
Jay Ligatti

University of South Florida

 Interpose on the actions of some untrusted software

 Have authority to decide whether and how to allow those

actions to be executed

 Are called runtime/security/program monitors

2

untrusted

software
monitor

action-executing

system

(OS/hardware)

possibly

unsafe

action a

safe

action a

a=open(file,“r”) | shutdown() | login(sn,pw) | connect(addr,port) |…

 Monitoring code can be inserted into the

untrusted software or the executing system

3

untrusted

software

monitor

executing

system

safe actions

untrusted

software

executing system
possibly

unsafe

actions
monitor

 In all cases monitor inputs possibly unsafe

actions from the untrusted software and outputs

safe actions to be executed

4

untrusted

software
monitor

action-executing

system

(OS/hardware)

possibly

unsafe

action a

safe

action a

Ubiquitous
• Operating systems (e.g., file access control)
• Virtual machines (e.g., stack inspection)
• Web browsers (e.g., javascript sandboxing)
• Intrusion-detection systems
• Firewalls
• Auditing tools
• Spam filters
• Etc.

Most of what are usually considered
“computer security” mechanisms can be
thought of as runtime monitors

5

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies should we never even try to

enforce at runtime?

All policies

Runtime-enforceable policies

6

How do monitors operate to enforce

policies?
• Which policies get enforced when we combine

runtime mechanisms?

mechanism M enforces policy P

mechanism M’ enforces policy P’
M ^ M’ enforces? P ^ P’ ?

What if P requires the first action executed to be fopen(f),

but P’ requires the first action executed to be fopen(f’)?

7

How do monitors operate to enforce

policies?
• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

What does it mean for a mechanism to be efficient?

• Low space usage

(SHA of Fong, BHA of Talhi, Tawbi, and Debbabi)

• Low time usage

?

8

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies get enforced when we combine

runtime mechanisms?

• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

9

How do monitors operate to enforce

policies?
• Which policies can runtime mechanisms enforce?

• Which policies get enforced when we combine

runtime mechanisms?

• How efficiently does a mechanism enforce a

policy?

• What are the lower bounds on resources required

to enforce policies of interest?

10

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,

monitors, policies, and enforcement

Analysis of enforceable properties

Summary and future work

11

Most analyses of monitors are based on
truncation automata (Schneider, 2000)

Operation: halt software being monitored
(target) immediately before any
policy violation

Limitation: real monitors normally respond to
violations with remedial actions

target monitor

executing

system

(OS/VM/CPU)

possibly

unsafe

action a

action a

Halt target!

12

Powerful model of runtime enforcement

Operation: actively transform target actions

to ensure they satisfy desired

policy

target monitor

executing

system

(OS/VM/CPU)

possibly

unsafe

action a

a

a'

etc.

(quietly suppress a)

13

Limitation:

• All actions are assumed totally asynchronous

 Monitor can always get next action after suppressing

previous actions

 Target can’t care about results of executed actions;

there are no results in the model

• E.g., the echo program “x=input(); output(x);”

is outside the edit-automata model

14

 Conservatively assume all actions are synchronous

and monitor those actions and their results

 Operation: actively transform actions and results to

ensure they satisfy desired policy

Untrusted

Application

safe results

Executing

System

(Trusted)

Security

Monitor

actions safe actions

results

15

MRAs are stronger than truncation automata

• Can accept actions and halt targets but can also

transform actions and results

MRAs are weaker than edit automata
• Asynchronicity lets edit automata “see” arbitrarily

far into the future

 Can postpone deciding how to edit an action until later

 Arbitrary postponement is normally unrealistic

16

1. MRAs can enforce result-sanitization

policies
• (trusted) mechanism sanitizes results before

they get input to (untrusted) target application

• Many privacy, information-flow, and access-

control policies are result-sanitization

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

(1) ls

(3) {foo.txt, .hidden}

(2) ls

(4) {foo.txt}

17

2. Model provides simpler and more

expressive definitions of policies and

enforcement than previous work
• (more on this later)

18

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,

monitors, policies, and enforcement

Analysis of enforceable properties

Summary and future work

19

 Systems are specified as sets of events

• Let A be a finite or countably infinite set of actions

• Let R (disjoint from A) be a finite or countably infinite

set of action results

• Then a system is specified as E = A ∪ R

 Example:

• A = {popupWindow(“Confirm Shutdown”), shutdown()}

• R = {OK, cancel, null}

20

 Execution: finite/infinite sequence of events

 Adopting a monitor-centric view,

∃ 4 event possibilities:

(1) MRA inputs

action a from

the target Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

a

=> add ai to the current trace

21

 Execution: finite/infinite sequence of events

 Adopting a monitor-centric view,

∃ 4 event possibilities:

(2) MRA outputs

action a to

be executed Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

a

=> add ao to the current trace

22

 Execution: finite/infinite sequence of events

 Adopting a monitor-centric view,

∃ 4 event possibilities:

(3) MRA inputs

result r from

the system Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

r

=> add ri to the current trace

23

 Execution: finite/infinite sequence of events

 Adopting a monitor-centric view,

∃ 4 event possibilities:

(4) MRA outputs

result r to

the target Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

=> add ro to the current trace

r

24

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

ls

25

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

ls

26

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

{foo.txt, .hidden}

27

 lsi ; lso ; {foo.txt, .hidden}i ; {foo.txt}o

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

{foo.txt}

28

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

shutdown

29

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

popupConfirm

30

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

OK

31

shutdowni ; popupConfirmo ; OKi ; shutdowno

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

shutdown

32

 getMail(server)i ; nullo ; getMail(server)i ; nullo ; …

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

getMail(server)

33

 getMail(server)i ; nullo ; getMail(server)i ; nullo ; …

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

null

34

 getMail(server)i ; nullo ; getMail(server)i ; nullo ; …

35

Etc… This is an infinite-length execution,

so it represents a nonterminating run

of the monitor (and target application)

E* = set of all well-formed finite-length

executions on system with event set E

Eω = set of all well-formed infinite-length

executions on system with event set E

E∞ = E* ∪ Eω

 = empty execution (no events occur)

x;x’ = well-formed concatenation of

executions x and x’

x ≤ x’ = execution x is a prefix of x’

36

Metavariable ____ ranges over ____
• e over events

• a over actions

• r over results

• x over executions

• α over A ∪ { } (potential actions)

• ρ over R ∪ { } (potential results)

37

An MRA M is a tuple (E, Q, q0, δ)
• E = event set over which M operates

• Q = M’s finite or countably infinite state set

• q0 = M’s initial state

• δ = M’s (partially recursive) transition function

δ : Q x E Q x E

given a current MRA state and an event just input,
δ returns the next MRA state and an event to output

38

 q is the MRA’s current state

 αi is empty or the action being input to the MRA

 αo is empty or the action being output from the MRA

 ρi is empty or the result being input to the MRA

 ρo is empty or the result being output from the MRA

39

αi αo
q

ρo ρi

Untrusted

Application

Executing

System

(Trusted)

Security

Monitor

αi αo

ρiρo

q

 Starting configuration:

 A single-step judgment specifies how MRAs

take small steps (to input/output a single event)

• Single-step judgment form: C → C’

 Then the multi-step judgment is the reflexive,

transitive closure of the single-step relation

• Multi-step judgment form: C →* C’

40

q0

e

x

Rules for inputting and reacting to actions:

41

→

nextT = a

q
ρ

ai q
a

→

δ(q,a) = (q’,a’)

q
a a’o q’

a’

→

δ(q,a) = (q’,r)

q
a ro q’

r

(Output-Action-for-Action)

(Output-Result-for-Action)

(Input-Action)

Rules for inputting and reacting to results:

42

→

nextS = r

q
a ri q

r

→

δ(q,r) = (q’,a)

q
r

ao q’
a

→

δ(q,r) = (q’,r’)

r’o q’
r’

q
r

(Input-Result)

(Output-Action-for-Result)

(Output-Result-for-Result)

Mx means MRA M, when its input events

match the (possibly infinite) sequence of

input events in x, produces the execution x

• Mx iff:

 if x∈Eω then ∀ x’≤x : ∃C : C0 →* C

 if x∈E* then ∃C :

 C0 →* C

 if x ends with an input event then M never transitions from C

43

x’

x

Semantics matches the possible behaviors

we’ve observed in many implemented

monitoring systems
• Polymer (with Bauer and Walker)

• PSLang (Erlingsson and Schneider)

• AspectJ (Kiczales et al.)

• Etc.

44

Hidden-file filtering MRA M = (E, Q, q0, δ)

• E = { ls, …}

• Q = { T , F } (are we executing an ls?)

• q0 = { F }

(F , e) if q=F and e<>ls

• δ(q,e) = (T , e) if q=F and e=ls

(F , filter(e)) if q=T

45

 Shutdown-confirming MRA M=(E, Q, q0, δ)

• E = { shutdown, popupConfirm, OK, cancel, null, …}

• Q = { T , F } (are we confirming a shutdown?)

• q0 = { F }

(F , e) if q=F and e<>shutdown

δ(q,e) = (T , popupConfirm) if q=F and e=shutdown

(F , null) if q=T and e=cancel

(F , shutdown) if q=T and e=OK

46

(Technical note: here we’re really only

considering special kinds of policies

called properties)

Policies are predicates on (or sets of)

executions

P(x) iff execution x satisfies policy P

47

P()

¬P(lsi)

P(lsi ; eo) iff e=ls

∀ results L:

¬ P(lsi ; lso ; Li)

P(lsi ; lso ; Li ; eo) iff e=filter(L)

[it’s OK for the target to do nothing]

[monitor may not just stop upon

inputting ls; must then output ls]

[monitor must output only ls after

inputting ls; it’s then OK for the system to

never return a listing]

[monitor may not stop upon inputting L;

must return the filtered list to the target]

[monitor must filter listings]

48

Policies here can reason about results
• Enables result-sanitization policies

• E.g., filter-hidden-file policy

Policies here can reason about input events
• Enables policies to dictate exactly how mechanisms

can/must transform events

• E.g., confirm-shutdown policy

=> Powerful, but practical, expressiveness
49

Sound enforcement (no false -s)

Complete enforcement (no false +s)

Precise enforcement (no false +s or -s)

MRA M soundly enforces policy P iff

∀x∈E∞: (Mx ⇒ P(x))

MRA M completely enforces policy P iff

∀x∈E∞: (P(x) ⇒ Mx)

MRA M precisely enforces policy P iff

∀x∈E∞: (Mx ⇔ P(x))

50

Simpler: no need for extra “transparency”

constraints that can be rolled into

policy definitions (now that policies

can reason about input events)

More expressive: can reason about complete

and precise enforcement too

51

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,

monitors, policies, and enforcement

Analysis of enforceable properties
• What are the limits of MRA enforcement?

Summary and future work

52

Policy P on system with event set E can

be soundly enforced by some MRA M iff

there exists (R.E.) predicate R over E* s.t.

all the following are true.

• R()

• ∀(x;ei)∈E* :
 ¬R(x) or

 P(x;ei) or

 ∃e’∈E:(R(x;ei;e’o) ∧ P(x;ei;e’o))

• ∀x∈Eω : if ¬P(x) then ∃(x’;ei)≤x:¬R(x’)

53

Policy P on system with event set E can be

completely enforced by some MRA M iff:

• ∀(x;ei)∈E* :
 ∀e’∈E : deadP(x;ei;e’o) or

 ¬P(x;ei) ∧ ∃!e’∈E : aliveP(x;ei;e’o)

(where aliveP(x) iff ∃x’∈E∞:P(x;x’)

and deadP(x) iff ¬aliveP(x))

54

Policy P on system with event set E can

be precisely enforced by some MRA M iff

all the following are true.

• P()

• ∀(x;ei)∈E* :
 ¬P(x) or

 P(x;ei) ∧ ∀e’∈E : deadP(x;ei;e’o) or

 ¬P(x;ei) ∧ ∃!e’∈E : P(x;ei;e’o) ∧ ∃!e’∈E : aliveP(x;ei;e’o)

• ∀x∈Eω : if ¬P(x) then ∃(x’;ei)≤x:¬P(x’)

55

Research questions
• How do monitors operate to enforce policies?

 Which policies can runtime mechanisms enforce?

Related work vs. this work

The model: systems, executions,

monitors, policies, and enforcement

Analysis of enforceable properties

Summary and future work

56

Started building a theory of runtime
enforcement based on MRAs, which:

• model the realistic ability of runtime
mechanisms to transform synchronous actions
and their results.

• can enforce result-sanitization policies and
policies based on input events.

• provide simpler and more expressive definitions
of policies and enforcement than previous
models.

57

Something between edit automata

(which assume asynchronous actions)

and MRAs

(which assume synchronous actions)?

• How would the monitor know when the target is

waiting for a result, and for which action?

 Static analysis of target application?

 Could get complicated

58

 Which policies get enforced when we combine
runtime mechanisms?

 How efficiently does a mechanism enforce a
policy?

 What are the lower bounds on resources required
to enforce policies of interest?

 Having a realistic operational model of runtime
enforcement seems like a good first step to address
these research questions

59

60

