’
included in U” [5].

The Amber rules (or less-complete versions of the Amber rules
tailored to specific domains, e.g., [2]) are the standard approach to
defining iso-recursive subtyping (e.g., [3, 7, 10, 11, 16, 20, 21]).

1.2 Overview and List of Contributions

Section 2 formalizes what it means for a subtyping relation to be
sound, complete, and precise with respect to type safety. Intuitively,
a precise (i.e., sound and complete) subtyping relation derives that
71 is a subtype of 7 if and only if terms of type 71 can always stand
in for terms of type 72 without compromising type safety. Section 2
uses evaluation contexts to formalize this intuition.

Section 3 shows that the Amber rules are incomplete for subtyp-
ing iso-recursive types. In particular, the Amber rules cannot derive
that types like pa.(((1b.((b+nat)+a)) +nat) + a) are subtypes
of types like uc.((c + real) + c), though it’s always safe for ex-
pressions of type pa.(((ub.((b+nat) 4+ a)) + nat) + a) to stand
in for expressions of type pc.((c + real) + ¢).

Given the incompleteness of the Amber rules, Section 4 presents
new subtyping rules that do not exhibit such incompleteness. The
main finding here is that, for the sake of completeness, the Amber
rules can be replaced by the following rules:

(ut.r <pt'th) ¢ s
Su{ptr < pt' 7'} [utr/tr < [ut' /T R
S+ utr<ut' .

EC1

SU{utr <pt' 7Yy ptr < pt'T Rec2

These new rules simultaneously unroll the iso-recursive types
under consideration, matching the types obtained when recursive-
type values are eliminated (using unroll expressions). Moreover,
these new rules imply a deterministic algorithm for deciding
whether one type is a subtype of another.

Section 5 proves that the subtyping relation defined in Section 4
is precise with respect to type safety. As far as we’re aware, this is
the first proof that iso-recursive subtyping rules are in some way
complete. The preciseness proof’s layout, and its proof techniques,
are rather general and may be helpful for proving the preciseness
of other inductively defined subtyping relations.

2. Basic Definitions

This paper’s analysis relies on several definitions.

2.1 Soundness, Completeness, Preciseness

Intuitively, we wish for a language’s subtyping relation to define
71 <7y precisely when such a definition could not compromise type
safety. By the principle of subsumption, which states that a term
of type 71 also has type 7 when 7 <79, then, we wish to define
71 <72 precisely when any term of type 72 could be replaced by
any term of type 7 without breaking type safety.

The following definition formalizes this requirement that 71 <7
if and only if T»-type expressions can—in any context—be replaced

by 71-type expressions without causing well-typed programs to
“get stuck.” The definition assumes typing judgments of the form
e:7 and SOS-style single- and multi-step judgments e — ¢’ and
e —™* ¢/, with the usual meanings. The definition also uses eval-
uation contexts in the standard way; an evaluation context is an
expression with a “hole” that can be filled by a subexpression. The
judgment form E[7']:7 means that filling evaluation context E’s
hole with a 7'-type expression produces a T-type expression (for-
mally, E[7']:7 <= {z:7'}-Ez]:7, where z is not free in E).

Definition 1 (Preciseness, Soundness, and Completeness). Let
metavariables E, e, and T respectively range over evaluation con-
texts, expressions, and types. Then a subtyping relation < (i.e., a
reflexive, transitive, binary relation on types) is precise with respect
to type safety when, for all types 11 and T2

-3E,7,e,¢ : )

T1<T2 < (E[TQ]ZT AeT A E[e}»—)*e/ A StuCk(El)

When the only-if direction (=) of this formula holds, we say that
the subtyping relation is sound with respect to type safety; when
the if direction (<) holds, we say that the subtyping relation is
complete with respect to type safety.

2.2 A Simple Language, L")

To more concretely understand and apply these definitions, we con-
sider a simple language LY , having function types, binary (dis-
joint) sum and product types, and iso-recursive types. Figures 1-3
present the syntax and static and dynamic semantics. All the nota-
tion is intended to have the usual meanings, with the usual assump-
tions being made (e.g., variables are consistently renamed, through
alpha-conversion, whenever necessary to avoid reintroducing vari-
ables into contexts).

The base types in L") are nat (natural numbers) and real
(nonnegative real numbers), the idea being that nat <real. Square-
root operations are defined on natural and real numbers, and a suc-
cessor operation is defined on natural, but not real, numbers. Func-
tions are named and may be recursive. The decision to allow recur-
sive functions was made because (1) real languages sophisticated
enough to have iso-recursive types and subtyping seem likely to
also have recursive functions, and (2) allowing general recursion
prevents our proofs from relying on normalization properties of the
language being analyzed.

There are two categories of types, one for closed types 7 (having
no free type variables) and the other for possibly open types T
(possibly having free type variables). This paper assumes that all
closed types 7 (1) never use undeclared variables and (2) have
been alpha-converted to ensure the uniqueness of every declared
variable. Note that unrolling a closed recursive type 7 = ut.7
produces another closed type, [ut.7/t]T.

The typing rules for LY, shown in Figure 2, are standard.
Section 4 will define the subtyping judgment used by rule T-
SUBSUME.

The operational rules for L:;‘ , shown in Figure 3, are also
standard. Figure 3 uses evaluation contexts to define the operational
semantics. Evaluation contexts mark where beta-reductions may
occur; contexts here specify a left-to-right, call-by-value evaluation
Strategy.

3. Incompleteness of the Amber Rules

Consider the recursive types 7 and 7’ defined as follows.
7 = pi.{add:i—unit}

7' = pl.{add:(ps’.{add:i’ »unit})—unit, min:unit—int}

2012/7/11



Closed types Possibly open types

Tu=nat|real |71 > T |1+ T2 | 71 X T2 | ut.T Ti=nat|real |7 > T2 | A+ T2 | A X T2 | ut.7 | t
Expressions
e =n|r|succ(e) | sqrt(e) | fun f(z:71):m2 = elei(e2) | x| inl-(e) | inr,(e) |

case e of inlz = e; else inry => ez(e1,e2) | e.fst | e.snd | roll(e) | unroll(e)

Figure 1. Syntax of L} .

N TR I'Fe:nat s I'Fe:real s
————— T-Nat ————— T-REAL ——— T-Succ -SQRT
I'kn:nat 'tk r:real It succ(e) : nat It sqrt(e) : real Q
FU{z:m, frm—ntbte:n F'kep:m—m 'kex:m 'ke:m
T-FuN T-APP - T-LEFT
PHfun f(z:m):m=€e:T1—7 Ik ei(e2) : Pkinlyre:7m + 72
ke:m F'ke:m+m NTu{zmn}te 7 Fu{ymlte:r
- T-RIGHT - - T-CASE
I'kinr, yrme: 71+ 7 I'F case e of inlx = ej else inry = ez : T
I'te :m FFeQ:TQTP FFe:ﬁXTgTF FFe:ﬁXTgTS T'ke:utT U
-PROD ———— T-Fst ———— T-SND -UNROLL
Ik (e1,e2): 71 X T2 Pkefst :m 't e.snd : 7 I+ unroll(e) : [ut.T/t]T
ke: [ut7/ET TR Ty The:7 TISTTS
————————— T-RoLL ————— T-VaR -SUBSUME
I'Froll(e) : ut.7 Tru{aertta:r Fke:r
TFE[T]:T
PU{z:r'}FEx]:7 (z not free in E)
v T-CTXT
r+E[F]:7
Figure 2. Static semantics of L} .
Evaluation contexts £ ::=[] | succ(E) | sqrt(E) | E (e) | v (E) | inl,F | inr, E | case E of inlz = e; else inry = ey |
(E,e) | (v,E) | E.fst | E.snd | r0l11(E) | unroll(FE)
Valuesv ::=n|r|fun f(z:71):72 = e]|inl,;(v) | inr,(v) | (vi,v2) | roll(v)
e e stuck(e)
/ / ’
erge ~Fv:(e=v —Je' : (e—e
7B, O-STEP ( ) ( ) STUCK
Ele] — El€'] stuck(e)
e—*¢
/ / * 1"
e—e e—"e
+— MSTEP-REFL r—T MSTEP-TRANS
- e—"e e—"e
n’ = successor of n r’ = square root of r r = square root of n
7 B-Succ 7 3-SQRTR B-SQRTN
succ(n) —g n sqrt(r) —pr sqrt(n) —p T
-ApPP
(fun f(z:71) : 2 = €)(v) —p [(fun f(z:711): 72 =€)/ f]lv/z]e A
- - - B-LEFT
case inl,(v) of inlz = ep else inry = e3 g [v/z]ez
- - - B-RIGHT
case inr,(v) of inlz = e; else inry = e3 —3 [v/yles
-FsT -SND -UNROLL
(v1,v2).fst —g 1 “ (v1,v2).snd g V2 “ unroll(roll(v)) +p v “

Figure 3. Dynamic semantics of L7}’ .
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These types arise naturally when encoding the following OOPL
classes into a language like L") (extended to have record, unit,
and int types).

class Integer {
public Integer(int i) {n=i}
public void add(Integer i) {n = n + i.n}
protected int n=0
}
class LowBoundNat extends Integer {
public LowBoundNat(int lowBound, int i)
{if 0<=lowBound<=i then (min=lowBound; n=i)}
public void add(Integer i)
{if ( (@ + i.n) < min )
then n=min else super.add(i)}
public int min() {min}
protected int min=0

}

The Integer type may be encoded as 7, and the LowBoundNat
type as 7'. One would expect 7'<7 in an iso-recursive System
because the only way a 7-type expression can be eliminated is
by unrolling it, to produce an expression of type {add:7—unit},
while unrolling a 7’-type expression produces an expression of type
{add:(ui’ .{add:i’—unit})—unit,min:unit—int}, whichis a
subtype of {add:T—unit}. Thus, it’s always safe for a 7’-type
expression to stand in for a T-type expression.

However, the Amber rules (in conjunction with standard subtyp-
ing rules for records and functions) can’t derive 7' <7, as Figure 4
illustrates.

For another example, let’s redefine 7 and 7’ as follows.

7 = pe.((c+ real) + ¢)
7" = pa.(((ub.((b + nat) + a)) + nat) + a)

This may be a more interesting example because all the declared
type variables get used (unlike the type variable [ in the previous
example’s 7). Again, the Amber rules (in conjunction with the
standard subtyping rule for binary sums) cannot be used to derive
7/<7, as shown in Figure 5.

We prove that it’s safe to consider 7/<7 in two steps: first,
Section 4 shows that 7/ <7 is derivable using new subtyping rules;
then Section 5 shows that those new subtyping rules are sound with
respect to type safety.

4. Defining a More Complete Subtyping Relation

Incompleteness in the Amber rules (for subtyping iso-recursive
types) stems from their lack of considering unrolled types. Iso-
recursive types get eliminated by unrolling, so one would expect
type pt.T to be a subtype of ut’.7 if the unrolled version of
ut.T is a subtype of the unrolled version of ut’.7’. When con-
sidering whether these unrolled versions are in a subtype relation-
ship (i.e., whether [ut.7/t]7<[ut’.7'/t'|7’), one can assume that
ut. 7<ut'. 7' because any expressions of types ut.7 and ut’.7 en-
countered by unrolling expressions of types ut.7 and ut’ .7’ can be
unrolled and manipulated in the same ways again.

This discussion leads to the following subtyping rules for iso-
recursive types:

(w7 < ut'7)¢ S
Su{utT < pt' 7'} [ut7/t)T < [wt' 7 /)T
SF pt7<ut’ 7

REC1

REC2
Su{u7 < pt' 7} w7 < pt' 7

The context S contains subtyping assumptions of the form
ut. 7<ut’' 7. As with other judgment forms that use contexts (such

as typing judgments), when the context is empty, we abbreviate
judgments of the form Q71 <75 as 71 <72. Also, rules REC1 and
REC2, like the Amber rules, require type-variable names to be
unique; as mentioned in Section 2.2, this paper assumes that every
time a type variable is introduced, it is given a distinct name. Rules
REC1 and REC2 only unroll recursive types and therefore never
introduce type variables. We also note that other systems have used
rules similar to REC1 and REC?2 to define equivalence, rather than
subtyping, relations on iso-recursive types [13, 24].

With rules REC1 and REC2 we can derive 7’ < for both exam-
ples in Section 3, as shown in Figures 6—7. Recall that the Amber
rules could not derive 7' <7 for these examples.

It’s tempting to try to define a subtyping relation for L") by
including rules REC1 and REC2 verbatim; however, to make the
subtyping relation complete, we must consider a technicality that
will affect the REC1 rule. The technicality is that, because L "} has
(1) a call-by-value semantics, (2) recursive functions, and (3) iso-
recursive types, we find that all types in L are inhabited (e.g., the
expression (fun f(x:nat):7=f(x)) (0) has type 7 for any 7),
but some types are inhabited only by nonterminating expressions.
For example, the type pit.t is uninhabited by (normal-form) values;
writing a value of type ut.t would require already having a value of
type ut.t toroll. Hence, every expression of type pt.¢t must diverge.

Because L_,__'f has a call-by-value semantics, we can treat any
type inhabited only by diverging expressions as being equivalent
to a L type. If all expressions of a type 7 diverge, then any 7-
type expression can substitute for any expression of any type; such
a substitution won’t compromise type safety because the 7-type
expression would have to be evaluated to a value before it could be
used in an unsafe way.

Moreover, any expression can substitute for a function whose
argument type is uninhabited by values (e.g., ut.t), without com-
promising type safety. Intuitively, such a function can never be ap-
plied because the call-by-value semantics requires the argument to
be evaluated to a value, something guaranteed to never happen. Be-
cause such a function, when part of a well-typed program, can never
be applied, we can substitute any expression—of any type—for the
function.

Based on the preceding discussion, we begin defining the sub-
typing relation for L") with the following rules:

N val(r1) # 0 val(m2) =0 S L FUN

val(r) =0 S
St <1y

Sk T1§T2

The judgment val(7) = () indicates that type 7 is uninhabited
by values (i.e., 7 = L), while judgment val(7) # () indicates the
opposite. These rules are similar to ones described by Vouillon [25].

Given rules S-1 and S-1FUN, we can continue making the
subtyping rules deterministic by including a premise of the form
val(71) # () in every rule for concluding St71 <72, where 71 could
otherwise be value-uninhabited. For example, we add this premise
to rule REC1 to obtain the following.

val(ut.7) #0 (T <put'7)¢ S
SU{utT < pt' 7'} b [ut7/t)7 < [ut' 7 /)T

— — S-REC]
SE pt7<ut’ T

The derivations in Figures 67 only consider value-inhabited types,
so they could use rule S-REC1 in place of REC1 without any major
changes.

Continuing to define the other subtyping rules in this way, we
arrive at the full definition of the subtyping relation for L"), as
shown in Figure 8.
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|} Derivation fails here |}
{I<i} ki < pi’ {add:i’ —unit} {I<i} F unit<unit
{I<i} F (ui’ . {add:i’ —unit})—unit < i—unit
{I<i} F {add:(pi’ . {add:s’—unit})—unit, minunit—int} < {add:i—unit}

REFLEXIVE
FUNCTION-SUB

RECORD-SUB

AMBER1

1.{add:(pi’ .{add:i’ —unit})—unit, min:unit—int} < pi.{add:i—unit
2 w w

Figure 4. Failing derivation of pl.{add:(us’.{add:¢’ —>unit})—unit, min:unit—int} < pi.{add:i—unit}, using the Amber rules.

|} Derivation fails here | B
{a<c} F pb.((b+mnat) +a) <c {a<c} F nat<real SUM-SUB AMBERD
{a<c} F (ub.((b+nat) + a)) + nat < ¢+ real {a<c} F a<c

{a<c} F ((ub.((b+nat) + a)) + nat) + a < (c + real) + ¢

pa.(((pb.((b+nat) + a)) + nat) + a) < pc.((c + real) + c)

ASE

SuM-SuUB
AMBER1

Figure 5. Failing derivation of pa.(((ub.((b+ nat) + a)) + nat) + a) < pe.((c + real) + ¢), using the Amber rules.

———— REC2 —————— REFLEXIVE
FrI<I FFunit<unit

F+ I'sunit<J—unit
FF {add:I'—unit}<{add:I—unit}
(L<I,I<I'}F I'<I Sl LI I<I o wnit<unic RV
{L<I,IKI'} F T—unit<I'—unit
{L<I,I<I'} F {add:]—unit}<{add:I'—unit}
7 REC1 - — REFLEXIVE
(L<I} F I<I {L<I} F unit<unit
{L<I} F I' »unit<]—unit
{L<I} F {add:I'»unit,min:unit—int}<{add:/—unit}
L<I

FUNCTION-SUB

RECORD-SUB

FUNCTION-SUB
RECORD-SUB

FUNCTION-SUB

RECORD-SUB
REC1

Figure 6. Derivation of L<I using the new subtyping rules, where L=pl.{add:(ui’.{add:’'>unit})—unit,min:unit—int},
I=pi{add:i—unit}, I'=pi’ . {add:i’ —unit}, and F = {L<I, I<I' I'<I}.

SEB<LZC Rec2 Sknat<real BASE
SFB tnat<C treal " Gra<e R
SH(B +nat) + A < (C +real) + C iihz_lSUB BASE
{A<C}FB<C {A<C}tnat<real SUM.SUB REC2
{A<C}FB + nat < C' + real {A<SCIFALC SUM.SUB
{ALC}-(B +nat) + A < (C +real) + C
A<C REC1

Figure 7. Derivation of A<C using the new subtyping rules, where A=pa.(((ub.((b + nat) 4+ a)) + nat) + a), B=ub.((b+ nat) + A),
C=pc.((c+real) +c),and S = {A<C, B<C}.
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S-B S-N S-R vl =0 |
S F nat<real TRASE S F nat<nat AT S+ real<real TREAL St < i
val(r) # 0 val(rz) = 0 val(7y) # 0 Sk m<n StF m<Ts
7 S-1FuN 7 7 S-FuUN
Sk m<m—r St mi—=mln—
val(r1+72) # 0 St n<r St m<rs val(m1 X12) # 0 St m<r St m<rs
— S-Sum — S-PrOD
St m+m <7m+m SE mixme <7 X7y

val(ut.7) 0 (mF<pt'7)¢ s  Su{wtT < uwt' Ty [ T/HT < [t F/UF SReC]

-REC

Sk utr<pt’ 7

Sufutt <pt' 7Y pt7 < ut' 7

Utval(r)=10

U F val = U F val =
val(r) =0 val(r2) =0 U-SuM

Utval(r) =10

7 S-REC2

Ubkval(n)#0 Ut val(r)=0

U-ProODI1 U-PrOD2

Uk val(r +12)=10

ptT ¢ U UU{ut.7}F val([ut.7/t]7) =0

Uk val(ut7) =0

Ut val(r) #0

I-N I-R
AT Ut val(real) # 0 FAL

U + val(nat) # 0

Ukval(1)=0 Utval(2)#0 LSuM2

Uk val(n x12) =10

U-REC1

UFval(ry x 72) =0

U-REC2
UU{ut7}Fval(ut7) =0 =

F val
I-FuN Uk va (7—1)#0 I-Sum1

U b val(ri—12) #0
Ukval(11)#0 Utval(2)#0

Ut val(ri+72) # 0

LPROD pt. T ¢ U U U {ut.7val([ut.7/¢]7)#£0 LRec

Ut val(ti+m2) # 0

Ubval(ri xm2) 0

Ut val(ut.7) #0

Figure 8. Subtyping and value-(un)inhabitation rules for L"% .

4.1 A Subtyping Algorithm

The subtyping rules for L") rely on auxiliary value-inhabitation
judgments. When deriving these auxiliary judgments, this paper
assumes that rule I-SuM1 takes precedence over I-SUM?2 (i.e., I-
SUM?2 gets used to try to derive Ukval(m1+72)#0 exactly when
I-SuM1 has failed to derive Utval(7i+72)#0). Similarly, U-
ProD1 takes precedence over U-PROD2, U-REC2 takes prece-
dence over U-REC1, S-_L takes precedence over all the other sub-
typing rules, S- L FUN takes precedence over S-FUN, and S-REC2
takes precedence over S-RECI1.

With these precedence assumptions, the rules in Figure 8 are
deterministic and algorithmic: at every point in attempting to derive
ajudgment, there’s at most one next rule to try, and every derivation
fails or succeeds at a finite height. This finite-height (termination)
property holds because all the rules’ premises decrease the sizes
of the types under consideration, except that recursive types may
be unrolled a limited number of times (e.g., the Utval(7)=0 rules
may unroll every recursive type in 7 at most once).

Hence, a simple algorithm for deciding whether 7 <73 is to tra-
verse the (possibly failing) derivation of 71 <79, rejecting if and
only if the derivation fails at some point (because one of the tra-
versed judgments cannot be the conclusion of any inference rule).
By the discussion above, this algorithm is deterministic and guaran-
teed to terminate. An implementation of this algorithm (optimized
to have worst-case O(n?) running time, where n is the size of the
types being considered) appears in Appendix A.

One way we have maintained the determinism of the subtyping
system is by replacing explicit reflexivity and transitivity rules with
rules S-NAT and S-REAL. Section 5 proves that the subtyping

relation defined in Figure 8 is indeed reflexive and transitive for
all types in L) .

4.2 Induction on Failing Derivations

Because every subtyping/inhabitation derivation succeeds at a fi-
nite height, we can prove properties of valid judgments with the
standard technique of induction on derivations. Dually, because ev-
ery subtyping/inhabitation derivation fails at a finite height, we can
prove properties of invalid (underivable) judgments with a tech-
nique that we call induction on failing derivations.

Every underivable judgment has a finite failing derivation, in
which at least one leaf judgment in the derivation tree gets “stuck”
(because that judgment cannot be the conclusion of any rule). Fig-
ures 4-5 illustrate failing derivations. Notice that all judgments be-
tween a failing leaf judgment and the root of the derivation tree
must also be failing. Proofs by induction on failing derivations trace
the failure from a leaf to the root of the failing derivation tree, show-
ing that the desired property holds on every (underivable) judgment
along the way. More specifically, proofs by induction on failing
derivations show as base cases that the property of interest holds
on all possible failing leaf judgments and then, while inductively
assuming that the property holds on the failing premise(s) of a fail-
ing internal judgment J, show that the property holds on J as well.

As an example, consider proving a property P on underiv-
able SH71 <7 judgments by induction on failing derivations. The
leaf nodes in a failing SH7; <72 derivation can only occur when
T1=real and T»=nat, or when exactly one of 7 and 72 is a func-
tion/product/sum/recursive type; the base cases of the proof would
therefore show that P holds on all such judgments. For the in-
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ductive cases, first note that rules that take precedence over other
rules cannot appear in failing derivations (because when such rules
fail, the lower-precedence rules get used instead), so rules S-_1, S-
1 FUN, and S-REC2 never appear in failing derivations. We’re thus
left with S-FUN, S-SUM, S-PROD, and S-REC]1 as the only possi-
ble internal nodes in failing derivations of Sk7; <79, so in each of
these four cases the proof would show, while inductively assuming
that P holds on the rule’s failing premises (of which there must be
at least one), that P also holds on the failing conclusion.

Proof by induction on failing derivations is useful for establish-
ing the completeness of a subtyping relation. Recall from Defini-
tion 1 that completeness requires: for all types 71 and 72, if there
do not exist E, T, e, and €’ such that E[r2]:T, e:T1, Ele] —* ¢/,
and stuck(e’), then 71 <75. Although it may not be obvious how
to prove this property directly, we can approach its contrapositive
neatly by induction on the failing derivation of 7 <7. Lemma 18’s
proof in Section 5 operates in this way to prove a strong version of
completeness. Lemmas 1 and 12 are also proved with induction on
failing derivations.

5. Proof of the Subtyping Relation’s Preciseness

The following proof shows that the subtyping relation defined in
Figure 8 is precise with respect to type safety. The proof provides a
framework and techniques that may be useful for other preciseness
proofs.

5.1 Basic Properties of the val Relations

The proof begins with many “sanity checks” on the < and val
relations (from Lemma 1 to Lemma 14). Lemma 1 and Corollary 2
show that, for all types T, either val(7)=0) is derivable or val(T) #
(0 is derivable, but not both.

Lemma 1. Strong val Negation.
VU, 7 : (U val(t) = 0 is not derivable < U + val(t) # 0)

Proof. The if direction (<) is by straightforward induction on the
derivation of U + val(7) # 0.
The only-if direction (=) is by induction on the failing deriva-

tion of U + val(r) = (. The base cases (leaves) of a failing-
derivation tree of U F val(7) = () occur when 7 is nat, real,
or a function type; in all these base cases U + val(r) = 0 is

not derivable, but U + val(r) # 0 as required. The three in-
ductive cases (i.e., inner judgments) of a failing-derivation tree of
U + val(r) = 0 occur when (1) 7 = 71 + 72 and a premise of
U-SuM isn’t derivable, 2) 7 = 71 X T2 and U F val(r1) # 0
and the U + val(m2) = () premise of U-PROD2 is not deriv-
able, or 3) 7 = pt.7 and pt.7 ¢ U and the U U {ut.7} +
val([ut.7/t]T) = 0 premise of U-RECI is not derivable. Note that
a derivation of U F val(7) = () cannot fail on rule U-PRODI be-
cause if U-PROD1’s premise is not derivable then U-PROD2 will
be used instead, which guarantees that a failing derivation rooted
on a use of U-PROD2 has a valid premise of U + val(m) # 0
and a failing premise of U - val(m2) = 0 (where 7 = 71 X 72). A
derivation of U F val(7) = ) also cannot fail on U-REC2, because
then U-REC1 would be used instead.
Now let’s consider the 3 inductive cases outlined above.

(1) If a derivation of U I val(r1 +72) = () fails because a premise
of U-SUM fails, then by the inductive hypothesis we have either
U F val(r1) # 0 or U F val(m2) # 0. In both subcases,
U + val(m1 + 72) # 0 (by I-Sum1 or I-SUM2).

(2) If a derivation of U F val(m; x 72) = 0 fails because U F
val(2) = 0 is not derivable but U + val(r1) # (), then the
inductive hypothesis implies that U + val(72) # (). Therefore,
U + val(m1 X 12) # () by I-PROD.

(3) If a derivation of U F val(ut.7) = ( fails because U U
{pt.7} + val([ut.7/t]T) = 0 is not derivable and ut.7 ¢
U, then the inductive hypothesis implies that U U {ut.7} +
val([ut.7/t]T) # 0. Therefore, U I val(ut.7) # () by I-REC.
In all cases of failing derivations of U + val(r) = 0, we have
Uk val(r) # 0. O

Corollary 2. val Negation.
V7 @ (val(t) = 0 is not derivable < val(t) # 0)
Proof. Immediate by Lemma 1. O

5.2 Basic Properties of the Subtyping Relation

The next three lemmas establish some basic properties of the sub-
typing relation. First, Lemma 3 provides a standard subtyping-
inversion result, though the result is complicated by the value-
inhabitation premises in the subtyping rules. Lemma 4 shows that
subtyping contexts can be weakened by adding assumptions, and
Lemma 5 states that if a value-inhabited recursive type 71 is a sub-
type of another recursive type 72, then the unrolled version of 71 is
a subtype of the unrolled version of 7.

Lemma 3. Subtyping Inversion.
VS, 11,2 If S E 11 <79, then

A. val(m1) =0, or
B. val(t1) # 0, 72 = T5—73/, and val(t3) = 0, or
C. Neither A nor B hold, and all of the following hold:
i. T1=real = To=real
ii. T1=nat = (Tp=real V Tp=nat)
iii. m=11—1 = (T2e=75—74 A SFT<T{ A Sk <75
v. m=7{+1 = (re=75+79 NSk <75 A Sk <75)
v =TI XT] = (To=Ty XT3 A SkT{ <75 A SHT{<7Y)
Vi. i=pt.T =mo=ut’ .7 and either 1 <12 € S
or SU{m1 <mo }-[pt.7/t]T<[ut’ 7 Jt']7
vii. To=real = (71=nat V T1=real)
Viii. To=nat = 7;=nat
ix. o=Ty—1y = (Ti=11—7 ASFT<T{ A Sk’ <75)
x. o=T4+75 = (ri=71+71 A Sk <75 A SHT{<7Y)
xi. o=Ty X 7 = (mi=11 X7 A SFT{ <75 A SHT{<73)
xii. To=pt' 7 = Ti=pt.T and either 1 <13 € S
or SU{m1 <mo }-[ut.7/t)T < [ut' 7' /U7
Proof. By straightforward case analysis of the rules deriving
S l_ T1 STQ. D

Lemma 4. Subtype Weakening.
VS, 11,72,8 28 : (St i< = S F <)

Proof. By straightforward induction on the derivation of Sk7; <7s.
O
Lemma 5. Empty Unrolled Subtyping.

Vthtz,?h?z:

val(ut,.7 0 _ _ _ _
(/\ Mtlggllgﬂltl .7$2 ) = [utl.Tl/tl]T1§[/Lt2.T2/t2]TQ

Proof. Letm = pt1.71, T2 = pt2. T2, Tiu = [Tl/tl}?l, and 1o, =
[T2/t2]T2. Because val(71) # 0, 71 <72 is only derivable with S-
RECI, so its premise must be derivable, i.e., {71 <72} F 714 <724.
The derivation of 7 <75 therefore has the form

D
{7’1§T2} F 71 <72y

T1<T2

val(ry) # 0
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for some derivation forest ID. Because 71 <72, there also exists a
derivation of S = 71 <7 (for all subtyping-assumption sets .S), by
Lemma 4.

Now let’s consider a new derivation forest D’ constructed by
modifying D in 2 ways: (1) whenever a judgment of the form
SU{n<rn} F m1<m (ie., a use of S-REC2 on 71 and 72)
appears in D, D’ replaces it with the derivation of S - 71, <7o,
and (2) whenever a judgment of the form S’ - 71 <75 appears in
D (besides a use of S-REC2 on 71 and 72), D’ replaces it with the
judgment S"\ {71 <7} F 71 <73. Observe that D’ is the same as D,
except D’ doesn’t require the initial 71 <75 assumption; whenever
D uses the 71 <72 assumption (with rule S-REC2), D’ just de{ives

71 <79 directly. Hence, because s .
- Y {n<m} bt nu<ru T1a<T24

Thus, 71, <72, as required.

5.3 Relationships between the val and Subtyping Relations

This subsection relates the val and subtyping relations, to estab-
lish three useful results: (1) if a type is value inhabited then its
supertypes must also be value inhabited (Lemma 7), (2) a type 7 is
inhabited by values exactly when val(7) # () (Lemma 8), and (3)
if a type is value uninhabited then its subtypes must also be value
uninhabited (Corollary 11).

We prove these results by first replacing rule I-REC with the
following alternate rule:

Ut val([ut.7/t]T) # 0
U b val(ut.7) #0
Lemma 6 shows that the deductive system for judging U

val(T) # 0, as defined in Figure 8, is equivalent to the system
obtained by replacing rule I-REC with [-REC».

I-REC2

Lemma 6. Equivalence of Systems with [-REC and I-RECa.

Vr: (val(T) # 0 in the inhabitation system with rule I-REC
< val(r) # 0 in the inhabitation system with rule I-REC2)

Proof. For clarity, we’ll write val(T) #2 @ when val(t) # 0 is
derivable in the inhabitation system with rule I-REC2 replacing
I-REC. Note that all the rules defining # and #2 are identical,
except that the # rules stop (failing) derivation trees (with rule
I-REC) at any point of considering a 7 = pt.7 that has been
considered before (i.e., lower/closer to the root of the derivation
tree). Derivations that never get stopped in this way using the
# rules will not get stopped with the #2 rules, because the #;
rules have no such stopping mechanism (with I-REC2). Hence,
val(T) # 0 = val(r) #2 0.

On the other hand, a derivation of val(7) #2 () must never
consider a 7 = ut.7 that has been considered before (lower) in the
derivation tree (if it did, the fact that the #- rules are deterministic
implies that 7 = ut.7 would have to be considered again and again,
infinitely, which would prevent val(7) #2 0 from being derived).
Hence, val(7) #2 0 = val(r) # 0. O

Given that replacing I-REC with I-REC> has no effect on which
val(T) # 0 judgments are derivable, the remainder of this sub-
section’s proofs will assume that valid val(7) # 0 judgments are
derivable with only the I-NAT, [-REAL, I-FUN, I-SuMml1, [-SuMm2,
I-PROD, and I-REC5 rules.

The following lemma shows that value inhabitation is closed
under supertyping.

Lemma 7. Value Inhabitation is Closed under Supertyping.
Vr, 7' ((val(T) ZO0 AT < 7') = val(7') £ 0)

Proof. By induction on the derivation of val(7) # (), where the
derivation uses rule I-REC> rather than I-REC (which is valid by
Lemma 6). Note that in all cases, val(7) = 0 is not derivable
(by Corollary 2), and if 7’ is a function type then val(t’) # 0
immediately by I-FUN. Hence, in all cases of deriving val(7) # (
with 7 < 7/, we have eliminated the A and B subcases of Lemma 3
and can assume that subcase C of Lemma 3 characterizes the
relationship between 7 and 7.

C I-NAT

e val(nat) # 0
By Lemma 3(C)(ii), 7" = real or 7' = nat, so val(7’) # () by
I-NAT or I-REAL.

The I-REAL and I-FUN cases are proved similarly to the I-NAT
case.

1
Case M I-Sum1
val(ri+72) # 0

By Lemma 3(C)(iv), 7 = 7{ 4+ 75 and 71 < 7{. By assumption,
val(T1) # 0, so by the inductive hypothesis, val(r;) # ), which
implies val(t’) # @ by I-SUM1.

The I-SuM2 and I-PROD cases are proved similarly to the I-
SuMI case.

val([ut.7/t]T) # 0
val(ut.7) # 0

By Lemma 3(C)(vi), 7'=put’.7', and by assumption, val(ut.7)#0)
and pt. 7<pt’. 7. Lemma 5 thus implies [ut. 7 /¢|7<[ut’ 7' /t'] /7,
which combines with the val([ut.7/t]7)#0 assumption and the
inductive hypothesis to provide that val([ut’.7' /t'|7')#0. Hence,
by rule I-RECs, val(ut'.7')#0, as required. O

I-REC2

Now we can prove that the val judgments mean what we want
them to mean: val(7) # () is derivable exactly when there exists a
value of type 7.

Lemma 8. Value Inhabitation.

V7 (val(r) # 0 < Ju : (vir))

Proof. We again assume that derivations of val(r) # (0 use rule
I-REC: instead of I-REC (which is valid by Lemma 6). The if
direction (<=) is by induction on the derivation of v:7. The T-
NAT, T-REAL, and T-FUN cases are immediate with rules I-NAT,
I-REAL, and I-FUN. The remaining cases deriving v:7 are T-
LEFT, T-RIGHT, T-PROD, T-ROLL, and T-SUBSUME; the first four
of these are all proved similarly. For example, the T-LEFT case
assumes v = inl,vi, where 7 = 71 + 72 and vi:71. By the
inductive hypothesis, we have val(r1) # (), implying by rule I-
SuM1 that val(7) # (. For the T-SUBSUME case, we assume v:7"’
and 7' < 7. By the inductive hypothesis, then, val(7') # (), so by
Lemma 7, val(7) # 0 as required.

The only-if direction (=) is by induction on the derivation of
val(r) # (. When 7 = nat, let v = 0; then v:nat. When
T = T1—T2, let v = (funf(z:m1):m2 = f(x)); then viti—72.
When 7 = 71+ and val(7) # 0 with rule [-SuM1, the inductive
hypothesis provides that Jvi:(v1:71); hence we let v = inl, vy,
so v:T by T-LEFT. All the other cases are proved similarly to the
I-NAT and I-SUMI cases. O

The following lemma is a simple context-weakening result.
Lemma 9. Value Uninhabitation Weakening.
VU, 7, U DU(U Fval(r) =0 = U’ val(r) = 0)

Proof. By straightforward induction on the derivation of U +
val(t) = 0. O
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Now we’re ready to prove that subtypes of value-uninhabited
types are also uninhabited. Lemma 10 is a strong version of this
result; the extra assumptions in Lemma 10 provide a strong enough
inductive hypothesis to prove the result in all cases. Then the
weaker but desired version follows as a corollary.

Lemma 10. Strong Value Uninhabitation Closed under Subtyping.

St

NSy = {Tl‘TlSTQGS}
A So = {m|m1<meS}
A Sy Fval(re) =0

Proof. By induction on the derivation of S F 7 <7s. Cases S-
BASE, S-NAT, S-REAL, S-_LFUN, and S-FUN hold vacuously
because they don’t allow Sz + val(rz) = (. Case S-L holds
because its premise ensures that val(r1) = (), so by Lemma 9,
S1 F val(r) = 0. Case S-REC2 assumes 71 = ut. 7, 70 = pt' .7,
and pt.7<upt’' 7 € S, so ut.7 € Sp and, by rule U-REC2,

VS,Sl,SQ,Tl,TQ: :>S1|_V&1(T1):@

S1 F val(m1) = 0. The three remaining cases (S-PROD, S-
SuM, and S-REC1) are all proved with straightforward inductive
arguments. O

Corollary 11. Value Uninhabitation is Closed under Subtyping.

V11,72 (<72 Aval(m2) = 0) = val(r1) = 0)
Proof. Immediate from Lemma 10, where S = S; = S = 0. O

5.4 Subtyping Reflexivity and Transitivity

For the sake of determinism, the subtyping relation under consider-
ation lacks explicit reflexivity and transitivity rules. This subsection
shows that the subtyping relation is nonetheless reflexive and tran-
sitive.

Lemma 12. Strong Subtyping Reflexivity.
VS, 71,72 : (S F 11 < 72 is not derivable = 11 # T2)

Proof. By induction on the failing derivation of S + 7 < 7.
This derivation can fail when 71 = real and 72 = nat, or when
exactly one of 71 and 7» is a function/product/sum/recursive type.
In all these cases, 71 # T2, as required. Moreover, these are the
only base cases of a failing derivation of S - 71 < 73 (i.e., they’re
the only possible leaf nodes in a failing derivation tree rooted at
SE7m <)

The inductive cases of a failing derivation of S' - 71 < 73 occur
when S F+ 7 < 7 fails due to a premise being underivable (i.e.,
the inductive cases occur at internal nodes in a failing derivation
tree). The only inductive cases of a failing S + 71 < 7 derivation
are uses of S-FUN, S-SuUM, S-PROD, or S-RECI1 (failure cannot
occur with S-REC2 because then S-REC1 would be used). In all
these inductive cases, the failing premise must be of the form
S’ + 7{ < 73, because premises of other forms are only used to
control which rule must be used at each step of a (possibly failing)
derivation of S - 7 < 72 (in other words, premises of other forms
are only used to make the derivations deterministic).

In all the four inductive cases S-FUN, S-SuM, S-PROD, and
S-RECI, a failing premise of the form S’ + 7{ < 75 implies,
by the inductive hypothesis, that 7{ # 73, which guarantees that
T # 72. For example, in the S-FUN case, 11 = T{ — 71 and
T2 = 7_2 — 75, andfor S -1 < o tofail, S 74 < 7 failsor
S+ 7' < Té’ fails. Hence, by the inductive hypothesis, 7{ # 74
or 71 # 75,50 71 # T2. The other inductive cases are proved
similarly. O

Corollary 13. Subtyping Reflexivity.
Vr:r<rT

Proof. Immediate by Lemma 12. O

Lemma 14. Subtyping Transitivity.
V11,712,730 ((T1<12 A T2<73) = T1<73)

Proof. We consider all the possibilities obtained by applying
Lemma 3 to the assumptions that (1) 71 <72 and (2) 7=2<73. If
assumption (1) satisfies (A) of Lemma 3, then 71 <73 by rule S-_L.
If assumption (1) doesn’t satisfy (A) of Lemma 3, then assumption
(2) can’t satisfy (A); otherwise we’d have val(71) # 0, 71 <72, and
val(m2) = @, which would contradict Corollary 11. If assumption
(2) satisfies (B) of Lemma 3, then 71 <73 by rule S-_LFUN. If as-
sumption (1) satisfies (B) and (2) satisfies (C), then 72 = T5—75,
val(ry) = 0, 73 = T3—74, val(r3) # 0, and T5<75. But 75<75)
cannot occur when val(73) # () and val(r3) = @ (by Corollary 11),
so the lemma holds vacuously in this case.

The only remaining combination to consider is that both as-
sumptions (1) and (2) satisfy (C) of Lemma 3. We proceed by
induction on the derivations of 71 <79 and 72<73. If 71 = real
then (by Lemma 3) 7 = real, implying (again by Lemma 3) that
73 = real, so 71 <73 by S-REAL. If 71 = nat then by Lemma 3,
T3 = real 0r 73 = nat; in both subcases 71 <73.

If 11 = 71—y then because assumpuons (1) and (2) satlsfy (C)
0fLemma3 we have 72 = 1—74 , 4 <11, T <18, T3 = T4—TY,
T5<1y, T4 <713, val(y) # 0, and val(rs) # . Then by the
inductive hypothesis, applied to 745 <75 and 75 <77, and to 7 <73
and 75’ <73, we have 75<7{ and 7{'<73. Because val(r3) # 0,
then, S-FUN implies that 71 <73. The cases of 71 = 7{-+7{ and
71 =71 X 71 (i.e., S-SUM and S-PROD) are proved similarly.

The final case to consider is that 71 = put;.7:. In this case,
because assumptions (1) and (2) satisfy (C) of Lemma 3, we have
T2 = ‘utg.?g, T3 = ,u,t3.73, val(n) 7'é @, and Val(TQ) 75 @ Com-
bining these results with Lemma 5, then, we obtain
[,Lttl T1 /t1]71 S [/.Ltg .?Q/tQ]?Q and [,LLtQ T2 /tz}?g S [,U,tg .?3/t3]73.
Applying the inductive hypothesis to these two subtyping judg-
ments yields [ut1.71/t1]71<[uts.Ts/ts]Ts, so by Lemma 4,
{n<m} +  [wt1.71/t1)]T1<[pts.T3/ts|T3. Finally, because
Val(Tl) 75 (Z) and {7‘1<7’3} = [utl T1/t1]7‘1 [,ut3 7‘3/t3]7’3, rule
S-REC1 ensures that 7 <3, as required. O

5.5 Properties of the Static and Dynamic Semantics

Having completed the “sanity checks” on the < and val rela-
tions, Lemmas 15-17 present standard inversion, weakening, and
canonical-forms lemmas, which are used to prove both complete-
ness and soundness.

Lemma 15. Typing Inversion.

. I'tn:7 = nat<r
. I'Fri7 = real<r
. T'Fsucc(e):7 = (I'ke:nat Anat<r)
. TH(e1, e2):7 = 311,72 : (Ther:m AThegima A 71 X712<7)
. T'ksqrt(e):7 = (I'teireal A real<r)
P TH(fun f(z:71):me=e):T =

(TU{f:m1—72, x:m1 e A i —72<T)
. Thei(e2):7 = I, 72 : (Ther:mi—72 ATReaim A 12<7)
IHinl e = 3,2 0 (Them AT+ <t AT/'=71+72)
THinre:r = 3,72 : (Trem AT+ <1t A T'=71+72)
I'+(case e of inlz = ez else inry = e3):7 =

I, 72,7 1 Trerimi+m ATU{z:7 et
ATU{y:mo tres:’ AT/ <7

Ire.fst it = 3m, 72 : (Themixme AT1<7)
Ike.snd i1 = 371,72 : (Themi X2 A 12<7)
. Throll(e):r = 3¢, 7 : (Tre:[ut.T/t|T A pt. 7<)
. Thunroll(e):r = 3t,7 : (Tre:pt. T A [ut. 7T /¢]7<T)
. Trar = T(x)<t

T OO W

~~TQ

Oz~ &
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Proof. By induction on the derivation of I' = e : 7. In all the
lemma’s cases, exactly 2 rules could apply: T-SUBSUME (in which
case the result follows from an inductive argument) and another
rule (in which case the result is immediate). For example, I'
e.fst : 7 is derivable with T-SUBSUME and T-FsT. With T-
SUBSUME, the inductive hypothesis implies I' - e : 71 X 72 and
T1<7’, for a type 7’ such that 7'<7. By Lemma 14 then, 71 <7, as
required. If I' - e.fst : 7 is derived with T-FST, we can assume
I'Fe: 7 X712and 7 = 7. By Lemma 13 then, 7 <7, as required.
All the other cases are proved similarly. O

Lemma 16. Weakening.
Vl,e,7, " DT :(Tke:7=T"Fe:7)

Proof. By straightforward induction on the derivation of I' - e:7.
O

Lemma 17. Canonical Forms.
Yvu, T : If v:T then

. T=nat = v=n (for some n)

T=real = v=n or v=r (for somen orr)
(t=mi—meAval(r) #0) = v=(fun f(zx:73):7a = €)
(for some f, x, T3, T4, and e)

D. 7=71+72 = v=inl,v' or v=inr /v’ (for some T’ and v')
E. 7=71 X T2 = v=(v1,v2) (for some v1 and v2)

E 7=pt.7 = v=roll(v’) (for some v')

aw >

Proof. By induction on the derivation of v:7. The only nontrivial
case is T-SUBSUME, in which v:7’, v:7, and 7' <7. Because v:7’
and v:7, Lemma 8 ensures that val(7') # () and val(7) # 0. We
next consider each of the six cases in the lemma statement and
show that the desired result holds in every case. If 7 = real
then by Lemma 3, 7’ = nat or 7’ = real, so by the inductive
hypothesis (applied to v:7'), v = norv = r. If 7 = nat then
by Lemma 3, 7' = nat, so by the inductive hypothesis, v = n.
If 7 = 71—72, and val(71) # 0, then by Lemma 3, 7/ = 7{—74
and 71 <7} . Because val(r;) # @ and 71 <71, Lemma 7 ensures that
val(7{) # (). Then applying the inductive hypothesis to v:7’, where
7' = 71— and val(7]) # 0, we find that v = (fun f(x:73) :
T4 = €), as required. If 7 = 71 +72 then by Lemma 3, 7’ = 7{+73,
so by the inductive hypothesis, v = inl,/v’ or v = inr.v’. If
T = 71 X T2 then by Lemma 3, 7/ = 7{ X 73, so by the inductive
hypothesis, v = (v1, v2). Finally, if 7 = pt.7 then by Lemma 3,
7' = pt’ 7, so by the inductive hypothesis, v = roll(v’). O

5.6 Subtyping Completeness

We’re now ready to state and prove the key lemma used to show
completeness, Lemma 18. This lemma is a stronger version of com-
pleteness; the stronger version provides a strong enough inductive
hypothesis to prove completeness in all cases.

The proof of Lemma 18 is constructive; given any S, 71, and
T2 such that Sk7; <72 is not derivable, the proof shows how to
construct a well-typed program that gets stuck when its m-type
subexpression is replaced by a 71-type value.

Lemma 18. Strong Completeness.
VS, 11,72 If S+ T1<72 is not derivable, then I E, T,v,e :
(E[r2] : T Av:Ti A E[v] =" e A stuck(e))
Proof. The proof is by induction on the failing derivation of S
71 <79. This derivation can fail when 71 = real and 75 = nat, or
when exactly one of 71 and 73 is a function/product/sum/recursive
type (and val(71) # 0 and 72 is not a function type with unin-

habited argument type). These are the only base cases of a failing
derivation of S F 71 < 72 (i.e., they’re the only possible leaf nodes

in a failing derivation tree rooted at S - 71 < 72). We first prove
the lemma for these cases.

Case 71 = real and 72 = nat:
Let E = succ([]), 7 = nat, v = 0.5, and e = succ(0.5). Then
v:11 (by T-REAL), E[72]:7 (by T-CTXT and T-SUCC), E[v] —" e
(by MSTEP-REFL), and stuck(e).

Case 71 = 71— and T2 # T5—T4:
Letv = (fun f(z:11) : 71 = f(x)), so vi7; by rules T-FUN and
T-APP. Define F and 7 as follows:

sqrt([]) if 72 = nat or » = real
case [ ] of inlz'=0.5
E={ elseinry'=05 if7m =1+71)
[]-snd ifr =75 X 75
unroll([]) if o = put.7
real if 79 = natorme = realor o = T4+T74
=74 ifr =75 x 1

[t 7/t 7 if 7o = pt.7
Then E[72]:7, by the definitions of £ and 7 and the typing rules.
Moreover, let e = Efv], so E[v] —* e and stuck(e) (because
stuck(E[v]), where v = (fun f(z : 1) : 71 = f(x))).

Case 7177, —71 and To=74—73 (and val(71)#£0, val(13)#£0):
By assumption, val(71) # @) and val(3) # 0, so by Lemma 8 there
exist v and v5 such that v : 7 and v5 : 75. Because 71 # 71 —T{
and v : T, Lemma 17 implies that v # (fun f3(z3 : 73) : T3 =

es) (for all fs, x3, 73, 75, and e3). Let B = [ ](v3), 7 = 74/,
and e = v(v5). Then E[r]:7 (because 72 = 75—, v5:T3, and
T = 75/). Moreover, E[v] = e, so E[v] —* e, and stuck(e)

(because e = v(vj), where v cannot be a function value).

Case 71 = pt1.71 and T2 # pte.72 (and val(ri) # 0):
By assumption, val(71) # (), so by Lemma 8 there exists a v such
that v:put1.71. Hence, by Lemma 17, v = roll(v’) for some value
v'. Define E and 7 as follows:

sqrt([]) if 7 = natorm = real
case [ ] of inlz=0.5

E= else inr y=-0.5 if 7o = 75478
[].snd ifrp =75 X 7

[((fun f(amat)ri=())(0)) 18 72 = rhsrrf

real if Ty =natorT, =realorm = T4+74
T= " . / 7 , 7
To if 7o =T X Ty OXY T2 = To—Ty

Then E[r2]:7, by the definitions of E and 7 and the typing
rules. Moreover, let e = E[v], so E[v] —* e and stuck(e) (be-
cause stuck(FE[v]), where v = roll(v')).

Case 71 # pt1.71 and 72 = pto.72 (and val(r1) # 0):

There are two subcases to consider, either (1) 7, = 71 —71 and
val(r{) = 0, or 2) (11 = 11—71") = (val(r{) # 0). In subcase
(1), let v = 0, so v:nat and v:7; by T-SUBSUME and S- L FUN. In
subcase (2), we use the assumption that val(r;) # @) and Lemma
8 to obtain a v such that v:7;. Also in subcase (2), we know that
vity but 11 # pt1.71 and (1 = T{—71) = (val(r]) # 0),
so Lemma 17 implies that v # roll(v’) (for all v’). Hence,
in all subcases, v:71 and v # roll(v’) (for all v'). Next, let
E = unroll([]), 7 = [ut2.T2/t2]T2, and e = unroll(v). Then
E[72]:7 by T-CTXT, T-VAR, and T-UNROLL. Moreover, E[v] = e,
so E[v] —* e, and stuck(e) (because ¢ = unroll(v), where v
can’t be a rolled value).

The remaining leaf cases (where exactly one of 71 and 72 is a
product/sum type) are proved similarly.

The inductive cases of a failing derivation of S - 71 < 72 occur
when S + 71 < 7 fails due to a premise being underivable (i.e.,
the inductive cases occur at internal nodes in a failing derivation
tree). The only inductive cases of a failing S F+ 71 < 7 derivation
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are uses of S-FUN, S-SuUM, S-PROD, or S-RECI (failure cannot
occur with S-REC2 because then S-REC1 would be used instead).
In all these inductive cases, the failing premise must be of the form
S’ I 11 < 74, because premises of other forms are only used to
control which rule must be used at each step of a (possibly failing)
derivation of S + 71 < 7% (in other words, premises of other
forms are only used to make the derivations deterministic). Also
in all these cases we have val(71) # @) and T2 # T5—75 such that
val(3) = () (otherwise rule S- L or S- L Fun would have been used
to derive S F 71 <7).

val(ry) # 0 St m<r St <7y
e

/ 1 / 1 S-FuN
St m—1 <m—T

In this case S - 75<7{ is not derivable or S - 7{' <74 is not

derivable. We consider each possibility in turn.

If S + 75<7{ is not derivable, then the inductive hypothesis
implies that there exist E’, 7/, v’, and €’ such that E'[r{] : 7/,
v, E'[v'] —* €, and stuck(e’). Let v = (fun f(z:m1):7y =
((fun g(y:7'):m1" = g(y))(E'[z]))) (for some f, z not free in E'),
E=|Jo,r = e (fun glyr) : 7 = g(y))(), and
I = {firi—7,z:1 }. Also, E'[r]] : 7’ implies by inversion
of T-CTXT that {x:7{} + E’[z]:7’, which in turn implies by
Lemma 16 that THFE’[z]:7". Hence, we can use rules T-FUN and
T-APP to derive v:T{—Ti’, as required. Also, because v’:75, we
have [r3—75'|v" : 73 (by rules T-CTXT, T-VAR, and T-APP), i.e.,
E[r2] : 7. In addition, E[v] — (fun g(y:7"):71" = g(y))(E'[v]).
Given that E'[v'] —* ¢, we have E[v] —* (fun g(y:7'):7{ =
g(y))(€), ie., E[v] —* e. Because stuck(e’), we also have
stuck(e).

On the other hand, if S F 7{<74 is not derivable, the in-
ductive hypothesis implies that there exist E’, 7/, v’, and €’ such
that E'[r5]:7", v":r{', E'[v'] —* €', and stuck(e’). Observe that,
by Lemma 8 and the assumption that val(3) # (), there exists
a value va such that vo:75. Let v = (fun f(x:7() : 71 = ),
E = FE'[[ Jva], 7 = 7/, and e = €. Because v':7{’, Lemma 16
and rule T-FUN imply that v:71. Also, E'[r3']:7’ implies by inver-
sion of T-CTXT that {z’:75'} + E'[z']:7/, which in turn implies
that {z":75—75'} = E’[2” (v2)]:7" (because any use of T-VAR to
type the free =’ in a typing derivation of E’[z’] can be replaced
by a use of T-APP and T-VAR, and whatever rules are used to de-
rive v2:75, to produce an otherwise identical typing derivation of
E’[z" (v2)]). Hence, by T-CTXT, E[r2]:7. Also, by the definitions
of E and v, E[v] = E’[v(v2)], and by the operational semantics,
E’[v(v2)] — E’[v']. Thus, because E'[v'] —* ¢’ and ¢’ = ¢, we
have E[v] —" e, where stuck(e).

Val(,l/,tl.?l) ;é 1} pt1. T1<put2. T2 ¢ S
SU{utl T1 S}Ltz.?z}}_[utl T1 /tl]Fl S [[LtQ.FQ/tQ]?Q

C S-REC1
ae S+ pt1.T1 S,th T2

The failing premise in this case must be SU{pt1.71<put2. 72} F
[ut1.71/t1|T1<[ut2.T2/t2]T2, so by the inductive hypothesis,
there exist E', 7/, v', and €' such that F'[[uts.To2/to]T2]:T’,
v':[ut1. 71 /t1]T1, E'[v'] —* €', and stuck(e’). Letv = roll(v’),
E = E'[unroll([ ])], 7 = 7/, and e = €’. Observe that by rule
T-ROLL, v:Ty. Also, E'[[t2.T2/t2]7T2]:7’ implies by inversion of
T-CTXT that {x':[uta.T2/to]T2} = E’[2']:7', which in turn im-
plies that {x:ut2. 72} = E’[unroll(z)]:7’ (because any use of
T-VAR to type the free =’ in a typing derivation of E'[z] can
be replaced by a use of T-UNROLL and T-VAR to produce an
otherwise identical typing derivation of E’[unroll(z)]). Hence,
by T-CTXT, E[r2]:7. Also, by the definitions of E and v, we
have E[v] = E’'[unroll(roll(v’))], so E[v] — E’[v'], where
E’[v'] —* €’ (from above). Therefore, E[v] —* e, and stuck(e)
because €’ = e and stuck(e’).

The remaining inductive cases (S-Prod and S-Sum) are proved
similarly. The S-Prod case constructs v as a pair expression and

uses a £st or snd expression to eliminate the pair in . The S-
Sum case constructs v as an inl or inr expression and uses a case
expression to eliminate the injection in E. O

Having proved a stronger version of completeness in Lemma 18,
the weaker version follows as a corollary.

Corollary 19. Completeness.

Y71, T2: If there do not exist E, T, e, and €’ such that E[2]:T,
e:T1, Ele] —* €, and stuck(e'), then 71 <7o.
Proof. By Lemma 18, if 7 <7 is not derivable then there exist F,
7, e, and €’ such that E[r2]:7, e:T1, Ele] —* €/, and stuck(e’).
The corollary is the contrapositive of this result. O

5.7 Subtyping Soundness

With completeness proved, we move on to proving the soundness
of the subtyping relation using type-safety lemmas. Lemmas 20—
22 are used to prove Preservation (Lemma 23), while Lemma 24 is
used to prove Progress (Lemma 25).

Lemma 20. Variable Substitution.
VT, z, 7' e, ¢"
(CU{z:r'}Fer AT Fe:r') =Tk [¢/x]erT)
Proof. By induction on the derivation of I' U {z:7'} I e:7. O

Lemma 21. (3-Preservation.
Ve, 7, : (et Aersge') =€)
Proof. By case analysis of e 5 ¢’. We show the proofs of the
B-Succ, B-App, and B-UNROLL cases. The proofs of the 3-SQRT
cases are similar to that of 5-SucCc; the proofs of the 5-LEFT and
[B-RIGHT cases are similar to that of 5-APP; and the proofs of the
B-FsT and 3-SND cases are similar to that of 5-UNROLL.
n’ = successor of n

Case 7 B-Succ
succ(n) —gn

Because succ(n):7, Lemma 15 ensures that nat <, while rule T-
NAT ensures that n":nat. Hence, n’:7 by rule T-SUBSUME.
Case -APP
(fun f(z:711): 12 =€)(v) —p p
[(fun f(z : 1) 1 72 =€)/ fl[v/z]e

Let F = (fun f(z : 71) : 72 = e). By Lemma 15 and the
assumption that F(v):7, we have F:1{—T3, v:t], and 75<T.
By Lemma 15 again and the assumption that F:7{—73, we also
have {f:m1—Te,z:m1} F ems and 71 —72<T{—T5. Because
{fimi—72,z:71} b er2, rule T-FUN implies that F:7i—7s.
Given that F:71 —7> and v:7{, Lemma 8 implies that val(T; —72)
# () and val({) # 0, so we can use Lemma 3 on the fact that
T1—To<T{ —T4 to obtain 7y <11 and 72 <74. Then, because v:7},
T-SUBSUME implies v:71, so by Lemma 16, { f:m1—72} F vir1.
We now have gathered all the results needed to start applying
Lemma 20 (Variable Substitution). Because {f:71—72, z:71} F
e:tp and { f:71—72} F v:T1, Lemma 20 ensures that { f:71 —72}
[v/z]e:T2. Then because F:71—72, Lemma 20 ensures that[F'/ f]

[v/x]e:m2. Finally, with [F/f][v/z]e:m2 and 72<75<T, we have
[F'/ f][v/x]e:T by T-SUBSUME.

Cas -UNROLL
e unroll(roll(v)) —pg v o

By Lemma 15 and the assumption that unroll(roll(v)):7, we
have roll(v):ut.7 and [ut.7/t|7<7. Then by Lemma 15 again
and the result that roll(v):ut.7, we find v:[ut1.71/t1]71 and
ut1. 71 <pt.7T. Because v:[ut1.7T1/t1]71, we have val([ut1.71/t1]
71) # 0 by Lemma 8, so by rule I-REC2 (and Lemma 6),
val(ut1.71) # 0. Given that val(ut1.71) # 0 and pt1.71 <pt.7,
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Lemma 5 implies that [put1.71/t1]71 <[ut.7/¢]7. Hence, we have
vi[pt1.T1 /6|71 and [pt: 71/t T <[pt.T/t]T<T, so v:T by rule
T-SUBSUME. g

Lemma 22. Well-typed, Filled Contexts.

VI,E,e,7:(T'+ Ele]l:r= 37" : TFer AT+ E[r]:T))
Proof. By induction on the structure of E. If E = [], then the
result is immediate with 7'=7, because ['~e:7 by assumption
and T'H[7]:7 by the definition of well-typed contexts and rule
T-VAR. If E = succ(E’) then we can apply Lemma 15 to the
assumption that TFsucc(E’[e]):7 to find that T-E'[e]:nat and
nat<7. By the inductive hypothesis then, there exists a 7’ such
that T e:7’ and T + E’[7']:nat, so by the definition of well-
typed contexts, I' U {z:7'} + E'[z]:nat. Then by rule T-Succ,
T'U {z:7'} + succ(E'[z]):nat, implying by T-SUBSUME and
nat<r that ' U {z:7'} I succ(E’[z]):7. Hence, by rule T-CTXT
we have I'=E[7']:7, which completes this proof case. The proofs
of the other cases are all similar to this proof of the £ = succ(E")
case. O

Lemma 23. Preservation. Ve, T,e' : (et Ne s €') = e'i7)

Proof. The only rule deriving e — €’ is O-STEP, so it must be
the case that e = Ele1], ¢ = Ele2], and e1 4 e2 (for some
E, e1, and e3). Because e:7, we have Ele1]:7, so by Lemma 22
there exists a 7’ such that e;:7" and E[7']:7. Combining e1:7’
with e; g3 e2, Lemma 21 ensures that e2:7’. Finally, because
E[7']:7, we have {z:7'}}- E[z]:7, which combines with e2:7’ and
Lemma 20 to imply that FE[ez]:7. Hence, e:7 as required. O

Lemma 24. Decomposition.

y . N Fv: (e =)
e,T:|le:T V3IE e, ez : (e = Elei] Aer —pg e2)

Proof. By induction on the derivation of e:7. The proof is a stan-
dard progress proof for expressions in evaluation contexts.
O

Lemma 25. Progress.

Ve,7: (et = (3v:(e=wv) V e :(e—¢€)))
Proof. By assumption, e:7, so Lemma 24 implies that either e = v
or e = FEle1] such that e; —3 es. In the case of e = Fle1] such
that e1 —g e2, rule O-STEP ensures that e — Eles].

With Preservation and Progress, we have type safety.
Lemma 26. Type Safety.
Ve,7,¢' : (( eTAer e ) = ( €7 A-stuck(e') ))

Proof. By induction on the derivation of e—*¢’, using Progress
and Preservation (Lemmas 25 and 23) in the usual way. O

The soundness of the subtyping relation with respect to type
safety now follows from the fact that the language is indeed type
safe.

Lemma 27. Soundness.

V11,72 : If 71 <72 then there do not exist E, T, e, and e’ such that
E[r] : 7, 1, Ele] —* €, and stuck(e’).
Proof. Assume for the sake of obtaining a contradiction that 71 <7
and there exist F, 7, e, and €’ such that E[rs]:7, ey, E[e] —* €/,
and stuck(e’). Because 71 <72 and e:71, we have e:73 by rule T-
SUBSUME. Then because E[72]:7, we have {x:72 }FE|[x]:7, which
combines with e:7 and Lemma 20 to imply that Ele]:7. Given
that E[e]:7 and E[e] —"* €', Lemma 26 ensures that —stuck(e’),
which contradicts the assumption that stuck(e’). Our original as-
sumption was therefore false, so the lemma holds. O

5.8 Subtyping Preciseness

Finally, we combine the completeness and soundness results to
find that the subtyping relation defined in Figure 8 is precise with
respect to type safety.

Theorem 28. Preciseness. The subtyping relation is precise with
respect to type safety. Formally, for all T1 and To:

< -3E,1,e,¢:
=T E[m]: 7 Aermi A Ele] —* €' A stuck(e)
Proof. Immediate by Lemma 27 and Corollary 19. O

6. Summary

Although the Amber rules are commonly used to define iso-
recursive subtyping, they are incomplete with respect to type safety.
Iso-recursive types that arise naturally in object-oriented program-
ming languages and that would be safe to consider as subtypes,
cannot be derived as subtypes with the Amber rules.

By incorporating unrolling into the subtyping rules for iso-
recursive types, it’s possible to define a subtyping relation that’s
precise with respect to type safety. Proving this property requires
a definition of preciseness, which can be created by considering
evaluation contexts. Evaluation contexts enable capturing the intu-
ition that 71 <7 ought to be derivable exactly when any 7»-type
expression—in any context of a well-typed program—can be re-
placed by any 7;-type expression without introducing dynamically
stuck states. This definition of preciseness, along with the proof
layout and techniques presented in Section 5, may be useful for
proving that other languages’ subtyping relations are precise with
respect to type safety.
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A. Subtyping Algorithm Implementation

(x Constructors for language types. Type variables are represented as integers,
which are assumed to be named 0, 1, etc. *)
datatype typ = Nat | Real | Prod of typ * typ | Sum of typ x typ | Rec of int * typ
| Fun of typ * typ | Var of int;

(* An extended type is a type that, if needed, is paired with a bool indicating whether

the type is uninhabited by values x)
datatype etyp = ENat | EReal | EProd of etyp * etyp * bool | ESum of etyp * etyp * bool
| ERec of int x etyp x bool | EFun of etyp * etyp | EVar of int * bool;

(* Returns the number of variables defined in a type.

Type ids are unique, so this function returns the number of distinct ids. %)
fun numVars (Sum(tl, t2)) = numVars(tl) + numVars(t2)

| numVars (Prod(tl, t2)) = numVars(tl) + numVars(t2)

| numVars (Fun(tl, t2)) = numVars(tl) + numVars(t2)

| numVars (Rec(n, tl1)) = 1 + numVars(tl)

| numVars _ = 0;

(* Given an extended type, this function returns a bool indicating whether
the type is uninhabited x)

fun uninhabited (EProd(_,_,b)) =b
| uninhabited (ESum(_,_,b))
| uninhabited (ERec(-,_,b))
| uninhabited (EVar(_,b)) =
| uninhabited _ = false;

(¥ This function allocates an extended type and initializes any
uninhabitation flags to false x)

fun makeETyp Nat = ENat

| makeETyp Real = EReal

| makeETyp (Var(n)) = EVar(n, false)

| makeETyp (Fun(tl, t2)) = EFun(makeETyp tl, makeETyp t2)

| makeETyp (Rec(n, tl1)) = ERec(n, makeETyp tl, false)

| makeETyp (Sum(tl, t2)) = ESum(makeETyp tl, makeETyp t2, false)

|

makeETyp (Prod(tl, t2)) = EProd(makeETyp t1, makeETyp t2, false);

(x This function takes an extended type et, an array
of bools U, and an array of extended types ut.et has just been initialized ,
so its uninhabitation flags are set to false.
Uli] is true iff the type variable i is already known to be uninhabited.
ut is an unroll table; ut[i] is the unrolled extended type to which type variable i refers.
This function returns extended type et, but with its uninhabitation flags set correctly.

Recursive types are represented as just their type variables, so et should never be an ERec.

fun setUninhabited ENat _ _ = ENat

| setUninhabited EReal _ _ = EReal

| setUninhabited (EFun(tl, t2)) U ut =
EFun(setUninhabited tl1 U ut, setUninhabited t2 U ut)

| setUninhabited (ESum(tl, t2, _)) U ut = (x rule U-Sum x)
let val el = setUninhabited t1 U ut

val e2 = setUninhabited t2 U ut

in ESum(el, e2, uninhabited el andalso uninhabited e2)
end

*)

| setUninhabited (EProd(tl, t2, _)) U ut = (x rules U-Prodl and U-Prod2 x)

let val el setUninhabited t1 U ut

val e2 setUninhabited t2 U ut
in EProd(el, e2, uninhabited el orelse uninhabited e2)
end

| setUninhabited (EVar(n, _)) U ut = (x rules U-Recl and U—Rec2 x)

if Un] then (EVar(n, true)) else

(x find whether the unrolled version of et is uninhabited,
while assuming that et itself is uninhabited x)

let val el = setUninhabited (ut[n]) (U[n]:=true; U) ut

in EVar(n, uninhabited el)
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64 end

65 | setUninhabited - _ _ = raise error;

66

67 (x This function takes an extended type et and returns the extended type obtained by replacing all
68 recursive types muX.t in et with just the type variable X x)

69 fun compress (ERec(n, -, b)) = EVar(n, b)

70 | compress (EProd(tl, t2, b)) = EProd(compress tl, compress t2, b)

71 | compress (ESum(tl, t2, b)) = ESum(compress tl, compress t2, b)

72 | compress (EFun(tl, t2)) = EFun(compress tl, compress t2)

73 | compress (EVar(-, _)) = raise freeTypeVar

74 | compress t = t;

75

76 (% This function initializes an unroll table. It takes an extended type and an array
77 of extended types ea and updates the entries in ea such that ea[i] is the unrolled
78 extended type to which type variable i refers x)

79 fun initUnrollTable (ERec(tvar, tl, _)) a = (a[tvar]:=compress tl; initUnrollTable tl1 a)
80 | initUnrollTable (EFun(tl, t2)) a = (initUnrollTable tl a; initUnrollTable t2 a)

81 | initUnrollTable (EProd(tl, t2, _)) a = (initUnrollTable tl a; initUnrollTable t2 a)
82 | initUnrollTable (ESum(tl, t2, _)) a = (initUnrollTable tl a; initUnrollTable t2 a)
83 | initUnrollTable _ _ = ();

84

8 (x This is the subtyping function; it takes types tl and t2 and returns true iff

86 tl is a subtype of t2 x)

87 fun sub tl1 t2 =

88 let

89 (¥ calculate numvars )

90 val m = numVars tl;

91 val n = numVars t2;

92 (* allocate arrays for mapping recursive—type ids to uninhabitation assumptions x)
93 val ual = Array.array(m, false);

94 val ua2 = Array.array(n, false);

95 (* Allocate an array for storing subtyping assumptions.

96 When S[m][n] = (bl,b2), bl indicates whether recursive type m in tl is a subtype
97 of recursive type n in t2, and b2 indicates whether recursive type n in t2 is a subtype
98 of recursive type m in tl. x)

99 val S = Array2.array(m, n, (false, false));

100 (* allocate an unroll table for tl and t2 x)

101 val utl = Array.array (m, ENat);

102 val ut2 = Array.array(n, ENat);

103 (* convert tl and t2 into their extended versions, with uninhabitation flags properly set x)
104 val etl = makeETyp tl

105 val et2 = makeETyp t2

106 val _ = initUnrollTable etl utl;

107 val _ = initUnrollTable et2 ut2;

108 val etl = setUninhabited (compress etl) ual utl;

109 val et2 = setUninhabited (compress et2) ua2 ut2;

110

111 (* Helper subtyping function; operates on extended (rather than basic) types.

112 The swapped flag indicates whether we’re subtyping in a contravariant position,
113 in which case the m in S[m][n] refers to a type in t2, and the n to a type in tl.
114 Recursive types are represented as just their type variables, so neither etl

115 nor et2 should be an ERec. x)

116 fun subh etl et2 swapped =

117 uninhabited etl (x S—Bottom %)

118 orelse

119 (case et2 of

120 EFun(et2’, et2’’) => uninhabited et2’ (x S—BottomFun x)

121 | - => false)

122 orelse

123 case (etl, et2) of

124 (ENat, EReal) => true (x S—Base x)

125 | (ENat, ENat) => true (* S—Nat *)

126 | (EReal, EReal) => true (x S—Real x)

127 | (EFun(tl, t2), EFun(tl’, t27)) => (x S—Fun x)

128 subh t1’ t1 (not swapped) andalso subh t2 t2° swapped
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129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

| (ESum(tl, t2, _), ESum(tl’, t2°, _)) => (x S—Sum *)
subh t1 t1’ swapped andalso subh t2 t2° swapped

| (EProd(tl, t2, _), EProd(tl’, t2°, _)) => (% S—Prod x)
subh t1 t1’ swapped andalso subh t2 t2° swapped

| (EVar(m, _), EVar(n, _)) => (x S—Recl and S—Rec2 x)
if swapped then

#2(S[n][m]) orelse subh (S[n][m]:=(#1(S[n][m]), true); ut2[m]) (utl[n])

else
#1(S[m][n]) orelse subh (S[m][n]:=(true, #2(S[m][n])); utl[m]) (ut2[n])
| (ERec(-,-,-), -) => raise error
| (-, ERec(-,_,_)) => raise error
| - => false
in
subh etl et2 false
end ;

swapped

swapped
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