
Jay Ligatti

University of South Florida

 Interpose on the actions of some untrusted software

 Have authority to decide whether and how to allow those

actions to be executed

 Are called runtime/security/program monitors

2

untrusted

software
monitor

action-executing

system

(OS/hardware)

possibly

unsafe

action a

safe

action a

a=open(file,“r”) | shutdown() | login(sn,pw) | connect(addr,port) |…

 Monitoring code can be inserted into the

untrusted software or the executing system

3

untrusted

software

monitor

executing

system

safe actions

untrusted

software

executing system
possibly

unsafe

actions
monitor

 In all cases monitor inputs possibly unsafe

actions from the untrusted software and outputs

safe actions to be executed

4

untrusted

software
monitor

action-executing

system

(OS/hardware)

possibly

unsafe

action a

safe

action a

Ubiquitous
• Operating systems (e.g., file access control)
• Virtual machines (e.g., stack inspection)
• Web browsers (e.g., javascript sandboxing)
• Intrusion-detection systems
• Firewalls
• Auditing tools
• Spam filters
• Etc.

Most of what are usually considered
“computer security” mechanisms can be
thought of as runtime monitors

5

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies should we never even try to

enforce at runtime?

All policies

Runtime-enforceable policies

6

How do monitors operate to enforce

policies?
• Which policies get enforced when we combine

runtime mechanisms?

mechanism M enforces policy P

mechanism M’ enforces policy P’
M ^ M’ enforces? P ^ P’ ?

What if P requires the first action executed to be fopen(f),

but P’ requires the first action executed to be fopen(f’)?

7

How do monitors operate to enforce

policies?
• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

What does it mean for a mechanism to be efficient?

• Low space usage

(SHA of Fong, BHA of Talhi, Tawbi, and Debbabi)

• Low time usage

?

8

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies get enforced when we combine

runtime mechanisms?

• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

9

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies get enforced when we combine

runtime mechanisms?

• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

10

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,

monitors, policies, and enforcement

Analysis of enforceable properties

Summary and future work

11

Most analyses of monitors are based on
truncation automata (Schneider, 2000)

Operation: halt software being monitored
(target) immediately before any
policy violation

Limitation: real monitors normally respond to
violations with remedial actions

target monitor

executing

system

(OS/VM/CPU)

possibly

unsafe

action a

action a

Halt target!

12

Powerful model of runtime enforcement

Operation: actively transform target actions

to ensure they satisfy desired

policy

target monitor

executing

system

(OS/VM/CPU)

possibly

unsafe

action a

a

a'

etc.

(quietly suppress a)

13

Limitation:

• All actions are assumed totally asynchronous

 Monitor can always get next action after suppressing

previous actions

 Target can’t care about results of executed actions;

there are no results in the model

• E.g., the echo program “x=input(); output(x);”

is outside the edit-automata model

14

 Conservatively assume all actions are synchronous

and monitor those actions and their results

 Operation: actively transform actions and results to

ensure they satisfy desired policy

Untrusted

Application

safe results

Executing

System

(Trusted)

Security

Monitor

actions safe actions

results

15

MRAs are stronger than truncation automata

• Can accept actions and halt targets but can also

transform actions and results

MRAs are weaker than edit automata
• Asynchronicity lets edit automata “see” arbitrarily

far into the future

 Can postpone deciding how to edit an action until later

 Arbitrary postponement is normally unrealistic

16

1. MRAs can enforce result-sanitization

policies
• (trusted) mechanism sanitizes results before

they get input to (untrusted) target application

• Many privacy, information-flow, and access-

control policies are result-sanitization

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

(1) ls

(3) {foo.txt, .hidden}

(2) ls

(4) {foo.txt}

17

2. Model provides simpler and more

expressive definitions of policies and

enforcement than previous work
• (more on this later)

18

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,

monitors, policies, and enforcement

Analysis of enforceable properties

Summary and future work

19

 Systems are specified as sets of events

• Let A be a finite or countably infinite set of actions

• Let R (disjoint from A) be a finite or countably infinite

set of action results

• Then a system is specified as E = A ∪ R

 Example:

• A = {popupWindow(“Confirm Shutdown”), shutdown()}

• R = {OK, cancel, null}

20

 Execution: finite/infinite sequence of events

 Adopting a monitor-centric view,

∃ 4 event possibilities:

(1) MRA inputs

action a from

the target Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

a

=> add ai to the current trace

21

 Execution: finite/infinite sequence of events

 Adopting a monitor-centric view,

∃ 4 event possibilities:

(2) MRA outputs

action a to

be executed Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

a

=> add ao to the current trace

22

 Execution: finite/infinite sequence of events

 Adopting a monitor-centric view,

∃ 4 event possibilities:

(3) MRA inputs

result r from

the system Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

r

=> add ri to the current trace

23

 Execution: finite/infinite sequence of events

 Adopting a monitor-centric view,

∃ 4 event possibilities:

(4) MRA outputs

result r to

the target Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

=> add ro to the current trace

r

24

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

ls

25

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

ls

26

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

{foo.txt, .hidden}

27

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

{foo.txt}

28

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

shutdown

29

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

popupConfirm

30

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

OK

31

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

shutdown

32

 getMail(server)i ; nullo ; getMail(server)i ; nullo ; …

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

getMail(server)

33

 getMail(server)i ; nullo ; getMail(server)i ; nullo ; …

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

null

34

 getMail(server)i ; nullo ; getMail(server)i ; nullo ; …

35

Etc… This is an infinite-length execution,

so it represents a nonterminating run

of the monitor (and target application)

E* = set of all well-formed finite-length

executions on system with event set E

Eω = set of all well-formed infinite-length

executions on system with event set E

E∞ = E* ∪ Eω

 = empty execution (no events occur)

x;x’ = well-formed concatenation of

executions x and x’

x ≤ x’ = execution x is a prefix of x’

36

Metavariable ____ ranges over ____
• e over events

• a over actions

• r over results

• x over executions

• α over A ∪ { } (potential actions)

• ρ over R ∪ { } (potential results)

37

An MRA M is a tuple (E, Q, q0, δ)
• E = event set over which M operates

• Q = M’s finite or countably infinite state set

• q0 = M’s initial state

• δ = M’s (partially recursive) transition function

δ : Q x E Q x E

given a current MRA state and an event just input,
δ returns the next MRA state and an event to output

38

 q is the MRA’s current state

 αi is empty or the action being input to the MRA

 αo is empty or the action being output from the MRA

 ρi is empty or the result being input to the MRA

 ρo is empty or the result being output from the MRA

39

αi αo
q

ρo ρi

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

αi αo

ρiρo

q

 Starting configuration:

 A single-step judgment specifies how MRAs

take small steps (to input/output a single event)

• Single-step judgment form: C → C’

 Then the multi-step judgment is the reflexive,

transitive closure of the single-step relation

• Multi-step judgment form: C →* C’

40

q0

e

x

Rules for inputting and reacting to actions:

41

→

nextT = a

q
ρ

ai q
a

→

δ(q,a) = (q’,a’)

q
a a’o q’

a’

→

δ(q,a) = (q’,r)

q
a ro q’

r

(Output-Action-for-Action)

(Output-Result-for-Action)

(Input-Action)

Rules for inputting and reacting to results:

42

→

nextS = r

q
a ri q

r

→

δ(q,r) = (q’,a)

q
r

ao q’
a

→

δ(q,r) = (q’,r’)

r’o q’
r’

q
r

(Input-Result)

(Output-Action-for-Result)

(Output-Result-for-Result)

Mx means MRA M, when its input events

match the (possibly infinite) sequence of

input events in x, produces the execution x

• Mx iff:

 if x∈Eω then ∀ x’≤x : ∃C : C0 →* C

 if x∈E* then ∃C :

 C0 →* C

 if x ends with an input event then M never transitions from C

43

x’

x

Semantics matches the possible behaviors

we’ve observed in many implemented

monitoring systems
• Polymer (with Bauer and Walker)

• PSLang (Erlingsson and Schneider)

• AspectJ (Kiczales et al.)

• Etc.

44

Hidden-file filtering MRA M = (E, Q, q0, δ)

• E = { ls, …}

• Q = { T , F } (are we executing an ls?)

• q0 = { F }

(F , e) if q=F and e<>ls

• δ(q,e) = (T , e) if q=F and e=ls

(F , filter(e)) if q=T

45

 Shutdown-confirming MRA M=(E, Q, q0, δ)

• E = { shutdown, popupConfirm, OK, cancel, null, …}

• Q = { T , F } (are we confirming a shutdown?)

• q0 = { F }

(F , e) if q=F and e<>shutdown

δ(q,e) = (T , popupConfirm) if q=F and e=shutdown

(F , null) if q=T and e=cancel

(F , shutdown) if q=T and e=OK

46

(Technical note: here we’re really only

considering special kinds of policies

called properties)

Policies are predicates on (or sets of)

executions

P(x) iff execution x satisfies policy P

47

P()

¬P(lsi)

P(lsi ; eo) iff e=ls

∀ results L:

¬ P(lsi ; lso ; Li)

P(lsi ; lso ; Li ; eo) iff e=filter(L)

[it’s OK for the target to do nothing]

[monitor may not just stop upon

inputting ls; must then output ls]

[monitor must output only ls after

inputting ls; it’s then OK for the system to

never return a listing]

[monitor may not stop upon inputting L;

must return the filtered list to the target]

[monitor must filter listings]

48

Policies here can reason about results
• Enables result-sanitization policies

• E.g., filter-hidden-file policy

Policies here can reason about input events
• Enables policies to dictate exactly how mechanisms

can/must transform events

• E.g., confirm-shutdown policy

=> Powerful, but practical, expressiveness
49

Sound enforcement (no false -s)

Complete enforcement (no false +s)

Precise enforcement (no false +s or -s)

MRA M soundly enforces policy P iff

∀x∈E∞: (Mx ⇒ P(x))

MRA M completely enforces policy P iff

∀x∈E∞: (P(x) ⇒ Mx)

MRA M precisely enforces policy P iff

∀x∈E∞: (Mx ⇔ P(x))

50

Simpler: no need for extra “transparency”

constraints that can be rolled into

policy definitions (now that policies

can reason about input events)

More expressive: can reason about complete

and precise enforcement too

51

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,

monitors, policies, and enforcement

Analysis of enforceable properties
• What are the limits of MRA enforcement?

Summary and future work

52

Policy P on system with event set E can

be soundly enforced by some MRA M iff

there exists (R.E.) predicate R over E* s.t.

all the following are true.

• R()

• ∀(x;ei)∈E* :
 ¬R(x) or

 P(x;ei) or

 ∃e’∈E:(R(x;ei;e’o) ∧ P(x;ei;e’o))

• ∀x∈Eω : if ¬P(x) then ∃(x’;ei)≤x:¬R(x’)

53

Policy P on system with event set E can be

completely enforced by some MRA M iff:

• ∀(x;ei)∈E* :
 ∀e’∈E : deadP(x;ei;e’o) or

 ¬P(x;ei) ∧ ∃!e’∈E : aliveP(x;ei;e’o)

(where aliveP(x) iff ∃x’∈E∞:P(x;x’)

and deadP(x) iff ¬aliveP(x))

54

Policy P on system with event set E can

be precisely enforced by some MRA M iff

all the following are true.

• P()

• ∀(x;ei)∈E* :
 ¬P(x) or

 P(x;ei) ∧ ∀e’∈E : deadP(x;ei;e’o) or

 ¬P(x;ei) ∧ ∃!e’∈E : P(x;ei;e’o) ∧ ∃!e’∈E : aliveP(x;ei;e’o)

• ∀x∈Eω : if ¬P(x) then ∃(x’;ei)≤x:¬P(x’)

55

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,

monitors, policies, and enforcement

Analysis of enforceable properties

Summary and future work

56

Started building a theory of runtime
enforcement based on MRAs, which:

• model the realistic ability of runtime
mechanisms to transform synchronous actions
and their results.

• can enforce result-sanitization policies and
policies based on input events.

• provide simpler and more expressive definitions
of policies and enforcement than previous
models.

57

Something between edit automata

(which assume asynchronous actions)

and MRAs

(which assume synchronous actions)?

• How would the monitor know when the target is

waiting for a result, and for which action?

 Static analysis of target application?

 Could get complicated

58

 Which policies get enforced when we combine
runtime mechanisms?

 How efficiently does a mechanism enforce a
policy?

 What are the lower bounds on resources required
to enforce policies of interest?

 Having a realistic operational model of runtime
enforcement seems like a good first step to address
these research questions

59

60

