Programming Languages (COP 4020/CIS 6930) [Fall 2012]
Assignment IV
Objectives

1. To become familiar with recursive data types in ML.
2. To understand basic definitions related to variables in programming languages: free variables, alpha conversion, and substitution of expressions for variables.
Due Date: Sunday, October 14, 2012 (at 11:59pm).

Machine Details: Complete this assignment by yourself on the following CSEE network computers: c4lab01, c4lab02, ..., c4lab20. These machines are physically located in the Center 4 lab (ENB 220). Do not use any server machines like grad, babbage, sunblast, etc. You can connect to the C4 machines from home using SSH. (Example: Host name: c4lab01.csee.usf.edu Login ID and Password: <your NetID username and password>) You are responsible for ensuring that your programs compile and execute properly on these machines.

Assignment Description
Let’s consider a new language having only two kinds of types, integers and functions. The expressions in this language are integer values, successor and predecessor operations, function values (in which the function and/or parameter name may be anonymous), function applications, variables, and branch-if-equal expressions of the form beq(e1,e2) to e3 else e4 (meaning evaluate integer-type expressions e1 and e2; if they evaluate to the same integer then evaluate e3, and if they evaluate to unequal integers then evaluate e4). Let’s call this new language STERLING (Simply Typed, Equality-Recognizing, Likable, Integer-Nutritional Gibberish).

First, download the file at http://www.cse.usf.edu/~ligatti/pl-12/as4/sterling.sml, which defines ML datatypes for STERLING types and expressions.

Next, in the same directory as your sterling.sml file, begin a new file called as4.sml with the command use "sterling.sml";. Then implement the following values in as4.sml.
(1) fv : expr -> string list
This function returns a list of all the free variables in the given STERLING expression. The returned list should not contain duplicates.
(2) sub : expr -> string -> expr -> expr
This function takes an expression e, a string x, and another expression e’, and returns [e/x]e’, that is, the expression resulting from substituting e for free x in e’. Your implementation may assume that if e’ is a function named f with a parameter named y, then neither f nor y are free in e.
(3) alphaEquiv : expr -> expr -> bool [This function is 5% extra credit for undergrads.]

This function takes two expressions e and e’ and returns true iff e is alpha-equivalent to e’. Note that e and e’ may contain free variables. You may assume that no function f in the inputs to alphaEquiv has a parameter also named f.
(4) plus : expr [This value is 5% extra credit for all students.]

This part requires programming in STERLING. plus is a STERLING function that takes two Curried integer parameters i and j and returns i+j.
Hints: My fv, sub, and alphaEquiv functions comprise 66 lines of code (not counting comments and whitespace) and took about 2 hours to implement and test.

The file at http://www.cse.usf.edu/~ligatti/pl-12/as4/exprs.sml defines a few STERLING expressions, which may help with testing.
Sample Executions
- use "as4.sml";
[opening as4.sml]

[opening sterling.sml]

...

val it = () : unit

- use "exprs.sml";
[opening exprs.sml]

...

val it = () : unit

- fv e;

val it = [] : string list

- fv eBad;

val it = ["x","y"] : string list

- val e3 = sub (IntExpr(5)) "x" (sub (IntExpr(7)) "y" eBad) (* i.e., [5/x,7/y]eBad *);
val e3 =

 ApplyExpr

 (FunExpr (SOME "f",NONE,Int,Int,ApplyExpr (VarExpr "f",IntExpr 5)),

 ApplyExpr

 (FunExpr

 (NONE,SOME "y",Arrow (Int,Int),Int,

 BeqExpr

 (ApplyExpr (IntExpr 5,IntExpr 0),IntExpr 0,IntExpr 1,IntExpr 0)),

 FunExpr (NONE,SOME "x",Int,Int,SuccExpr (IntExpr 7)))) : expr

- fv e3;

val it = [] : string list
- e = (sub (IntExpr(987)) "x" e);
val it = true : bool
- alphaEquiv e e';

val it = true : bool

- alphaEquiv e eBad;

val it = false : bool
- alphaEquiv e2 e2';

val it = false : bool

Grading

For full credit, your implementation must:
· Be commented and formatted properly (again please use spaces instead of tabs to indent).

· Use ML (and STERLING) constructs like anonymous variables when appropriate.
· Compile and execute on the C4 machines with no errors or warnings.

· Never cause side effects (such as I/O or pointer/array operations) to occur.
· Not use any built-in/library functions, besides Int.toString, foldr, foldl, and map.
· Not be significantly more complicated than necessary.
As always, we will test submissions on inputs not shown in the sample executions above.
Submission Notes

· Type the following pledge as an initial comment in your as4.sml file: “I pledge my Honor that I have not cheated, and will not cheat, on this assignment.” Type your name after the pledge. Not including this pledge will lower your grade 50%.

· Upload and submit your as4.sml file in Blackboard.

· You may submit your assignment in Blackboard as many times as you like; we will grade your latest submission.

· For every day that your assignment is late (up to 3 days), your grade reduces 10%.
1

