A Theory of Runtime
Enforcement,
with Results

Jay Ligatti and Srikar Reddy
University of South Florida

Runtime Mechanisms

Also known as runtime/security/program
monitors

Ubiquitous

- Operating systems (e.g., file access control)
- Virtual machines (e.g., stack inspection)

- Web browsers (e.g., javascript sandboxing)
- Intrusion-detection systems

- Firewalls

- Auditing tools

- Spam filters

» Etc.

Research Questions

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

- Which policies should we never even try to
enforce at runtime?

All policies

Runtime-enforceable policies

Research Questions

How do monitors operate to enforce
policies?
- Which policies get enforced when we combine
runtime mechanisms?

mechanism M enforces policy P
M A M’ enforces? PAP’?

mechanism M’ enforces policy P’

What if P requires the first action executed to be fopen({),
but P’ requires the first action executed to be fopen(f’)?

Research Questions

How do monitors operate to enforce
policies?
- How efficiently does a mechanism enforce a
policy?
- What are the lower bounds on resources required
to enforce policies of interest?

What does it mean for a mechanism to be efficient?
* Low space usage

(SHA of Fong, BHA of Talhi, Tawbi, and Debbabi)

* Low time usage
N

Research Questions, Summary

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

- Which policies get enforced when we combine
runtime mechanisms?

- How efficiently does a mechanism enforce a
policy?

- What are the lower bounds on resources required
to enforce policies of interest?

This Talk

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,
policies, and enforcement
Analysis of enforceable properties
Summary and future work

Related Work: Truncation
Automata

Most analyses of monitors are based on
truncation automata (Schneider, 2000)

. executing
: action a
action a —>» system

— it
target monitor \ (OS/VM/CPU)

Halt target!

Operation: halt software being monitored
(target) immediately before any
policy violation

Limitation: real monitors normally respond to
violations with remedial actions

Related Work: Edit Automata

Powerful model of runtime enforcement

a ~ | executing
action a : =—> system
—> t
target L \ etc. (0S/VM/CPU)

® (quietly suppress a)

Operation: actively transform target actions
to ensure they satisfy desired
policy

10

Related Work: Edit Automata

Limitation:
- All actions are assumed totally asynchronous

- Monitor can always get next action after suppressing
previous actions

- Target can’t care about results of executed actions;
there are no results in the model

- E.g., the echo program “x=input(); output(x);”
1s outside the edit-automata model

1

This Work: Mandatory Results Automata (IVIRAS)
(or Synchronous Edit Automata (SEAS))

Conservatively assume all actions are synchronous

actionf' \/alid actions
(Trusted)

Untrusted Security Executing
Application Monitor System

valid resul& 4/results

Operation: actively transform target actions and
results of those actions to ensure they
satisfy desired policy

12

This Work: Mandatory Results Automata (IVIRAS)
(or Synchronous Edit Automata (SEAS))

MRAs are stronger than truncation automata

- Can accept actions and halt targets but can also
transform actions and results

MRAs are weaker than edit automata
- Asynchronicity lets edit automata “see” arbitrarily
far into the future

- Can postpone deciding how to edit an action until later
- Arbitrary postponement is normally unrealistic

13

Other Neat Features of the MRA
Model

MRASs can enforce result-sanitization
policies
(trusted) mechanism sanitizes results before
they get input to (untrusted) target application

(1) Is /’ \52) Is
(Trusted)

Untr.ustgd Security Executing
Application Monitor System

(4) {foo.txk / (3) {foo.txt, .hidden}

Many privacy, information-flow, and access-
control policies are result-sanitization

14

Other Neat Features of the MRA
Model

Model provides simpler and more

expressive definitions of policies and

enforcement than previous work
(more on this later)

15

Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,
policies, and enforcement
Analysis of enforceable properties
Summary and future work

16

Definition of MRA
traces/executions

Execution: finite or countably infinite sequence
of MRA-relevant events (1.e., actions and results)

4 possibilities: a /’ \
MRA jnputs (Trusted)

action a from Untrusted | ggcyrity | Executing
Application Monitor System

the target \

=> add a, to the current trace

L

Definition of MRA
traces/executions

Execution: finite or countably infinite sequence
of MRA-relevant events (1.e., actions and results)

4 possibilities: /’ \a
MRA OlJtletS (Trusted)

action a to Untrusted | |ggcyrity] | Executing
Application Monitor System

be executed \

=> add g, to the current trace

18

Definition of MRA
traces/executions

Execution: finite or countably infinite sequence
of MRA-relevant events (1.e., actions and results)

4 possibilities: /’ \
MRA jnputs (Trusted)

result r from Untrusted | ggcyrity | Executing
Application Monitor System

the system \ /r

=> add r; to the current trace

19

Definition of MRA
traces/executions

Execution: finite or countably infinite sequence
of MRA-relevant events (1.e., actions and results)

4 possibilities: /’ \
MRA OlJtletS (Trusted)

result r to Untrusted | |ggcyrity] | Executing
Application Monitor System

the target
N

=> add r, to the current trace

20

Bl Pl EnC GG

Is;; Is, ; {foo.txt, .hidden}, ; {foo.txt}_

Is /‘ \
(Trusted)

Untrusted Security Executing
Application Monitor System

e

21

Bl Pl EnC GG

Is; ; Is, ; {foo.txt, .hidden}, ; {foo.txt}

(o Y
(Trusted)

Untrusted Security Executing
Application Monitor System

e

22

Bl Pl EnC GG

Is; ; Is, ; {f{oo.txt, .hidden}, ; {foo.txt}

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

4/ {foo.txt, .hidden}

23

Bl Pl EnC GG

Is; ; Is, ; {foo.txt, .hidden}, ; {foo.txt}

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

{foo.txt}\ 4/

24

Another Example Execution

shutdown, ; popupConfirm_; OK, ; shutdown_

shutdown /’ \
(Trusted)

Untrusted Security Executing
Application Monitor System

.

25

Another Example Execution

shutdown, ; popupConfirm_; OK. ; shutdown_

/’ N)opupConfirm
(Trusted)

Untrusted Security Executing
Application Monitor System

.

26

Another Example Execution

shutdown, ; popupConfirm_; OK. ; shutdown_

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

4/ 9]¢

27

Another Example Execution

shutdown, ; popupConfirm_; OK;; shutdown_

/’ \shutdown
(Trusted)

Untrusted Security Executing
Application Monitor System

.

28

Definition of MRAs

An MRA M is a tuple (E, Q, q,, 0)

- E = event set over which M operates
- Q = M’s finite or countably infinite state set
* g, = M’s 1nitial state
- 0 = M'’s transition function
¢ O xE = O xE

d returns the next MRA state and an event to output

e

{given a current MRA state and an event just input,

29

Example MRA

Hidden-file filtering MRA M = (E, Q, g,)
+E ={ls, .}

- Q={T, F} (are we executing an ls?)

g =1L

(F,e) if g=F and e<>Is
- d(q,e) =1 (T,e) if g=F and e=ls

(F, filter(e)) 1ig=T

30

Another Example MRA

Shutdown-confirming MRA M=(E, Q, q,, 0)

- E = {shutdown, popupConfirm, OK, cancel, null, ...}
- O={T, F} (are we confirming a shutdown?)

T d, = F]

(F,e) if g=F and e<>shutdown
d(g,e) =_] (T, popupConfirm) if g=F and e=shutdown
(F,null) if g=T and e=cancel
_(F,shutdown) if g=T and e=0OK

31

Observation

MRA operations match the possible behaviors
we’ve observed in many implemented
monitoring systems

- Polymer (with Bauer and Walker)

- PSLang (Erlingsson and Schneider)

- Aspect] (Kiczales et al.)

- Etc.

For every input action and input result,
monitor may output an action or a result

Previous models couldn’t transform results =>

couldn’t model the last 2 realistic examples
32

MRA Operational Semantics

MRA operations can be formalized with six
small rules dictating how traces get built

nextr = a nexrts =r

(Input-Action)
gl == g q —=|q

P r

(Input-Result)

5(q.a) = (¢',a") 5(q. J.a)
———— (Output-Act-for-Act) M (Output-Act-for-Res)

Qo /
) - g
r

o(q,r) = (q',")

5(q,a) = (q',7)) Outout-Res-for- Res
AR S s (Output-Res-for-Res)

, T
— (Output-Res-for-Act)
q

r !

Fig. 2. Single-step semantics of mandatory results automata.

Please see conference proceedings for details

33

Definition of Policies

(Technical note: here we’re really only
considering special kinds of policies

called properties)

Policies are predicates on executions

P(x) iff execution x satisfies policy P

34

Example: Definition of the
Filter-hidden-files Policy

P(‘) [it’s OK for the target to do nothing]

[monitor may not just stop upon
—P(ls,) . .
Iinputting ls; must then output Is]

_ . . [monitor must output only ls after
P(lsi ’ eo) iff e=ls inputting ls; it’s then OK for the system to
never return a listing]
V directory listings L: . | .
_ Bfe ‘1s ‘I [monitor may not stop upon inputting L;
(Si 5 1S5 i) must return the filtered list to the target]

P(s;;1s,; L; ; e,) 1if e=filter(Ly)
[monitor must filter listings]

35

How Policies in MRA Model Differ
from Those of Previous Models

Policies here can reason about results
- Enables result-sanitization policies
- E.qg., filter-hidden-file policy

Policies here can reason about input events

- Enables policies to dictate exactly how mechanisms
can/must transform events

- E.g., confirm-shutdown policy

=> Powerful, but practical, expressiveness
36

Definitions of Enforcement

Sound enforcement (no false -s)

M soundly enforces P iff
V executions x: (M produces x = P(X))

Complete enforcement (no false +s)
M completely enforces P iff

V executions x: (P(x) > M produces x)

Precise enforcement (no false +s or -s)

M precisely enforces policy P iff
M soundly and completely enforces P

37

How Enforcement in MMRA Model
Ditters from That of Previous Models

Simpler: no need for extra “transparency”
constraints that can be rolled into
policy definitions (now that policies
can reason about input events)

More expressive: can reason about complete
and precise enforcement too

38

Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,
policies, and enforcement
Analysis of enforceable properties
Summary and future work

39

Sound Enforcement of Properties
with MRAs

Theorem 1. Property P on a system with event set & can be soundly
enforced by some MRA M iff there exists recursively enumerable predicate
R over E* such that all the following are true.

R(x;e;;€l)

17 €p

2. Y(x;e;) e E*: (=R(z) V P(a:ie;) V 3¢ € E:
(w5 1) € ((=) (w5 1) < (/\ P(:r;e.geé)))

2 Y c Ew - (—lp(l) = El(;’l_?f; 6..2:) j €Z . —IR(;'E,))

10)

Complete Enforcement of
Properties with MRAs

Theorem 2. Property P on a system with event set £ can be com-
pletely enforced by some MRA M iff:

Ve! € E : dead(x;e;;el)
V =P(x5e;) A 31€ € B alive(x;e;;el)

V(r;e;) € B : (

41

Precise Entorcement ot
Properties with MRAs

Theorem 3. Property P on a system with event set £ can be precisely
enforced by some MRA M iff all the following are true.

1. P(")

~P ()

). W(w:e;) € B v P(z e;) N Ve € E:dead(x;e;;el)
oo |V 2P(xe;) A J1ef € E: P(ase;;)

A el € E :alive(x;e;; el
3. Yor e E¥ : (—uP(l) — J(a'ie;) 2w —lp(:z:’))

42

Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,
policies, and enforcement
Analysis of enforceable properties
Summary and future work

43

Summary

Started building a theory of runtime
enforcement based on MRAs, which:

- model the realistic ability of runtime
mechanisms to transform synchronous actions
and their results.

- can enforce result-sanitization policies and
policies based on input events.

 provide simpler and more expressive definitions
of policies and enforcement than previous
models.

44

Future Work

Something between edit automata

(which assume asynchronous actions)
and MRAs

(which assume synchronous actions)?

- How would the monitor know when the target is
waiting for a result, and for which action?
- Static analysis of target application?
- Could get complicated

45

Additional Future Work

Which policies get enforced when we combine
runtime mechanisms?

How efficiently does a mechanism enforce a
policy?

What are the lower bounds on resources required
to enforce policies of interest?

Having a realistic operational model of runtime
enforcement seems like a good first step to address
these research questions

46

S
s e s
i EEREE s
s o SR
s Rt
s 2
s RS
s s
s s
i EERE R
s PR
s
s e
e CERres
i B
s R
s R
et . s
s B
s s
s s
i s
s B
s s
s i
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s L] R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
s 2
s R
s s
s e
i et
s s
s Rt
s s
e R
i s
s 2
s Rt
iy 2
e R
R, s
R e
e et
e s
e Rt
R s
e R
i s
R 2
EEEREEE Rt
e 2
R R
R s
s e
R et
Ry s
Rt
R s
R e R
R s
D £
o
(gl dddaddd dadddddddddddddddddddddd dadddddddddddddddddddddd ddddddddddddddddddd ddddd ddddd dd vl dd vl ddd i ddddd Dl v Sl v del e

