Modeling Enforcement
Mechanisms with Security
Automata

Jay Ligatti
University of South Florida

Runtime Enforcement
Mechanisms, for Software

Interpose on the actions of some untrusted software
Have authority to decide whether and how to allow those
actions to be executed

Are called runtime/security/program monitors

possibly
safe : :
unsafe : action-executing
. action a
untrusted_actiona o .. —> system
software (OS/hardware)

a=open(file,“r”) | shutdown() | login(sn,pw) | connect(addr,port) |...

Runtime Enforcement
Mechansisms

Monitoring code can be inserted into the
untrusted software or the executing system

monitor
hbistad safe actions - executing
software system
possibly
unsafe executing system

untrusted actions
software

> monitor

Runtime Enforcement
Mechanisms

In all cases monitor inputs possibly unsafe
actions from the untrusted software and outputs
safe actions to be executed

possibly

unsafe safe ; ;
action-executing

> system
software (OS/hardware)

action a : action a
untrusted —>» monitor

Runtime Enforcement
Mechanisms

Ubiquitous
- Operating systems (e.g., file access control)
 Virtual machines (e.g., stack inspection)
- Web browsers (e.g., javascript sandboxing)
- Intrusion-detection systems
- Firewalls
 Auditing tools
- Spam filters
« Bic
Most of what are usually considered
“computer security’ mechanisms can be

thought of as runtime monitors

Research Questions

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

- Which policies should we never even try to
enforce at runtime?

All policies

Runtime-enforceable policies

Research Questions

How do monitors operate to enforce
policies?
- Which policies get enforced when we combine
runtime mechanisms?

mechanism M enforces policy P
M A M’ enforces? PAP’?

mechanism M’ enforces policy P’

What if P requires the first action executed to be fopen({),
but P’ requires the first action executed to be fopen(f’)?

Research Questions

How do monitors operate to enforce
policies?
- How efficiently does a mechanism enforce a
policy?
- What are the lower bounds on resources required
to enforce policies of interest?

What does it mean for a mechanism to be efficient?
* Low space usage

(SHA of Fong, BHA of Talhi, Tawbi, and Debbabi)

* Low time usage
N

Research Questions, Summary

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

- Which policies get enforced when we combine
runtime mechanisms?

- How efficiently does a mechanism enforce a
policy?

- What are the lower bounds on resources required
to enforce policies of interest?

This Talk

How do monitors operate to enforce
policies?
- Which policies can runtime mechanisms enforce?

10

Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,
monitors, policies, and enforcement
Analysis of enforceable properties
Summary and future work

1

Related Work: Truncation
Automata

Most analyses of monitors are based on
truncation automata (Schneider, 2000)

_ executing
action ds system

possibly :
target o —> monitor \ (OS/VM/CPU)

action a
Halt target!

Operation: halt software being monitored
(target) immediately before any
policy violation

Limitation: real monitors normally respond to
violations with remedial actions

12

Related Work: Edit Automata

Powerful model of runtime enforcement

a ~ | executing
possibly_ : 2—> system
target — —> monitor \ etc. (OS/VM/CPU)

action a
® (quietly suppress a)

Operation: actively transform target actions
to ensure they satisfy desired

policy

13

Related Work: Edit Automata

Limitation:
- All actions are assumed totally asynchronous

- Monitor can always get next action after suppressing
previous actions

- Target can’t care about results of executed actions;
there are no results in the model

- E.g., the echo program “x=input(); output(x);”
1s outside the edit-automata model

14

This Work: Mandatory Results
Automata (MRAS)

Conservatively assume all actions are synchronous
and monitor those actions and their results

actions/> Nafe actions
(Trusted)

Untrusted Security Executing
Application Monitor System

safe resultk 4/results

Operation: actively transform actions and results to
ensure they satisfy desired policy

15

This Work: Mandatory Results
Automata (IVIRAS)

MRAs are stronger than truncation automata

- Can accept actions and halt targets but can also
transform actions and results

MRAs are weaker than edit automata
- Asynchronicity lets edit automata “see” arbitrarily
far into the future

- Can postpone deciding how to edit an action until later
- Arbitrary postponement is normally unrealistic

16

Other Neat Features of the MRA
\Y%[eYe (=Y

MRASs can enforce result-sanitization
policies
(trusted) mechanism sanitizes results before
they get input to (untrusted) target application

(1) 1s /’ \52) Is
(Trusted)

Untr.ustgd Security Executing
Application Monitor System

(4) {foo.txk / (3) {foo.txt, .hidden}

Many privacy, information-flow, and access-
control policies are result-sanitization

17

Other Neat Features of the MRA
\Y%[eYe (=Y

Model provides simpler and more

expressive definitions of policies and

enforcement than previous work
(more on this later)

18

Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,
monitors, policies, and enforcement
Analysis of enforceable properties
Summary and future work

19

Systems

Systems are specified as sets of events
- Let A be a finite or countably infinite set of actions

- Let R (disjoint from A) be a finite or countably infinite
set of action results

« Then a system is specifiedas E=A UR

Example:

- A = {popupWindow(“Confirm Shutdown”), shutdown()}
- R = {OK, cancel, null}

20

Detfinition of MRA
traces/executions

Execution: finite/infinite sequence of events

Adopting a monitor-centric view,
1 4 event possibilities:

MRA inputs a /’ \
action a from (Trusted)

the target Untrusted Security Executing
Application Monitor System

i

=> add q; to the current trace

21

Detfinition of MRA
traces/executions

Execution: finite/infinite sequence of events

Adopting a monitor-centric view,
1 4 event possibilities:

MRA outputs /V
action a to
(Trusted) .
be executed Untrusted Security Executing
Application Monitor System

N

=> add a,_ to the current trace

22

Detfinition of MRA
traces/executions

Execution: finite/infinite sequence of events

Adopting a monitor-centric view,
1 4 event possibilities:

MRA inputs /’ \
result r from (Trusted)

the system Untrusted Security Executing
Application Monitor System

s

=> add r; to the current trace

23

Detfinition of MRA
traces/executions

Execution: finite/infinite sequence of events

Adopting a monitor-centric view,
1 4 event possibilities:

MRA outputs /’ \
result r to (Trusted)

the target Untrusted Security Executing
Application Monitor System

N

=> add r, to the current trace

24

Example Execution

Is;; Is, ; {foo.txt, .hidden}, ; {foo.txt}

Is /‘ \
(Trusted)

Untrusted Security Executing
Application Monitor System

e

25

Example Execution

Is;; Is, ; {foo.txt, .hidden}, ; {foo.txt}

(o Y
(Trusted)

Untrusted Security Executing
Application Monitor System

e

26

Example Execution

Is; ; Is, ; {foo.txt, .hidden}, ; {foo.txt}

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

4/ {foo.txt, .hidden}

27

Example Execution

Is; ; Is, ; {foo.txt, .hidden}, ; {foo.txt}_

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

{foo.txt}\ 4/

28

Another Example Execution

shutdown, ; popupConfirm_ ; OK, ; shutdown_

shutdown /’ \
(Trusted)

Untrusted Security Executing
Application Monitor System

.

29

Another Example Execution

shutdown, ; popupConfirm_; OK,; shutdown_

/’ N)opupConfirm
(Trusted)

Untrusted Security Executing
Application Monitor System

.

30

Another Example Execution

shutdown, ; popupConfirm_; OK, ; shutdown_

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

4/ 9]¢

31

Another Example Execution

shutdown, ; popupConfirm_; OK;; shutdown_

/’ \shutdown
(Trusted)

Untrusted Security Executing
Application Monitor System

.

32

Last Example Execution

getMail(server), ; null_ ; getMail(server).; null_ ;...

getMail(server)/' \
(Trusted)

Untrusted Security Executing
Application Monitor System

.

33

Last Example Execution

getMail(server), ; null_; getMail(server).; null_;...

/> (Trusted)\

Untrusted Security Executing
Application Monitor System

NN

34

Last Example Execution

getMail(server), ; null ; getMail(server).; null_;...

Etc... This 1s an infinite-length execution,
SO 1t represents a nonterminating run
of the monitor (and target application)

35

Notation

E" = set of all well-formed finite-length
executions on system with event set E
® = set of all well-formed infinite-length
executions on system with event set E
=E UE?
*= empty execution (no events occur)
x;x’ = well-formed concatenation of
executions x and x’
X = X’ = execution x is a prefix of x’

36

More Notation

Metavariable ranges over
e over events
a over actions

r over results

X over executions
a over A U {¢} (potential actions)
p over R U {«} (potential results)

37

Definition of MRAs
An MRA M s a tuple (E, Q, q,, 0)

- E = event set over which M operates

- Q = M’s finite or countably infinite state set

* g, = M’s initial state

« 0 = M’s (partially recursive) transition function

0:0OxE > OxE

O returns the next MRA state and an event to output

e

{given a current MRA state and an event just input,

38

MRA Configurations

Q;

Po

q is the MRA’s current state

o, 1s empty or the action being input to the MRA

o, 1s empty or the action being output from the MRA
p;1s empty or the result being input to the MRA

p, 1s empty or the result being output from the MRA

/ (Trusted)

Untrusted Security Executing
Application Monitor System

N 4

x

(o]

P;

q

39

MRA Operational Semantics

Starting configuration: d,

A single-step judgment specifies how MRAs
take small steps (to input/output a single event)

- Single-step judgment form: C = C’

Then the multi-step judgment is the reflexive,
transitive closure of the single-step relation

« Multi-step judgment form: C % ¢

10)

Single-step Rules

Rules for inputting and reacting to actions:

e (Input-Action)
a, 2

D aq > |
6(q.a) = (9’,3)) (Output-Action-for-Action)
a a’ a’

| 3 |da’
6(q,a) = (9°,1) (Output-Result-for-Action)
2l ‘

9q - r‘q

41

Single-step Rules

Rules for inputting and reacting to results:

nexts = x (Input-Result)
o 2 |
i D .
8(q.r) = (9',8) (Output-Action-for-Result)
], % |of®
- q
8(q,r) = (q’,r’
a0 = [g.1) (Output-Result-for-Result)
‘q Ei GI"
s r

42

One More Operational Judgment

MUx means MRA M, when its input events
match the (possibly infinite) sequence of
input events in x, produces the execution x

- MUx iff:
- if x€EE® then V x’<x:3C : C, I C
- if x€E” then 3C :
.C. 50
- if x ends with an input event then M never transitions from C

43

Observation

Semantics matches the possible behaviors
we’ve observed in many implemented
monitoring systems

- Polymer (with Bauer and Walker)

- PSLang (Erlingsson and Schneider)

- Aspect] (Kiczales et al.)

- Etc.

44

Example MRA

Hidden-file filtering MRA M = (E, O, q,, 0)
s =0
- Q={T, F} (are we executing an Is?)
gy =i}

(F,e) if g=F and e<>ls
«0(q,e) =7 (T,e) if g=F and e=ls

(F,filtex(e)) 1ifg=T

45

Another Example MRA

Shutdown-confirming MRA M=(E, Q, g, 0)

- E = {shutdown, popupConfirm, OK, cancel, null, ...}
- O={T, F} (are we confirming a shutdown?)

T gy =18 |

(F,e) if g=F and e<>shutdown
0(q,e) =_| (T, popupConfirm) if g=F and e=shutdown
(F,null) if g=T and e=cancel
_(F ,shutdown) if g=T and e=0OK

46

Definition of Policies

(Technical note: here we’re really only
considering special kinds of policies
called properties)

Policies are predicates on (or sets of)
executions

P(x) iff execution x satisfies policy P

47

Example: Definition of the
Filter-hidden-files Policy

P(‘) [it’s OK for the target to do nothing]

[monitor may not just stop upon
—P(ls,) . .
Iinputting ls; must then output Is]

_ : . [monitor must output only Is after
P(lsi ’ eo) iff e=ls inputting ls; it’s then OK for the system to
never return a listing]
V results L: o t L
- . monitor may not stop upon inputting L;
- P(lsi ’ ISo g Li) must return the filtered list to the target]

P(s;;1s,; L; ; e,) iif e=filter(L)
[monitor must filter listings]

48

How Policies in MRA Model Differ
from Those of Previous Models

Policies here can reason about results
- Enables result-sanitization policies
- E.qg., filter-hidden-file policy

Policies here can reason about input events

- Enables policies to dictate exactly how mechanisms
can/must transform events

- E.g., confirm-shutdown policy

=> Powerful, but practical, expressiveness
49

Definitions of Enforcement

Sound enforcement (no false -s)

MRA M soundly enforces policy P iff
vxeE~: (MUx = P(x))

Complete enforcement (no false +s)

MRA M completely enforces policy P iff
vx€EE~: (P(x) = Mx)

Precise enforcement (no false +s or -s)

MRA M precisely enforces policy P iff
vxeE~: (MUx © P(x))

50

How Enforcement in MRA Model
Ditters from That of Previous Models

Simpler: no need for extra “transparency”
constraints that can be rolled into
policy definitions (now that policies
can reason about input events)

More expressive: can reason about complete
and precise enforcement too

91

Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work
The model: systems, executions,
monitors, policies, and enforcement

Analysis of enforceable properties
« What are the limits of MRA enforcement?
Summary and future work

52

Sound Enforcement with IMRASs

Policy P on system with event set E can
be soundly enforced by some MRA M iff
there exists (R.E.) predicate R over E” s.t.
all the following are true.
- R()
e Y(x;e.)EE :

- 7"R(X) or

- P(x;e) or
- 3e’eE:(R(x;ee’,) A P(x;e5e’,))

- vx€E® : if 7P(x) then 3(X’;e,)<x:7R(X’)

53

Complete Enforcement with
MRASs

Policy P on system with event set E can be
completely enforced by some MRA M iff:
+ Y(x;e)€EE" :
* Ve’eE : deadp(x;e;;e’,) or
- 7P(x;e;) A dle’€E : alivep(x;e;;e’,)

(where alivep(x) iff 3x’€E™:P(x;x)
and deadp(x) iff Talivep(x))

54

Precise Enforcement with MRAs

Policy P on system with event set E can
be precisely enforced by some MRA M iff
all the following are true.
* P()
- V(x;e,)EE":
t H(x) Or

* P(x;e;) A Ve’€E : deady(x;e;;€e’,) or
» 1P(x;e;) A dle’eE : P(x;e;;e’) A dle’€E : alivey(x;e;;e’,)

- vx€E® : if 7P(x) then 3(X’;e,)<x:7P(X’)

55

Outline

Research questions

- How do monitors operate to enforce policies?
- Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,
monitors, policies, and enforcement
Analysis of enforceable properties
Summary and future work

56

Summary

Started building a theory of runtime
enforcement based on MRAs, which:

- model the realistic ability of runtime
mechanisms to transform synchronous actions
and their results.

- can enforce result-sanitization policies and
policies based on input events.

 provide simpler and more expressive definitions
of policies and enforcement than previous
models.

97

Future Work

Something between edit automata

(which assume asynchronous actions)
and MRAs

(which assume synchronous actions)?

- How would the monitor know when the target is
waiting for a result, and for which action?
- Static analysis of target application?
- Could get complicated

58

Additional Future Work

Which policies get enforced when we combine
runtime mechanisms?

How efficiently does a mechanism enforce a
policy?

What are the lower bounds on resources required
to enforce policies of interest?

Having a realistic operational model of runtime
enforcement seems like a good first step to address
these research questions

59

ks ERERES
st CHE
i Ry
st B
i .
bt .
s Err
st e,
s e,
i R
s R
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e

e
DOLEREOOEE S
s
sl
s

s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
st i
i Zh
bt e
s e
st ZE
s e
i zh
s EH
s e
ks ZE
st e
i ZE
T i
el Zh
. e
s, e
RERED ZE
st e
et zh
s EH
e e
R ZE
e e
REEERERE ZE
s, i
e, Zh
bt) e
R e
R) ZE
s, e
zh
bt e e e e EH
] e
R R) ZE
R g
R e e e e e e e et et e e e e e e ke e e e e e e e e e e e et e,
P L L P P L P L L P P P P P P L P P P P P L P L 1 P P P P L P P P L P L P L P L P L P P P P P P L i P L P P A P

