
Jay Ligatti and Srikar Reddy

University of South Florida

Also known as runtime/security/program
monitors

Ubiquitous
• Operating systems (e.g., file access control)
• Virtual machines (e.g., stack inspection)
• Web browsers (e.g., javascript sandboxing)
• Intrusion-detection systems
• Firewalls
• Auditing tools
• Spam filters
• Etc.

2

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies should we never even try to

enforce at runtime?

All policies

Runtime-enforceable policies

3

How do monitors operate to enforce

policies?
• Which policies get enforced when we combine

runtime mechanisms?

mechanism M enforces policy P

mechanism M’ enforces policy P’
M ^ M’ enforces? P ^ P’ ?

What if P requires the first action executed to be fopen(f),

but P’ requires the first action executed to be fopen(f’)?

4

How do monitors operate to enforce

policies?
• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

What does it mean for a mechanism to be efficient?

• Low space usage

 (SHA of Fong, BHA of Talhi, Tawbi, and Debbabi)

• Low time usage

?

5

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies get enforced when we combine

runtime mechanisms?

• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

6

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies get enforced when we combine

runtime mechanisms?

• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

7

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,

policies, and enforcement

Analysis of enforceable properties

Summary and future work

8

Most analyses of monitors are based on
truncation automata (Schneider, 2000)

Operation: halt software being monitored
 (target) immediately before any
 policy violation

Limitation: real monitors normally respond to
 violations with remedial actions

target monitor

executing

system

(OS/VM/CPU)

action a
action a

Halt target!

9

Powerful model of runtime enforcement

Operation: actively transform target actions

 to ensure they satisfy desired

 policy

target monitor

executing

system

(OS/VM/CPU)

action a

a

a'

etc.

(quietly suppress a)

10

Limitation:

• All actions are assumed totally asynchronous

 Monitor can always get next action after suppressing

previous actions

 Target can’t care about results of executed actions;

there are no results in the model

• E.g., the echo program “x=input(); output(x);”

is outside the edit-automata model

11

 Conservatively assume all actions are synchronous

 Operation: actively transform target actions and

 results of those actions to ensure they

 satisfy desired policy

Untrusted

Application

 valid results

Executing

System

(Trusted)

Security

Monitor

actions valid actions

 results

12

MRAs are stronger than truncation automata

• Can accept actions and halt targets but can also

transform actions and results

MRAs are weaker than edit automata
• Asynchronicity lets edit automata “see” arbitrarily

far into the future

 Can postpone deciding how to edit an action until later

 Arbitrary postponement is normally unrealistic

13

1. MRAs can enforce result-sanitization

policies
• (trusted) mechanism sanitizes results before

they get input to (untrusted) target application

• Many privacy, information-flow, and access-

control policies are result-sanitization

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

(1) ls

 (3) {foo.txt, .hidden}

(2) ls

(4) {foo.txt}

14

2. Model provides simpler and more

expressive definitions of policies and

enforcement than previous work
• (more on this later)

15

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,

policies, and enforcement

Analysis of enforceable properties

Summary and future work

16

 Execution: finite or countably infinite sequence

of MRA-relevant events (i.e., actions and results)

 4 possibilities:

(1) MRA inputs

 action a from

 the target

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

a

=> add ai to the current trace

17

 Execution: finite or countably infinite sequence

of MRA-relevant events (i.e., actions and results)

 4 possibilities:

(2) MRA outputs

 action a to

 be executed

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

a

=> add ao to the current trace

18

 Execution: finite or countably infinite sequence

of MRA-relevant events (i.e., actions and results)

 4 possibilities:

(3) MRA inputs

 result r from

 the system

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

r

=> add ri to the current trace

19

 Execution: finite or countably infinite sequence

of MRA-relevant events (i.e., actions and results)

 4 possibilities:

(4) MRA outputs

 result r to

 the target

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

=> add ro to the current trace

r

20

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

ls

21

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

ls

22

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

{foo.txt, .hidden}

23

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

{foo.txt}

24

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

shutdown

25

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

popupConfirm

26

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

OK

27

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

shutdown

28

An MRA M is a tuple (E, Q, q0, ∂)

• E = event set over which M operates

• Q = M’s finite or countably infinite state set

• q0 = M’s initial state

• ∂ = M’s transition function

 ∂ : Q x E Q x E

 given a current MRA state and an event just input,

 ∂ returns the next MRA state and an event to output

29

Hidden-file filtering MRA M = (E, Q, q0, ∂)

• E = { ls, …}

• Q = { T , F } (are we executing an ls?)

• q0 = { F }

 (F , e) if q=F and e<>ls

• ∂(q,e) = (T , e) if q=F and e=ls

 (F , filter(e)) if q=T

30

 Shutdown-confirming MRA M=(E, Q, q0, ∂)

• E = { shutdown, popupConfirm, OK, cancel, null, …}

• Q = { T , F } (are we confirming a shutdown?)

• q0 = { F }

 (F , e) if q=F and e<>shutdown

∂(q,e) = (T , popupConfirm) if q=F and e=shutdown

 (F , null) if q=T and e=cancel

 (F , shutdown) if q=T and e=OK

31

MRA operations match the possible behaviors
we’ve observed in many implemented
monitoring systems
• Polymer (with Bauer and Walker)

• PSLang (Erlingsson and Schneider)

• AspectJ (Kiczales et al.)

• Etc.

For every input action and input result,
monitor may output an action or a result

Previous models couldn’t transform results =>
couldn’t model the last 2 realistic examples

32

 MRA operations can be formalized with six

small rules dictating how traces get built

 Please see conference proceedings for details

33

(Technical note: here we’re really only

considering special kinds of policies

called properties)

Policies are predicates on executions

P(x) iff execution x satisfies policy P

34

P()

¬P(lsi)

P(lsi ; eo) iff e=ls

∀ directory listings L:

¬ P(lsi ; lso ; Li)

P(lsi ; lso ; Li ; eo) iff e=filter(L)

[it’s OK for the target to do nothing]

[monitor may not just stop upon

inputting ls; must then output ls]

[monitor must output only ls after

inputting ls; it’s then OK for the system to

never return a listing]

[monitor may not stop upon inputting L;

must return the filtered list to the target]

[monitor must filter listings]

35

Policies here can reason about results
• Enables result-sanitization policies

• E.g., filter-hidden-file policy

Policies here can reason about input events
• Enables policies to dictate exactly how mechanisms

can/must transform events

• E.g., confirm-shutdown policy

=> Powerful, but practical, expressiveness
36

Sound enforcement (no false -s)

Complete enforcement (no false +s)

Precise enforcement (no false +s or -s)

M soundly enforces P iff

∀ executions x: (M produces x ⇒ P(x))

M completely enforces P iff

∀ executions x: (P(x) ⇒ M produces x)

M precisely enforces policy P iff

M soundly and completely enforces P

37

Simpler: no need for extra “transparency”

 constraints that can be rolled into

 policy definitions (now that policies

 can reason about input events)

More expressive: can reason about complete

 and precise enforcement too

38

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,

policies, and enforcement

Analysis of enforceable properties

Summary and future work

39

40

41

42

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: executions, monitors,

policies, and enforcement

Analysis of enforceable properties

Summary and future work

43

Started building a theory of runtime
enforcement based on MRAs, which:

• model the realistic ability of runtime
mechanisms to transform synchronous actions
and their results.

• can enforce result-sanitization policies and
policies based on input events.

• provide simpler and more expressive definitions
of policies and enforcement than previous
models.

44

Something between edit automata

(which assume asynchronous actions)

and MRAs

(which assume synchronous actions)?

• How would the monitor know when the target is

waiting for a result, and for which action?

 Static analysis of target application?

 Could get complicated

45

 Which policies get enforced when we combine
runtime mechanisms?

 How efficiently does a mechanism enforce a
policy?

 What are the lower bounds on resources required
to enforce policies of interest?

 Having a realistic operational model of runtime
enforcement seems like a good first step to address
these research questions

46

47

