Programming Languages (COP 4020/CIS 6930) [Fall 2010]
Assignment II
Objectives

1. To gain experience with higher-order functions.
2. To become familiar with recursive data types in ML and how they can be used to define diML expressions.

3. To understand basic definitions related to variables in programming languages: free variables, alpha conversion, and substitution of expressions for variables.
Due Date: Sunday, October 10, 2010 (at 11:59pm).

Machine Details: Complete this assignment by yourself on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.

Assignment Description
(0) Before beginning, be sure to have read Sections 5.1, 5.3-5.6, and 6.1-6.3 of the Elements of ML Programming textbook.
(1) Then create a file called as2.sml. In that file implement a function polyEval : real list -> real list -> real that, when given two equal-length real-list arguments [x1,x2,..,xn] and [y1,y2,…,yn], computes and returns the sum, as z goes from 1 to n, of (xz)z(yz)z.

Additional constraints and assumptions:
a) polyEval may define no helper functions.
b) polyEval may have no side effects (such as use of I/O, pointers, arrays, or loops).
c) polyEval must use a built-in fold function (which must be the primary way the return value is computed; most of polyEval’s computation should be done via a single fold).
d) polyEval may use the built-in Math.pow : real * real -> real function. Math.pow(x,z) returns xz (where x and z are reals).

e) Besides invoking a fold function once and Math.pow possibly multiple times, polyEval may invoke no other library (i.e., built-in) functions.

f) polyEval may use no recursion, besides the recursion built into the fold function.

g) polyEval may assume its two list arguments (given in curried form) have the same length.

h) The first line of polyEval must be: fun polyEval xList yList =
Hints: My polyEval implementation is 5 lines of code and took less than an hour to implement and test. Sample executions of polyEval are given below.
(2) Next, consider the following datatypes defining diML expressions.

(* diML types *)

datatype typ = Bool | Int | Arrow of typ * typ; (* i.e., Arrow(argType, returnType) *)
(* diML expressions *)

datatype expr = VarExpr of string | TrueExpr | FalseExpr | IntExpr of int

 | PlusExpr of expr*expr | LessExpr of expr*expr

 | IfExpr of expr*expr*expr (*i.e.: IfExpr(test, thenBranch, elseBranch)*)

 | ApplyExpr of expr*expr (* i.e.: ApplyExpr(funExpr, argumentExpr) *)

 | FunExpr of string*string*typ*typ*expr;

 (* i.e., FunExpr(funName, paramName, paramType, returnType, bodyExpr) *)
Add these definitions to your as2.sml file, and then implement the following functions in as2.sml:

(a) fv : expr -> string list
This function returns a list of all the free variables in a diML expression.
(b) sub : expr -> string -> expr -> expr
This function takes an expression e, a string x, and another expression e’, and returns [e/x]e’, that is, the expression resulting from substituting e for x in e’. Your implementation may assume that the expressions passed to this sub function have already been alpha-converted to ensure that no variables will be captured. In other words, your sub function, which computes [e/x]e’, may assume that if e’ is a function named f with a parameter named y, then neither f nor y are free in e.
(c) uniquifyVars: expr -> expr [Note: This function is extra credit for undergraduates.]

This function takes an expression e and returns an alpha-equivalent expression e’. We could say that e and e’ are “identical up to renaming of bound variables” (where bound variables are those that are not free). The e’ returned from this function must never declare two variables (i.e., function or parameters) to have the same name; all variables declared in e’ must be uniquely named. Your uniquifyVars may assume that no function in the argument e has the same name as its parameter.
Hints: My implementations of these three functions on diML expressions are 53 lines of code total (not counting comments and whitespace). It took me about 3 hours to implement and test these functions.
You may wish to download the file at: http://www.cse.usf.edu/~ligatti/pl-10/as2/exprs.sml

This file defines a few diML expressions, which may help you begin to test your fv, sub, and uniquifyVars functions.

Sample Executions
> sml
Standard ML of New Jersey v110.67 [built: Mon Aug 11 10:54:32 2008]

- use "as2.sml";
[opening as2.sml]

[autoloading]

[library $SMLNJ-BASIS/basis.cm is stable]

[autoloading done]

val polyEval = fn : real list -> real list -> real

datatype typ = Arrow of typ * typ | Bool | Int

datatype expr

 = ApplyExpr of expr * expr

 | FalseExpr

 | FunExpr of string * string * typ * typ * expr

 | IfExpr of expr * expr * expr

 | IntExpr of int

 | LessExpr of expr * expr

 | PlusExpr of expr * expr

 | TrueExpr

 | VarExpr of string

val fv = fn : expr -> string list

val sub = fn : expr -> string -> expr -> expr

val uniquifyVars = fn : expr -> expr

val it = () : unit

- val f = polyEval [2.0, 3.0, 4.0, 5.0];
val f = fn : real list -> real

- f [1.0, 2.0, 3.0, 4.0];
val it = 161766.0 : real

- val g = polyEval [2.5, ~6.8, 22.1];
val g = fn : real list -> real

- g [~9.2, ~3.3, 1.1];
val it = 14847.182591 : real

- g [~9.2, 3.3, ~1.1];
val it = ~13886.075391 : real

- use "exprs.sml";
[opening exprs.sml]

[autoloading]

[library $smlnj/compiler/current.cm is stable]

...
[autoloading done]

val it = () : unit

val e1 = ...
...

val it = () : unit

- fv e1;
val it = [] : string list

- fv e2;
val it = [] : string list

- fv e2bad;
val it = ["z"] : string list

- sub e3 "z" e2bad;
val it =

 FunExpr

 ("f","x",Int,Arrow (Int,Int),

 FunExpr

 ("f","y",Int,Int,

 PlusExpr

 (PlusExpr (VarExpr "x",VarExpr "y"),

 ApplyExpr

 (FunExpr

 ("factorial","x",Int,Int,

 IfExpr

 (LessExpr (VarExpr "x",IntExpr 2),IntExpr 1,

 ApplyExpr

 (ApplyExpr

 (FunExpr

 ("mult","n",Int,Arrow (Int,Int),

 FunExpr

 ("multN","m",Int,Int,

 IfExpr

 (LessExpr (VarExpr "m",IntExpr 1),IntExpr 0,

 PlusExpr

 (VarExpr "n",

 ApplyExpr

 (VarExpr "multN",

 PlusExpr (VarExpr "m",IntExpr ~1)))))),

 VarExpr "x"),

 ApplyExpr

 (VarExpr "factorial",

 PlusExpr (VarExpr "x",IntExpr ~1))))),IntExpr 5))))

 : expr

- (* no tests shown for uniquifyVars, to avoid leaking ideas for solutions *)
Grading

For undergraduates, polyEval is worth 40% of the assignment grade, fv and sub are each worth 30% of the assignment grade, and uniquifyVars is worth 10% extra credit. For graduate students,
polyEval and uniquifyVars are each worth 30% of the assignment grade, and fv and sub are each worth 20% of the assignment grade.
For full credit, your implementation must:
· be commented and formatted appropriately (again please use spaces instead of tabs to indent).

· use ML features like pattern matching when appropriate.
· compile on the C4 machines with no errors or warnings.

· not use any ML features that cause side effects to occur (e.g., I/O or references/pointers).
· not use any library (i.e., built-in) functions, except that polyEval may invoke foldl or foldr once and Math.pow any number of times.
· not be significantly more complicated than is necessary.
Please note that we will test submissions on inputs not shown in the sample executions above.
Submission Notes

· Type the following pledge as an initial comment in your as2.sml file: “I pledge my Honor that I have not cheated, and will not cheat, on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· Upload and submit your as2.sml file in Blackboard.

· You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.

· For every day that your assignment is late (up to 3 days), your grade reduces 10%.
1

