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Runtime Enforcement
Mechanisms, for Software

Interpose on the actions of some untrusted software
Have authority to decide whether and how to allow those
actions to be executed

Are called runtime/security/program monitors

possibly
safe : :
unsafe : action-executing
. action a
untrusted_actiona o .. —> system
software (OS/hardware)

a=open(file,“r”) | shutdown() | login(sn,pw) | connect(addr,port) |...



Runtime Enforcement
Mechansisms

Monitoring code can be inserted into the
untrusted software or the executing system

monitor
hbistad safe actions - executing
software system
possibly
unsafe executing system

untrusted actions
software

> monitor



Runtime Enforcement
Mechanisms

In all cases monitor inputs possibly unsafe
actions from the untrusted software and outputs
safe actions to be executed

possibly

unsafe safe ; ;
action-executing

> system
software (OS/hardware)

action a : action a
untrusted —>» monitor




Runtime Enforcement
Mechanisms

Ubiquitous
- Operating systems (e.g., file access control)
 Virtual machines (e.g., stack inspection)
- Web browsers (e.g., javascript sandboxing)
- Intrusion-detection systems
- Firewalls
 Auditing tools
- Spam filters
« Bic
Most of what are usually considered
“computer security’ mechanisms can be

thought of as runtime monitors



Research Questions

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

- Which policies should we never even try to
enforce at runtime?

All policies

Runtime-enforceable policies




Research Questions

How do monitors operate to enforce
policies?
- Which policies get enforced when we combine
runtime mechanisms?

mechanism M enforces policy P
M A M’ enforces? PAP’?

mechanism M’ enforces policy P’

What if P requires the first action executed to be fopen({),
but P’ requires the first action executed to be fopen(f’)?



Research Questions

How do monitors operate to enforce
policies?
- How efficiently does a mechanism enforce a
policy?
- What are the lower bounds on resources required
to enforce policies of interest?

What does it mean for a mechanism to be efficient?
* Low space usage

(SHA of Fong, BHA of Talhi, Tawbi, and Debbabi)

* Low time usage
N



Research Questions, Summary

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

- Which policies get enforced when we combine
runtime mechanisms?

- How efficiently does a mechanism enforce a
policy?

- What are the lower bounds on resources required
to enforce policies of interest?



This Talk

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?
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Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,
monitors, policies, and enforcement
Analysis of enforceable properties
Summary and future work
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Related Work: Truncation
Automata

Most analyses of monitors are based on
truncation automata (Schneider, 2000)

_ executing
action ds system

possibly :
target o —> monitor \ (OS/VM/CPU)

action a
Halt target!

Operation: halt software being monitored
(target) immediately before any
policy violation

Limitation: real monitors normally respond to
violations with remedial actions
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Related Work: Edit Automata

Powerful model of runtime enforcement

a ~ | executing
possibly_ : 2—> system
target — —> monitor \ etc. (OS/VM/CPU)

action a
® (quietly suppress a)

Operation: actively transform target actions
to ensure they satisfy desired

policy
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Related Work: Edit Automata

Limitation:
- All actions are assumed totally asynchronous

- Monitor can always get next action after suppressing
previous actions

- Target can’t care about results of executed actions;
there are no results in the model

- E.g., the echo program “x=input(); output(x);”
1s outside the edit-automata model
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This Work: Mandatory Results
Automata (MRAS)

Conservatively assume all actions are synchronous
and monitor those actions and their results

actions/> Nafe actions
(Trusted)

Untrusted Security Executing
Application Monitor System

safe resultk 4/results

Operation: actively transform actions and results to
ensure they satisfy desired policy

15



This Work: Mandatory Results
Automata (IVIRAS)

MRAs are stronger than truncation automata

- Can accept actions and halt targets but can also
transform actions and results

MRAs are weaker than edit automata
- Asynchronicity lets edit automata “see” arbitrarily
far into the future

- Can postpone deciding how to edit an action until later
- Arbitrary postponement is normally unrealistic
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Other Neat Features of the MRA
\Y%[eYe (=Y

MRASs can enforce result-sanitization
policies
(trusted) mechanism sanitizes results before
they get input to (untrusted) target application

(1) 1s /’ \52) Is
(Trusted)

Untr.ustgd Security Executing
Application Monitor System

(4) {foo.txk / (3) {foo.txt, .hidden}

Many privacy, information-flow, and access-
control policies are result-sanitization

17



Other Neat Features of the MRA
\Y%[eYe (=Y

Model provides simpler and more

expressive definitions of policies and

enforcement than previous work
(more on this later)
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Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,
monitors, policies, and enforcement
Analysis of enforceable properties
Summary and future work

19



Systems

Systems are specified as sets of events
- Let A be a finite or countably infinite set of actions

- Let R (disjoint from A) be a finite or countably infinite
set of action results

« Then a system is specifiedas E=A UR

Example:

- A = {popupWindow(“Confirm Shutdown”), shutdown()}
- R = {OK, cancel, null}

20



Detfinition of MRA
traces/executions

Execution: finite/infinite sequence of events

Adopting a monitor-centric view,
1 4 event possibilities:

MRA inputs a /’ \
action a from (Trusted)

the target Untrusted Security Executing
Application Monitor System

i

=> add q; to the current trace

21



Detfinition of MRA
traces/executions

Execution: finite/infinite sequence of events

Adopting a monitor-centric view,
1 4 event possibilities:

MRA outputs /V
action a to
(Trusted) .
be executed Untrusted Security Executing
Application Monitor System

N

=> add a,_ to the current trace

22



Detfinition of MRA
traces/executions

Execution: finite/infinite sequence of events

Adopting a monitor-centric view,
1 4 event possibilities:

MRA inputs /’ \
result r from (Trusted)

the system Untrusted Security Executing
Application Monitor System

s

=> add r; to the current trace

23



Detfinition of MRA
traces/executions

Execution: finite/infinite sequence of events

Adopting a monitor-centric view,
1 4 event possibilities:

MRA outputs /’ \
result r to (Trusted)

the target Untrusted Security Executing
Application Monitor System

N

=> add r, to the current trace

24



Example Execution

Is;; Is, ; {foo.txt, .hidden}, ; {foo.txt}

Is /‘ \
(Trusted)

Untrusted Security Executing
Application Monitor System

e
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Example Execution

Is;; Is, ; {foo.txt, .hidden}, ; {foo.txt}

(o Y
(Trusted)

Untrusted Security Executing
Application Monitor System

e
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Example Execution

Is; ; Is, ; {foo.txt, .hidden}, ; {foo.txt}

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

4/ {foo.txt, .hidden}
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Example Execution

Is; ; Is, ; {foo.txt, .hidden}, ; {foo.txt}_

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

{foo.txt}\ 4/
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Another Example Execution

shutdown, ; popupConfirm_ ; OK, ; shutdown_

shutdown /’ \
(Trusted)

Untrusted Security Executing
Application Monitor System

.
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Another Example Execution

shutdown, ; popupConfirm_; OK,; shutdown_

/’ N)opupConfirm
(Trusted)

Untrusted Security Executing
Application Monitor System

.
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Another Example Execution

shutdown, ; popupConfirm_; OK, ; shutdown_

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

4/ 9]¢
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Another Example Execution

shutdown, ; popupConfirm_; OK;; shutdown_

/’ \shutdown
(Trusted)

Untrusted Security Executing
Application Monitor System

.
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Last Example Execution

getMail(server), ; null_ ; getMail(server).; null_ ;...

getMail(server)/' \
(Trusted)

Untrusted Security Executing
Application Monitor System

.
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Last Example Execution

getMail(server), ; null_; getMail(server).; null_;...

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

NN
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Last Example Execution

getMail(server), ; null  ; getMail(server).; null_;...

Etc... This 1s an infinite-length execution,
SO 1t represents a nonterminating run
of the monitor (and target application)
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Notation

E" = set of all well-formed finite-length
executions on system with event set E
® = set of all well-formed infinite-length
executions on system with event set E
=E UE?
*= empty execution (no events occur)
x;x’ = well-formed concatenation of
executions x and x’
X = X’ = execution x is a prefix of x’
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More Notation

Metavariable ranges over
e over events
a over actions

r over results

X over executions
a over A U {¢} (potential actions)
p over R U {«} (potential results)
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Definition of MRAs
An MRA M s a tuple (E, Q, q,, 0)

- E = event set over which M operates

- Q = M’s finite or countably infinite state set

* g, = M’s initial state

« 0 = M’s (partially recursive) transition function

0:0OxE > OxE

O returns the next MRA state and an event to output

e

{given a current MRA state and an event just input,

38



MRA Configurations

Q;

Po

q is the MRA’s current state

o, 1s empty or the action being input to the MRA

o, 1s empty or the action being output from the MRA
p;1s empty or the result being input to the MRA

p, 1s empty or the result being output from the MRA

/ (Trusted)

Untrusted Security Executing
Application Monitor System

N 4

x

(o]

P;

q
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MRA Operational Semantics

Starting configuration: d,

A single-step judgment specifies how MRAs
take small steps (to input/output a single event)

- Single-step judgment form: C = C’

Then the multi-step judgment is the reflexive,
transitive closure of the single-step relation

« Multi-step judgment form: C % ¢

10)



Single-step Rules

Rules for inputting and reacting to actions:

e (Input-Action)
a, 2

D aq > |
6(q.a) = (9’,3)) (Output-Action-for-Action)
a a’ a’

| 3 |da’
6(q,a) = (9°,1) (Output-Result-for-Action)
2l ‘

9q - r‘q

41



Single-step Rules

Rules for inputting and reacting to results:

nexts = x (Input-Result)
o 2 |
i D .
8(q.r) = (9',8) (Output-Action-for-Result)
], % |of®
- q
8(q,r) = (q’,r’
a0 = [g.1) (Output-Result-for-Result)
‘q Ei GI"
s r

42



One More Operational Judgment

MUx means MRA M, when its input events
match the (possibly infinite) sequence of
input events in x, produces the execution x

- MUx iff:
- if x€EE® then V x’<x:3C : C, I C
- if x€E” then 3C :
.C. 50
- if x ends with an input event then M never transitions from C
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Observation

Semantics matches the possible behaviors
we’ve observed in many implemented
monitoring systems

- Polymer (with Bauer and Walker)

- PSLang (Erlingsson and Schneider)

- Aspect] (Kiczales et al.)

- Etc.

44



Example MRA

Hidden-file filtering MRA M = (E, O, q,, 0)
s =0
- Q={T, F} (are we executing an Is?)
gy =i}

(F,e) if g=F and e<>ls
«0(q,e) =7 (T,e) if g=F and e=ls

(F,filtex(e)) 1ifg=T

45



Another Example MRA

Shutdown-confirming MRA M=(E, Q, g, 0)

- E = {shutdown, popupConfirm, OK, cancel, null, ...}
- O={T, F} (are we confirming a shutdown?)

T gy =18 |

(F,e) if g=F and e<>shutdown
0(q,e) =_| (T, popupConfirm ) if g=F and e=shutdown
(F,null) if g=T and e=cancel
_(F ,shutdown ) if g=T and e=0OK
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Definition of Policies

(Technical note: here we’re really only
considering special kinds of policies
called properties)

Policies are predicates on (or sets of)
executions

P(x) iff execution x satisfies policy P
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Example: Definition of the
Filter-hidden-files Policy

P( ‘) [it’s OK for the target to do nothing]

[monitor may not just stop upon
—P(ls,) . .
Iinputting ls; must then output Is]

_ : . [monitor must output only Is after
P(lsi ’ eo) iff e=ls inputting ls; it’s then OK for the system to
never return a listing]
V results L: o t L
- . monitor may not stop upon inputting L;
- P(lsi ’ ISo g Li) must return the filtered list to the target]

P(s;;1s,; L; ; e,) iif e=filter(L)
[monitor must filter listings]
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How Policies in MRA Model Differ
from Those of Previous Models

Policies here can reason about results
- Enables result-sanitization policies
- E.qg., filter-hidden-file policy

Policies here can reason about input events

- Enables policies to dictate exactly how mechanisms
can/must transform events

- E.g., confirm-shutdown policy

=> Powerful, but practical, expressiveness
49



Definitions of Enforcement

Sound enforcement (no false -s)

MRA M soundly enforces policy P iff
vxeE~: (MUx = P(x))

Complete enforcement (no false +s)

MRA M completely enforces policy P iff
vx€EE~: (P(x) = Mx)

Precise enforcement (no false +s or -s)

MRA M precisely enforces policy P iff
vxeE~: (MUx © P(x))

50



How Enforcement in MRA Model
Ditters from That of Previous Models

Simpler: no need for extra “transparency”
constraints that can be rolled into
policy definitions (now that policies
can reason about input events)

More expressive: can reason about complete
and precise enforcement too

91



Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work
The model: systems, executions,
monitors, policies, and enforcement

Analysis of enforceable properties
« What are the limits of MRA enforcement?
Summary and future work

52



Sound Enforcement with IMRASs

Policy P on system with event set E can
be soundly enforced by some MRA M iff
there exists (R.E.) predicate R over E” s.t.
all the following are true.
- R()
e Y(x;e.)EE :

- 7"R(X) or

- P(x;e) or
- 3e’eE:(R(x;ee’,) A P(x;e5e’,))

- vx€E® : if 7P(x) then 3(X’;e,)<x:7R(X’)

53



Complete Enforcement with
MRASs

Policy P on system with event set E can be
completely enforced by some MRA M iff:
+ Y(x;e)€EE" :
* Ve’eE : deadp(x;e;;e’,) or
- 7P(x;e;) A dle’€E : alivep(x;e;;e’,)

(where alivep(x) iff 3x’€E™:P(x;x)
and deadp(x) iff Talivep(x) )
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Precise Enforcement with MRAs

Policy P on system with event set E can
be precisely enforced by some MRA M iff
all the following are true.
* P()
- V(x;e,)EE":
t H(x) Or

* P(x;e;) A Ve’€E : deady(x;e;;€e’,) or
» 1P(x;e;) A dle’eE : P(x;e;;e’ ) A dle’€E : alivey(x;e;;e’,)

- vx€E® : if 7P(x) then 3(X’;e,)<x:7P(X’)
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Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,
monitors, policies, and enforcement
Analysis of enforceable properties
Summary and future work

56



Summary

Started building a theory of runtime
enforcement based on MRAs, which:

- model the realistic ability of runtime
mechanisms to transform synchronous actions
and their results.

- can enforce result-sanitization policies and
policies based on input events.

 provide simpler and more expressive definitions
of policies and enforcement than previous
models.
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Future Work

Something between edit automata

(which assume asynchronous actions)
and MRAs

(which assume synchronous actions)?

- How would the monitor know when the target is
waiting for a result, and for which action?
- Static analysis of target application?
- Could get complicated

58



Additional Future Work

Which policies get enforced when we combine
runtime mechanisms?

How efficiently does a mechanism enforce a
policy?

What are the lower bounds on resources required
to enforce policies of interest?

Having a realistic operational model of runtime
enforcement seems like a good first step to address
these research questions

59
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