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Runtime Mechanisms

Also known as runtime/security/program
monitors

Ubiquitous

- Operating systems (e.g., file access control)
- Virtual machines (e.g., stack inspection)

- Web browsers (e.g., javascript sandboxing)
- Intrusion-detection systems

- Firewalls

- Auditing tools

- Spam filters

» Etc.



Research Questions

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

- Which policies should we never even try to
enforce at runtime?

All policies

Runtime-enforceable policies




Research Questions

How do monitors operate to enforce
policies?
- Which policies get enforced when we combine
runtime mechanisms?

mechanism M enforces policy P
M A M’ enforces? PAP’?

mechanism M’ enforces policy P’

What if P requires the first action executed to be fopen({),
but P’ requires the first action executed to be fopen(f’)?



Research Questions

How do monitors operate to enforce
policies?
- How efficiently does a mechanism enforce a
policy?
- What are the lower bounds on resources required
to enforce policies of interest?

What does it mean for a mechanism to be efficient?
* Low space usage

(SHA of Fong, BHA of Talhi, Tawbi, and Debbabi)

* Low time usage
N



Research Questions, Summary

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

- Which policies get enforced when we combine
runtime mechanisms?

- How efficiently does a mechanism enforce a
policy?

- What are the lower bounds on resources required
to enforce policies of interest?



This Talk

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?



Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,
policies, and enforcement
Analysis of enforceable properties
Summary and future work



Related Work: Truncation
Automata

Most analyses of monitors are based on
truncation automata (Schneider, 2000)

. executing
: action a
action a —>» system

— it
target monitor \ (OS/VM/CPU)

Halt target!

Operation: halt software being monitored
(target) immediately before any
policy violation

Limitation: real monitors normally respond to
violations with remedial actions



Related Work: Edit Automata

Powerful model of runtime enforcement

a ~ | executing
action a : =—> system
—> t
target L \ etc. (0S/VM/CPU)

® (quietly suppress a)

Operation: actively transform target actions
to ensure they satisfy desired
policy
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Related Work: Edit Automata

Limitation:
- All actions are assumed totally asynchronous

- Monitor can always get next action after suppressing
previous actions

- Target can’t care about results of executed actions;
there are no results in the model

- E.g., the echo program “x=input(); output(x);”
1s outside the edit-automata model

1



This Work: Mandatory Results Automata (IVIRAS)
(or Synchronous Edit Automata (SEAS))

Conservatively assume all actions are synchronous

actionf' \/alid actions
(Trusted)

Untrusted Security Executing
Application Monitor System

valid resul& 4/results

Operation: actively transform target actions and
results of those actions to ensure they
satisfy desired policy
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This Work: Mandatory Results Automata (IVIRAS)
(or Synchronous Edit Automata (SEAS))

MRAs are stronger than truncation automata

- Can accept actions and halt targets but can also
transform actions and results

MRAs are weaker than edit automata
- Asynchronicity lets edit automata “see” arbitrarily
far into the future

- Can postpone deciding how to edit an action until later
- Arbitrary postponement is normally unrealistic
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Other Neat Features of the MRA
Model

MRASs can enforce result-sanitization
policies
(trusted) mechanism sanitizes results before
they get input to (untrusted) target application

(1) Is /’ \52) Is
(Trusted)

Untr.ustgd Security Executing
Application Monitor System

(4) {foo.txk / (3) {foo.txt, .hidden}

Many privacy, information-flow, and access-
control policies are result-sanitization

14



Other Neat Features of the MRA
Model

Model provides simpler and more

expressive definitions of policies and

enforcement than previous work
(more on this later)
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Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,
policies, and enforcement
Analysis of enforceable properties
Summary and future work
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Definition of MRA
traces/executions

Execution: finite or countably infinite sequence
of MRA-relevant events (1.e., actions and results)

4 possibilities: a /’ \
MRA jnputs (Trusted)

action a from Untrusted | ggcyrity | Executing
Application Monitor System

the target \

=> add a, to the current trace

L



Definition of MRA
traces/executions

Execution: finite or countably infinite sequence
of MRA-relevant events (1.e., actions and results)

4 possibilities: /’ \a
MRA OlJtletS (Trusted)

action a to Untrusted | |ggcyrity] | Executing
Application Monitor System

be executed \

=> add g, to the current trace
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Definition of MRA
traces/executions

Execution: finite or countably infinite sequence
of MRA-relevant events (1.e., actions and results)

4 possibilities: /’ \
MRA jnputs (Trusted)

result r from Untrusted | ggcyrity | Executing
Application Monitor System

the system \ /r

=> add r; to the current trace
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Definition of MRA
traces/executions

Execution: finite or countably infinite sequence
of MRA-relevant events (1.e., actions and results)

4 possibilities: /’ \
MRA OlJtletS (Trusted)

result r to Untrusted | |ggcyrity] | Executing
Application Monitor System

the target
N

=> add r, to the current trace
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Bl Pl EnC GG

Is;; Is, ; {foo.txt, .hidden}, ; {foo.txt}_

Is /‘ \
(Trusted)

Untrusted Security Executing
Application Monitor System

e
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Bl Pl EnC GG

Is; ; Is, ; {foo.txt, .hidden}, ; {foo.txt}

(o Y
(Trusted)

Untrusted Security Executing
Application Monitor System

e
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Bl Pl EnC GG

Is; ; Is, ; {f{oo.txt, .hidden}, ; {foo.txt}

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

4/ {foo.txt, .hidden}
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Bl Pl EnC GG

Is; ; Is, ; {foo.txt, .hidden}, ; {foo.txt}

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

{foo.txt}\ 4/
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Another Example Execution

shutdown, ; popupConfirm_; OK, ; shutdown_

shutdown /’ \
(Trusted)

Untrusted Security Executing
Application Monitor System

.
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Another Example Execution

shutdown, ; popupConfirm_; OK. ; shutdown_

/’ N)opupConfirm
(Trusted)

Untrusted Security Executing
Application Monitor System

.
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Another Example Execution

shutdown, ; popupConfirm_; OK. ; shutdown_

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

4/ 9]¢
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Another Example Execution

shutdown, ; popupConfirm_; OK;; shutdown_

/’ \shutdown
(Trusted)

Untrusted Security Executing
Application Monitor System

.
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Definition of MRAs

An MRA M is a tuple (E, Q, q,, 0)

- E = event set over which M operates
- Q = M’s finite or countably infinite state set
* g, = M’s 1nitial state
- 0 = M'’s transition function
¢ O xE = O xE

d returns the next MRA state and an event to output

e

{given a current MRA state and an event just input,

29



Example MRA

Hidden-file filtering MRA M = (E, Q, g, )
+E ={ls, .}

- Q={T, F} (are we executing an ls?)

g =1L

(F,e) if g=F and e<>Is
- d(q,e) =1 (T,e) if g=F and e=ls

(F, filter(e)) 1ig=T

30



Another Example MRA

Shutdown-confirming MRA M=(E, Q, q,, 0)

- E = {shutdown, popupConfirm, OK, cancel, null, ...}
- O={T, F} (are we confirming a shutdown?)

T d, = F ]

(F,e) if g=F and e<>shutdown
d(g,e) =_] (T, popupConfirm ) if g=F and e=shutdown
(F,null) if g=T and e=cancel
_(F,shutdown) if g=T and e=0OK

31



Observation

MRA operations match the possible behaviors
we’ve observed in many implemented
monitoring systems

- Polymer (with Bauer and Walker)

- PSLang (Erlingsson and Schneider)

- Aspect] (Kiczales et al.)

- Etc.

For every input action and input result,
monitor may output an action or a result

Previous models couldn’t transform results =>

couldn’t model the last 2 realistic examples
32



MRA Operational Semantics

MRA operations can be formalized with six
small rules dictating how traces get built

nextr = a nexrts =r

(Input-Action)
gl == g q —=|q

P r

(Input-Result)

5(q.a) = (¢',a") 5(q. J.a)
———— (Output-Act-for-Act) M (Output-Act-for-Res)

Qo /
) - g
r

o(q,r) = (q',")

5(q,a) = (q',7) ) Outout-Res-for- Res
AR S s (Output-Res-for-Res)

, T
— (Output-Res-for-Act)
q

r !

Fig. 2. Single-step semantics of mandatory results automata.

Please see conference proceedings for details
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Definition of Policies

(Technical note: here we’re really only
considering special kinds of policies

called properties)

Policies are predicates on executions

P(x) iff execution x satisfies policy P

34



Example: Definition of the
Filter-hidden-files Policy

P(‘) [it’s OK for the target to do nothing]

[monitor may not just stop upon
—P(ls,) . .
Iinputting ls; must then output Is]

_ . . [monitor must output only ls after
P(lsi ’ eo) iff e=ls inputting ls; it’s then OK for the system to
never return a listing]
V directory listings L: . | .
_ Bfe ‘1s ‘I [monitor may not stop upon inputting L;
( Si 5 1S5 i) must return the filtered list to the target]

P(s;;1s,; L; ; e,) 1if e=filter(Ly)
[monitor must filter listings]

35



How Policies in MRA Model Differ
from Those of Previous Models

Policies here can reason about results
- Enables result-sanitization policies
- E.qg., filter-hidden-file policy

Policies here can reason about input events

- Enables policies to dictate exactly how mechanisms
can/must transform events

- E.g., confirm-shutdown policy

=> Powerful, but practical, expressiveness
36



Definitions of Enforcement

Sound enforcement (no false -s)

M soundly enforces P iff
V executions x: (M produces x = P(X))

Complete enforcement (no false +s)
M completely enforces P iff

V executions x: (P(x) > M produces x)

Precise enforcement (no false +s or -s)

M precisely enforces policy P iff
M soundly and completely enforces P

37



How Enforcement in MMRA Model
Ditters from That of Previous Models

Simpler: no need for extra “transparency”
constraints that can be rolled into
policy definitions (now that policies
can reason about input events)

More expressive: can reason about complete
and precise enforcement too

38



Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,
policies, and enforcement
Analysis of enforceable properties
Summary and future work
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Sound Enforcement of Properties
with MRAs

Theorem 1. Property P on a system with event set & can be soundly
enforced by some MRA M iff there exists recursively enumerable predicate
R over E* such that all the following are true.

R(x;e;;€l)

17 €p

2. Y(x;e;) e E*: (=R(z) V P(a:ie;) V 3¢ € E:
(w5 1) € ( (=) (w5 1) < (/\ P(:r;e.geé)))

2 Y c Ew - (—lp(l) = El(;’l_?f; 6..2:) j €Z . —IR(;'E,))

10)



Complete Enforcement of
Properties with MRAs

Theorem 2. Property P on a system with event set £ can be com-
pletely enforced by some MRA M iff:

Ve! € E : dead(x;e;;el)
V =P(x5e;) A 31€ € B alive(x;e;;el)

V(r;e;) € B : (

41



Precise Entorcement ot
Properties with MRAs

Theorem 3. Property P on a system with event set £ can be precisely
enforced by some MRA M iff all the following are true.

1. P(")

~P ()

). W(w:e;) € B v P(z e;) N Ve € E:dead(x;e;;el)
oo |V 2P(xe;) A J1ef € E: P(ase;; )

A el € E :alive(x;e;; el
3. Yor e E¥ : (—uP(l) — J(a'ie;) 2w —lp(:z:’))
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Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,
policies, and enforcement
Analysis of enforceable properties
Summary and future work
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Summary

Started building a theory of runtime
enforcement based on MRAs, which:

- model the realistic ability of runtime
mechanisms to transform synchronous actions
and their results.

- can enforce result-sanitization policies and
policies based on input events.

 provide simpler and more expressive definitions
of policies and enforcement than previous
models.
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Future Work

Something between edit automata

(which assume asynchronous actions)
and MRAs

(which assume synchronous actions)?

- How would the monitor know when the target is
waiting for a result, and for which action?
- Static analysis of target application?
- Could get complicated

45



Additional Future Work

Which policies get enforced when we combine
runtime mechanisms?

How efficiently does a mechanism enforce a
policy?

What are the lower bounds on resources required
to enforce policies of interest?

Having a realistic operational model of runtime
enforcement seems like a good first step to address
these research questions

46
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