Programming Languages (COP 4020/CIS 6930) [Fall 2010]

Assignment IV
Objectives

1. To gain experience programming with recursively defined data types in ML.
2. To demonstrate an understanding of diML static semantics by implementing a type checker.
3. To demonstrate an understanding of diML dynamic semantics by implementing an interpreter.
Due Date: Sunday, October 24, 2010, at 11:59pm.

Machine Details: Complete this assignment by yourself on the following CSEE network computers: c4labpc11, c4labpc12, ..., c4labpc29. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4labpc11.csee.usf.edu Login ID and Password: <your login id and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.
Assignment Description
First, create a new file named as4.sml. This file needs to contain (1) the diML datatypes (typ and expr) defined in the Assignment II handout, and (2) a correct implementation of capture-avoiding substitution (which you should already have, from your solution to Problem 2b on Assignment II).
Now that you have defined the datatypes typ and expr and the function sub, add a new function named tc to your as4.sml file. Function tc has type expr -> typ option, which means that tc takes a diML expression e and returns an option o. If e is well typed with a diML type t then o should be SOME(t); on the other hand, if e is ill typed then o should be NONE.
Next define an exception in as4.sml called stuck (by adding the code “exception stuck;”). Please read Section 5.2 of the Elements of ML Programming textbook for details on using exceptions in ML.

Finally, add a new function eval: expr -> expr to your as4.sml file. Function eval takes a diML expression e and evaluates e for as many steps as possible. If evaluation of e converges to a value v, then eval(e) returns v; if e diverges then so does eval(e). Function eval must raise exception stuck at any point that evaluation gets “stuck” without a value being produced (but note that because diML is type safe, only ill-typed expressions can get stuck before becoming values).
Throughout this assignment, you may assume that all variable names in expressions being type checked and evaluated are unique, so you never have to alpha-convert expressions.

Hints: My tc and eval functions are 61 lines of code in total (not counting comments and whitespace). It took me about 2 hours to implement and test these functions.

The file at http://www.cse.usf.edu/~ligatti/pl-10/as4/exprs4.sml defines a few diML expressions, which may help you test your tc and eval functions.

Sample Executions
> sml
Standard ML of New Jersey v110.67 [built: Mon Aug 11 10:54:32 2008]

- use "as4.sml";

[opening as4.sml]

datatype typ = Arrow of typ * typ | Bool | Int

datatype expr

 = ApplyExpr of expr * expr

 | FalseExpr

 | FunExpr of string * string * typ * typ * expr

 | IfExpr of expr * expr * expr

 | IntExpr of int

 | LessExpr of expr * expr

 | PlusExpr of expr * expr

 | TrueExpr

 | VarExpr of string

val sub = fn : expr -> string -> expr -> expr

val tc = fn : expr -> typ option

exception stuck

val eval = fn : expr -> expr

val it = () : unit

- use "exprs4.sml";
...
- tc e1;
val it = SOME Bool : typ option

- tc e2;
val it = SOME (Arrow (Int,Arrow (Int,Arrow (Int,Int)))) : typ option

- tc e2bad;
val it = NONE : typ option

- tc e3;
val it = SOME Int : typ option

- eval e1;
[infinite loop here, escaped by pressing Control-c]
Interrupt

- eval e2;
val it =

 FunExpr

 ("f","x",Int,Arrow (Int,Arrow (Int,Int)),

 FunExpr

 ("f2","y",Int,Arrow (Int,Int),

 FunExpr

 ("f3","z",Int,Int,

 PlusExpr (PlusExpr (VarExpr "x",VarExpr "y"),VarExpr "z")))) : expr

- eval e3;

val it = IntExpr 120 : expr
Grading

For full credit, your implementation must:

· be commented and formatted appropriately.
· use ML features like pattern matching when appropriate.

· compile on the C4 machines with no errors or warnings.

· not use any ML features that cause side effects to occur (e.g., I/O or references/pointers).

· not be significantly more complicated than is necessary.

Please note that we will test submissions on inputs not shown in the sample executions above.

Submission Notes

· Type the following pledge as an initial comment in your as4.sml file: “I pledge my Honor that I have not cheated, and will not cheat, on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· Upload and submit your as4.sml file in Blackboard.

· You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.

· For every day that your assignment is late (up to 3 days), your grade reduces 10%.
1

