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Abstract

Tumor segmentation from magnetic resonance (MR) images may aid in tumor treatment by

tracking the progress of tumor growth and/or shrinkage. In this paper we present the �rst auto-

matic segmentation method which separates non-enhancing brain tumors from healthy tissues in

MR images to aid in the task of tracking tumor size over time. The MR feature images used for

the segmentation consist of three weighted images (T1, T2 and proton density) for each axial slice

through the head. An initial segmentation is computed using an unsupervised fuzzy clustering

algorithm. Then, integrated domain knowledge and image processing techniques contribute to

the �nal tumor segmentation. They are applied under the control of a knowledge-based system.

The system knowledge was acquired by training on two patient volumes (14 images). Testing has

shown successful tumor segmentations on four patient volumes (31 images). Our results show

that we detected all six non-enhancing brain tumors, located tumor tissue in 35 of the 36 ground

truth (radiologist labeled) slices containing tumor and successfully separated tumor regions from

physically connected CSF regions in nine of nine slices. Quantitative measurements are promis-

ing as correspondence ratios between ground truth and segmented tumor regions ranged between

0.368 and 0.871 per volume, with percent match ranging between 0.530 and 0.909 per volume.

Keywords
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I. Introduction

Magnetic resonance imaging (MRI) is often the medical imaging method of choice when

soft tissue delineation is necessary. This is especially true for any attempt to segment

brain tissues, normal or abnormal. Image segmentation is a tool that has been applied to

medical imaging modalities to di�erentiate tissue types for purposes of volume measure-

ment and visualization [3], [9]. One such modality that has had a great deal of attention

from those researching image segmentation techniques, is MRI [34], [35]. Although MR

segmentation methods have been quite successful on normal tissues [23], [31], [24], [33],

the actual methods of MR segmentation are still very much in the development stages

for pathological tissues with some success recorded for speci�c disease processes [3], [6],

[18]. Recent work has shown that segmentation of gadolinium enhanced glioblastoma-

multiforme tumor tissues in magnetic resonance (MR) images is possible via clustering

combined with knowledge-based (KB) techniques [6], [7], [5]. Here and in [6], [7], [5]



3

unsupervised clustering used three weighted images, T1, T2 and proton density (PD).

Fuzzy c-means (FCM) clustering is a widely used clustering method, since it does not

require training data and is therefore operator independent [3], [9], [24], [16], [36]. Also,

it provides information on how well a pixel \�ts" a cluster.

Other methods, such as k-nearest neighbors (k-NN) also group pixels based on their

similarities in each feature image, however, manually selected training data from the var-

ious tissue types is required per slice per volume [9], [28]. Therefore, the accuracy of

supervised segmentation techniques depends upon the accuracy and repeatability of the

necessary operator intervention.

After clustering, a KB system was used to isolate and determine enhancing tumor vol-

umes [6], [7], [5], better enabling a neurologist to quantitate tumor growth or shrinkage

and therefore determine the stage and type of brain tumor. However, approximately 10%

of all brain tumors do not brighten in MR images once a contrast agent has been admin-

istered, making separation of the various brain tissues via clustering techniques extremely

di�cult. Therefore, we de�ne a non-enhancing brain tumor as one without any contrast

induced enhancing regions. In addition, if a segmentation method was available that did

not require enhancement agents for the planning of tumor treatment, or for analysis of

current treatment protocols, this less invasive, cost e�ective imaging method would be

preferred over others.

Responding to potential inconsistencies of supervised classi�cation techniques, while us-

ing the universally available scan techniques, this paper describes a method which after

training requires no further operator intervention. Data is grouped into fuzzy clusters

with FCM and approximate shape characteristics and other measurements are applied

to label clusters. The measurements utilized re
ect expert domain knowledge resulting

in a knowledge guided image processing system which isolates the non-enhancing tumor

tissues, thereby allowing tumor volume measurement. Responding to potential inconsis-

tencies of supervised classi�cation techniques, while using the universally available scan

techniques, this paper describes a method which after training requires no further oper-

ator intervention. It uses FCM clustering and knowledge guided image processing which

isolates the non-enhancing tumor tissues, thereby allowing tumor volume measurement.



4

In the proceeding, there are sections on related work including fuzzy approaches to

image analysis, images and our knowledge guided approach, experimental results and a

discussion of them and a conclusions section.

II. Related work

Other researchers recent work has shown promise in the segmentation of non-enhancing

pathology, however, not without the help of supervised classi�cation techniques or scan

techniques not available on all MR scanners. Vinitski et al. [37] demonstrate the use of

k-NN while segmenting multiple sclerosis (MS) lesions and brain tumors from a limited

number of patients. The method of Peck et al. [27] uses eigenimage analysis which nicely

shows tumor segmentation on images without gadolinium, though operator intervention

is required to select a region of interest (ROI) inside each tissue of a registered set of

images per slice. Their algorithm then determines if any of the surrounding pixels should

be included in the ROI. Although shown to be successful, these methods are susceptible

to intra and inter-observer variabilities.

Image acquisition techniques currently available with non-standard imaging equipment

such as echoplanar di�usion-weighted imaging (DWI) and perfusion-weighted imaging

(PWI), which are both generally used for imaging potential stroke victims, have been

used to analyze brain tumor physiology in [1], [32], [4], [20]. Cerebral Blood Volume

(CBV) maps were calculated in [1] where progress was made in discerning between low

and high-grade tumors. CBVs, however, were not su�cient in de�ning boundaries in four

of eight non-enhancing tumors (six low-grade and two high-grade tumors) and in eight of

eleven enhancing tumors (all high-grade) making tumor volume measurements di�cult.

Also, the measurement of CBVs requires perfusion imaging and therefore a contrast agent

to perfuse across tissues in addition to many images per slice. Di�usion-weighted images

are acquired on high-grade, enhancing tumors in [32] demonstrating the ability to di�er-

entiate between enhancing and non-enhancing components of high-grade tumors, however,

evidence that non-enhancing tumor can be di�erentiated from white, grey and CSF tis-

sues is essential to our task of non-enhancing segmentation. Also, a large contribution

in [32] is the ability to separate necrosis from tumor tissue, which addresses only part of

the segmentation problem. Good results in di�erentiating white matter, necrosis, cysts
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and solid enhancing tumors are shown in [4] where they considered 40 patients, however,

results regarding non-enhancing tumor delineation from grey matter were poor and CSF

was not considered. Similar results in [20] concentrate on enhancing tumors, as only

one of 28 patients had a non-enhancing brain tumor. Specialized equipment (echoplanar

imaging) is required for the data acquisition in [1], [32], [4], [20] which is not available at

all institutions or imaging centers.

A fast implementation of 
uid-attenuated inversion-recovery (FLAIR) showed promise in

[12] where the di�erentiation of enhancing and non-enhancing tumor parts was compared

using fast FLAIR and fast spin echo (FSE) sequences. Visual delineation was possible in

six of nine tumors given fast FLAIR and in four of nine tumors given FSE. This visual

improvement implies that fast FLAIR, or even the original FLAIR sequence should be

exploited in the future. Also, since the FLAIR sequence is designed to suppress the free

water signal, CSF will be more easily segmented from edema and other bound water

tissues. It may be added as a fourth feature in our work without equipment upgrades

whereas PWI or DWI could be additional features given necessary equipment upgrades.

A. Utilizing Fuzzy Logic in Medical Imaging

Fuzzy logic has been used in a number of ways to add intelligence when analyzing images.

Recently, a fuzzy logic based edge detector which makes use of human-like rules has been

discussed in [2]. In earlier work on brain image segmentation, we have used a fuzzy edge

detector [8] with reasonable success. Fuzzy edge detection has also been used in cardiac

imaging [30]. Other work has used fuzzy logic to determine whether an object is above or

below another in a scene [38]. A description of the use of fuzzy sets and logic in high-level

image analysis is given in [19], [26].

In our work on using intelligence in the analysis of images [8], [6], [7], we have used fuzzy

sets primarily in grouping objects into classes. Variations of the original fuzzy c-means

clustering algorithm have been used [11], [21], [25], [14]. In particular, in this paper we use

fuzzy c-means clustering to group voxels into homogeneous groups which can be identi�ed.

For medical imaging in particular, we have found that fuzzy clustering gives us consistent

partitions. While sensitive to initialization, it is not nearly as sensitive as hard c-means

in our experience [17].
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The concept of fuzzy sets is used in our work when a search for a speci�c shape is carried

out. In this paper, we search for the ventricles in axial magnetic resonance images of the

human brain. In slices near the top of the head, the ventricles present themselves as an

approximate or fuzzy X shape. Our system allows for elasticity of the image which the

ventricles present and they are located unerringly.

For visualization, we have found that membership values of pixels in fuzzy clusters allow

you to display colored regions which fade into adjacent regions [16]. This is a useful feature

in generating ground truth images. A clustered image which provides a reasonable image

partition with fuzzy boundaries can be presented to a physician who can then focus on

correcting the boundary regions [10].

III. Images and knowledge guided algorithms

A. MR patient data

Six data sets from four patients with cerebral tumors were acquired on two 1.5 Tesla

GE Signa MR scanners (General Electric Company, Milwaukee, WI) from two institutions.

Patient volume 6 was acquired through the University of Texas, Galveston Medical Branch.

The remaining �ve volumes were acquired through the University of South Florida, De-

partment of Radiology. Axial, 2D, 5 mm thick slice images at the level of and superior

to the lateral ventricles were acquired with a 256x192 acquisition matrix, �eld of view of

either 240 mm (volumes 1 and 2) or 220 mm (volumes 3 - 6) and with one full excita-

tion (NEX=1). Volumes 1-5 are contiguous slice data while volume 6 was collected with

a slice gap of 2 mm. All T1-weighted images were acquired using a standard spin-echo

(SE) sequence while PD and T2-weighted images were collected using a fast spin-echo

(FSE) sequence. Table I de�nes the imaging parameters used for each volume. All patient

images are of non-enhancing brain tumors; where none of the six presented with hyperin-

tense tumor regions in T1, post-contrast images, however, all T1-weighted images used for

classi�cation were those collected before the contrast agent gadolinium was administered.

Therefore, image misregistration, due to moving the patient table during an imaging ses-

sion, is not an issue. Also, gentle head restraints were used during imaging, minimizing

potential registration errors due to patient movement.
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TABLE I

MR Image Parameters. (TR/TE)

Volume Patient T1-weighted PD-weighted T2-weighted Thickness/Gap FOV

Number Number (SE) (FSE) (FSE) (mm/mm) (mm)

1 1 650/11 4000/17 4000/102 5/0 240

2 1 650/11 4000/17 4000/102 5/0 240

3 2 500/27 3000/17 3000/102.2 5/0 220

4 2 500/27 3000/17 3000/102.2 5/0 220

5 3 500/27 3000/17 3000/102.2 5/0 220

6 4 500/18 3500/16 3500/85 5/2 220
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Speci�ed in Table II are tumor type, the number of slices in each patient volume and

a breakdown of how many slices within each volume contain tumor. Volumes are also

identi�ed as belonging to either training or testing sets. Two volumes from two di�erent

patients were chosen as training data. Within these volumes one tumor was accompanied

by necrosis while being partially merged with the lateral ventricles, and the other was a

very large tumor without any visible necrosis. Knowledge, such as spatial qualities and

feature distributions of tumor tissues, was extracted from the training data while the

testing data was used to verify the success of the method. The number of slices in the

training data set was 14 while the testing data set contained 31 slices for a total of 45

slices.

B. Knowledge guided algorithms

The description of the knowledge guided approach for non-enhancing tumor classi�cation

is separated into two subsections. The �rst includes the unsupervised classi�cation method

FCM, and the second includes a description of image processing methods used and how

the system uses acquired domain knowledge.

B.1 FCM clustering

Three weighted MR intensity images provide the features for FCM clustering. Each pixel

is associated with a 3D feature vector of its T1, PD and T2 weighted values. An example

axial slice through the lateral ventricles is represented by the three weighted images in

Figure 1. The FCM clustering method is an unsupervised classi�cation method since it

does not require any hand labeled data. FCM groups pixels by iteratively calculating a set

of C cluster centers and optimizing an objective function until a stopping criteria has been

reached. Once clustering is completed, each image pixel belongs to each class with a fuzzy

membership value between 0 and 1. The fuzzy membership values represent the fact that

one pixel may partially belong to more than one class. When a membership value of a

pixel is one within a particular class, it is believed that the pixel contains only that tissue

class, whereas membership values of zero represent a pixel not containing that particular

tissue class. The class with the maximum membership value is chosen as the class label for

a given pixel. Fuzzy membership values are interesting in MR segmentation since a slice
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through brain tissues represents a projection of the slice thickness onto a two-dimensional

plane, contributing greatly to the partial volume e�ect (i.e. a pixel may contain more than

one tissue). This e�ect could be reduced with thinner slices and a smaller �eld of view

(FOV). Currently, with a 240 mm FOV and a 5 mm slice thickness, the pixel dimensions

are approximately 0.94 mm x 0.94 mm x 5.0 mm. Obviously, we would wish to reduce

the slice thickness since the partial volume e�ect would be signi�cantly reduced. Thinner

slices may be obtained in the future, at the possible cost of a lower signal to noise ratio.

Another attribute of FCM is that it tends to cluster data into equal sized clusters.

Therefore, in order to obtain good segmentations (or clusters of primarily one tissue type),

each clustering step should require that the number of classes be larger than the actual

number of distinct tissue types [28]. Hence, our initial clustering step uses ten classes.

Extra-cranial tissues are removed after clustering using existing methods [6], [22] and

we re-cluster the remaining data into seven classes. Figure 2 is a slice showing both the

ten class segmentation and the seven class segmentation of the intracranial tissues. Note

the di�culty in distinguishing between the pathology tissues and the CSF in the lateral

ventricles as well as other tissues in and around the ventricles (e.g. corpus collosum,

choroid plexus, fornix and septum pellucidum) based solely on class information. With

this in mind, expert knowledge of shape and physical locations of normal brain tissues, in

addition to class information, can aid in identifying normal tissues, such that all abnormal

tissues may be identi�ed as the remaining tissues occupying feature space in anticipated

locations. For example, lateral ventricles are expected to 1) be located near the center of

each slice containing them, 2) contain CSF, among other tissues, and 3) have a certain

range of shapes depending on the location of the axial slice within the head. All locations

of cluster centers, shapes and physical locations of tissue structures are anticipated due to

observations of the training data. Acquiring this knowledge is a process called knowledge

engineering used in an e�ort to train a KB system. Once the knowledge is extracted from

the training data, it may be incorporated into the KB system in the form of heuristics.

Heuristics are rules of thumb which may be expressed in relative or fuzzy terms such as

\higher end of the PD spectrum," or \the three highest PD classes." Both expressions

refer to the location of PD cluster centers in feature space.
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TABLE II

Data Description.

Patient Train/ Tumor Type Tumor Non- Number

Volume Test Slices Tumor Slices

1 Train (Anaplastic) Astrocytoma 6 2 8

2 Test (Anaplastic) Astrocytoma 6 2 8

3 Test Astrocytoma 6 1 7

4 Test Astrocytoma 5 0 5

5 Test Astrocytoma 7 4 11

6 Train Glioblastoma-Multiforme 6 0 6

Training data: 12 2 14

Testing data: 24 7 31

Total slices: 36 9 45

Fig. 1. Sample raw data from a patient volume used for FCM clustering. Images shown are T1, PD and

T2-weighted from left to right.
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White matter

CSF of lateral
ventricles

White matter

CSF of lateral
ventricles

(Tumor, Necrosis)
Pathology

(Tumor, Necrosis)
Pathology

Grey matter Grey matter

Fig. 2. Sample FCM clustered data. Images shown are class maps after image was clustered into ten

classes (left), then re-clustered into seven classes after extra-cranial tissues were removed (right).
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Two-Dimensional Image Processing  

Remove Necrosis
via T1 Histogram 

Ventricle 
Approximation

(per slice per volume)

Remove Pixels 
within Ventricles

Unsupervised Clustering 

Initial Fuzzy C-Means
(FCM) Clustering

Extract Intracranial 
Tissues, 

FCM Reclustering

Retain Classes
Containing 

CSF and Tumor

Name Tumor as
Most Compact,

High Variance Region

Slice c

Slice b

Slice a

Slice c

Slice b

Slice a

Build Volume;
Perform 3D Connected

Components

Three-Dimensional Image Processing  

a. b. c.

d. e. f.

g. h.

Fig. 3. An overview of the entire non-enhancing tumor classi�cation method. The �rst phase of this

three phase process begins with FCM clustering into ten classes (a), removal of extra-cranial tissues

and re-clustering of the remaining tissues into seven classes (b) and removal of white and grey matter

(c). The second phase uses histogram analysis in T1 feature space to remove any necrosis from the

pathology image (d). Two-dimensional image processing techniques and knowledge of CSF shape

and ventricle location eliminate large CSF regions from the image (e)-(f). Finally, three-dimensional

connected components and a compactness measure aid in the �nal tumor detection (g)-(h).
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Plotting the feature space of the training data, showed that in all slices, the tumor

and CSF were separable from white and grey matter, but not from each other without

misclassifying some tumor pixels. Since all pathology, as well as most of the CSF appear

within the three PD clusters whose centroid values are highest, when the seven cluster

centers are ranked in PD feature space, our system retains the CSF and pathology pixels

by storing pixels belonging to these three clusters in a binary image to be used as a mask

for further processing. The remaining classes, consisting mostly of white and grey matter

tissues, are also stored in a binary image to aid in the ventricle approximation procedure

discussed in Section III-B.2.b.

B.2 Knowledge-guided image processing steps

Figure 3 demonstrates how the image processing steps �t into the non-enhancing tumor

classi�cation system. The 2D and 3D image processing, when completed, aid in the deci-

sion of tumor location within the volume. This system operates under two assumptions.

First, there is one tumor somewhere within the patient volume. Second, the tumor exists

in at least three consecutive slices. The �rst assumption is fair since this system was de-

signed to be added onto an existing tumor segmentation system for enhancing tumors [6],

[7] and activated if deformation exists but a tumor is not located. Also, since this KB

system is intended to be used to track tumor growth/shrinkage, the number of tumors

existing in each volume will be known before volume measurements are calculated. If

more than one tumor exists, that knowledge will be taken into consideration. The latter

assumption, with present data of 5 mm thick slices, speci�es that non-enhancing tumors

must be at least 1.5 cm deep, perpendicular to the axial slice, or parallel to the Z direc-

tion, for reasons to be discussed within Section III-B.2.c. Knowledge obtained from the

training data, such as the method for ventricle approximation, has been incorporated into

a rule-base which is accessed by CLIPS [29], a rule-based expert system tool.

B.2.a Necrosis removal. After the binary CSF/pathology image is obtained by retaining

the three classes with the highest relative proton density cluster centers of the seven

class re-clustered image, we may remove any existing necrosis via the procedure shown

pictorially in Figure 4. First, a histogram of the T1 space for each slice is generated. Each
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histogram exhibits either uni-modal or bi-modal characteristics. However, since these

histograms are of real data containing noise it is di�cult to algorithmically determine if

the histogram is uni or bi-modal. Therefore, the histogram is smoothed repeatedly with

a Gaussian �lter of sigma = 1.5, until there are two peaks or more, but never less than

two peaks. Since the possibility exists for the �ltering process to smooth a histogram with

more than two peaks into a uni-modal shape, we anticipate a bi-modal shape in order

to maximize the bene�t of the necrosis removal procedure. If only one peak is detected,

we instead use the previously smoothed histogram which by de�nition has more than two

peaks.

Second, we locate the local minimum which separates the �rst peak from the second

(or remaining peaks in the case of a multi-modal histogram) and use that value as a

threshold. All pixels below the threshold are eliminated in the CSF/pathology image with

one stipulation, the threshold must be less than half of the histogram pixel value range. If

it is not then we assume that the true nature of the histogram is uni-modal and we do not

remove any pixels from the CSF/pathology image. Since the necrotic tissues exhibit a very

low intensity signal in the T1 space while tumor exhibits a range of high intensity signals,

this successfully removes most pixels containing necrotic tissues from further processing.

We refer to this new binary image as a CSF/tumor image.

As an example of rule construction, the necrosis removal procedure is represented by:

REPEAT

IF (T1 histogram peaks > 2)

THEN (Smooth histogram)

ELSE IF (T1 histogram peaks = 2)

THEN (Smoothing complete)

(Break Repeat)

ELSE (Retrieve previous T1 histogram)

(Smoothing complete)

(Break Repeat)

END REPEAT
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IF (Smoothing complete)

THEN (Locate minimum between �rst 2 peaks)

(Remove pixels from image below minimum)

B.2.b Ventricle approximation and removal. Once a new binary CSF/tumor image has

been obtained minus any necrosis, we attempt to remove the ventricles for each slice

containing them. The �rst step in obtaining the ventricle approximation is to retrieve

the white and grey matter classes from the previous clustering step. Since white and

grey matter (or parenchymal tissues) should surround the lateral ventricles [15], we can

estimate the shape and size of the ventricles by measuring the position of the white or

grey matter pixels closest to the center of the slice in the binary white/grey matter image.

This is done by emitting radial lines every 15 degrees, from the approximate center of the

head. Figure 5 demonstrates this concept. Radial lines that intersect either the white or

grey matter, mark the position of the closest white or grey matter pixel on their trajectory.

When a radial line does not intersect a white or grey matter pixel, its mirror trajectory

(given a vertical axis re
ection plane) is examined next. If there was a detection along the

mirror trajectory, then that point is mirrored back to the original trajectory. If neither

line intersected white or grey matter, then the average length of their nearest neighboring

emitter lines which intersected white or grey matter is used. Once all lines have been

created, the end points of emitter lines are translated into Cartesian coordinates. The

lengths of mirror trajectories are compared until each pair represents the same length by

choosing the shortest length of the pair. Once all pair lengths have been determined,

the new points are ordered by trajectory angle and a closed polygon is drawn and �lled.

Slices that do not contain ventricles result in the formation of very small polygons located

near the center of the head. Usually, only a few pixels are contained within the assumed

ventricles, hence only a few pixels may be removed. CSF, tumor, both or background pixels

will make up the region of the polygon depending on the contents of the CSF/tumor image.

The worst case would be if all pixels in the location of the small polygon are tumor pixels,

which is possible if the tumor is located in the center of the slice. This problem however,

has not been encountered.
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  Image re-clustered
into 7 classes

Retain pixels from highest 3 PD 
clusters of re-clustered image

 CSF and pathology
 classes

T1 histogram smoothing;
Remove pixels from first peak

Pixel Value

Pi
xe

l C
ou

nt

Necrosis and low intensity
CSF removed

Remaining CSF and
pathology

Fig. 4. Necrosis is removed by isolating the low intensity peak of the CSF/pathology T1 histogram. This

histogram is �rst smoothed until only two peaks remain then the minimum between the two peaks

is used as a threshold. The low intensity peak (marked with dashed lines) is removed, leaving tumor

and some CSF.
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Remaining CSF and
pathology

Ventricles removed by 
eliminating all common pixels.

Image re-clustered
into 7 classes Image after necrosis removal

 White and grey matter
 classes

Emitter lines guide search for
first white or grey matter pixel.  

Neighbor searching rules 
force a minimized, symmetric 

approximation.

Polygon drawn and filled 

Fig. 5. Ventricle removal begins with collecting the white and grey matter classes from the seven cluster

class-map. Emitted lines radially span the white/grey matter image and mark detected boundaries

(solid radial lines). Undetected boundaries (dotted radial lines) are approximated via their \mirror"

radial lines and close neighbors. The result is a list of dot locations which, when connected, approx-

imate the shape of the lateral ventricles. Note the polygon is symmetrical along the vertical axis.

Next, any common pixels in both the ventricle approximation and the image remaining after necrosis

removal described in Figure 4 are removed.
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We have deliberately generated a polygon which is symmetrical along the vertical axis for

two reasons. First, since lateral ventricles in a healthy brain will be near symmetrical across

the longitudinal �ssure separating the left and right hemispheres, a good approximation of

healthy ventricles should be symmetrical across the same axis. Obviously, approximation

errors may be incurred when unhealthy ventricles are no longer symmetrically shaped.

For example, asymmetric hydrocephalus (an abnormal enlargement of the ventricles which

presents unevenly from the left to the right ventricle) is caused by atrophy of the cerebral

cortex, and therefore, may accompany brain tumors. For this reason, we duplicate the

smaller ventricle for removal in order to prevent the unintentional removal of tumor pixels.

Second, for cases where it is di�cult to detect a spatial boundary between ventricles

and tumor due to their close proximity, we wish to approximate healthy ventricles so the

removal of the lateral ventricles is possible. The ventricles are then removed by eliminating

all foreground pixels common to the polygon and the CSF/tumor image.

B.2.c 3D processing. Next, a binary volume image is built by stacking consecutive slices

of the remaining CSF/tumor pixels. Note, in Figure 4 and Figure 5, isolated pixels are

distributed in each slice where CSF surrounds grey matter and sits within the sulci. A

3x3x3 morphological operator is used to convert pixels to background that do not have

at least 17 of 26 neighboring pixels in the foreground (simulating two layers within the

boundaries of the operator). This threshold is large enough to be e�ective in removing very

small groups of pixels, but small enough to prevent the removal of all foreground pixels in a

slice of the volume unless its neighboring slices do not contain foreground pixels in the same

location. This helps reduce the number of non-tumor regions found during the following

connected components operation. A 3D connected components algorithm labels groups of

connected pixels in the volume as regions. Two statistical values are calculated for each

region, a pixel count and the variance of the original intensity values in the PD weighted

image. Next, a 3x3x3 erosion operator is used on the volume. This erosion operation

leaves a pixel as foreground if all neighboring pixels are also foreground. In other words, a

foreground pixel centered in the erosion window, remains as foreground only if all 26 pixels

surrounding the center pixel are also foreground. Therefore, the tumor must be present in

at least three consecutive slices due to the nature of the 3D erosion operator, or at least 1.5
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cm in the Z direction, as was mentioned in Section III-B.2, and at least 119 mm3 given a

240 mm FOV or 100 mm3 given a 220 mm FOV, both with a 5 mm slice thickness. Pixels

remaining within the boundaries of each original region after the erosion are counted and

the percent of pixels retained governs which 3D region is chosen as the tumor. If there

is one region with the highest percentage of pixels remaining, that region is chosen due

to observations that tumor regions tend to be more spatially compact than CSF regions.

Otherwise, the additional criteria is to choose the region with a higher variance. Statistical

variance is pertinent since large regions remaining are either parts of ventricles which were

missed during the ventricle removal stage or tumor tissues. The ventricle portions tend to

be homogeneous due to the compartmental nature of brain/CSF boundaries whereas the

tumor tissues are in�ltrating other brain tissues, possibly exhibiting more partial volume

e�ects.

IV. Results and Discussion

Our system was trained on two volumes and tested on four volumes previously unseen

by the system. A total of 45 slices were processed. All tumor sizes in the volumes

examined, exceed the previously stated lower bound of 100 mm3 for a 220 mm FOV

and 119 mm3 for a 240 mm FOV. Again, smaller tumors would not be detected using

the current implementation for the �xed slice thickness. Results are listed in Tables III

and IV, where Table III qualitatively describes results on a per slice basis and Table IV

quantitatively displays results on a pixel level per volume.

In Table III it is shown that of the 45 slices, 40 were labeled by the system as containing

tumor. Thirty-�ve of the 40 slices were positively identi�ed by a radiologist as containing

tumor pixels, yielding �ve false positives, where one of the �ve was a slice with ground truth

tumor pixels but none of those pixels were actually detected. Hence, all slices with tumor

were detected. The slice that was both a false positive and a false negative corresponds to

slice 20 of volume 1, where 40 pixels were believed to be tumor but none were shared by

the 77 ground truth pixels. We chose to represent this slice as shared between the false

positive and false negative category, both marked by the asterisk. Examining this slice

further, however, we found that a convex hull measurement of each small \tumor" region

overlaps with the other and the centroid of each is separated by only 11 pixels. Any false
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positives may be caused by the 3D connected components algorithm since slices directly

above and below the tumor may contain CSF pixels, which the algorithm connects to the

tumor. Alternatively, any false negatives may be caused by the use of the morphological

operators used during processing to remove small isolated groups of pixels.

Also seen in row three of Table III the ventricle approximation and removal phase con-

tributed two positive results to the segmentation method. First and foremost, if the CSF

ventricles are merged with the tumor, ventricles were removed from the image, hence,

separating the two histologically distinct regions via the spatial domain. Secondly, by

removing the only other large regions in all images, the most spatially compact region is

the tumor based on the method of measurement. Occasionally, however, in lower slices

when the ventricle approximation fails due to the presence of white or grey matter pixels

near the center of the brain, the variance feature is needed to verify the correct tumor

region. Note that all slices exhibiting the characteristic of the lateral ventricles merged

with the tumor area were successfully separated from each other.
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TABLE III

Tumor classification results. Numbers are listed as: Total (Train/Test)

Ground Number True False False

Truth Detected Positives Positives Negatives

Slices with Tumor 36 (12/24) 40 (13/27) 35 (11/24) *5 (2/4) *1 (1/0)

Slices without Tumor 9 (2/7) 5 (1/4) 5 (1/4) 0 (0/0) 4 (1/3)

Separation of Merged CSF and Tumor 9 (5/4) 9 (5/4) 9 (5/4) 0 (0/0) 0 (0/0)
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Example worst and best case tumor segmentations are shown in Figure 6 which corre-

spond to slice 14 of volume 2 and slice 20 of volume 5. Depicted are the raw data images

beside the radiologist labeled ground truth image and the knowledge base segmented tu-

mor.

Table IV displays the results for each volume on a pixel level. Ground truth was obtained

from the boundary drawings of a radiologist, which were later looked at and veri�ed by the

same radiologist. It should be noted, however, that the task of drawing tumor boundaries is

very di�cult without the often unavailable histopathological �ndings required for absolute

veri�cation [9], [13]. This is compounded by the fact that all tumors in this study were

non-enhancing. Also, Wells et al. [39] have shown that inter and intra-observer variability

can be very high (inter: 17-21% among �ve experts, intra: 18-25% two ratings obtained

with two methods) showing that the task of hand-labeling ground truth is very complex,

and the correlation between ground truth and any automatic labeling system goes beyond

pixel level comparisons and into the repeated trends of the tissue estimations.

The 3D tumor regions which were identi�ed by the knowledge base were then compared

to the pixel level ground truth on a per slice basis. Listed in Table IV are the number

of true positives (ground truth tumor pixels found algorithmically), false positives (pixels

isolated as tumor though not within ground truth boundaries) and false negatives (ground

truth tumor pixels not found algorithmically).

From these three measures we chose to represent overall results with two additional

calculations. The correspondence ratio (CR) shown in Equation 1 allows us to discuss the

way in which the isolated tumor corresponds in size and location to the ground truth tumor

while weighting the importance of false positives and false negatives. It is calculated by

dividing the number of ground truth pixels (or all tumor pixels) into the di�erence of the

true positives plus one half times the number of false positives. Although a correspondence

ratio of one is ideal, any value can be very descriptive since it negatively weighs the value

of the true positives with 50% of the false positives, indicating that a false positive is

detrimental only to a certain degree. Speci�cally, a negative correspondence ratio indicates

a greater than two to one rate of false positives with respect to true positives. Since we

are interested in measuring tumor volume and location for the purpose of treatment, it
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is intuitive that the immediate area around the tumor will also be treated, hence the

weighting mechanism in our correspondence ratio. Also note that in Table IV we express

the correspondence ratio as: 1.0 if the system identi�ed no pixels as tumor where none

existed in ground truth, and 0.0 if the system identi�ed any pixels as tumor where none

existed in ground truth.

CR =
TruePositives� (0:5 � FalsePositives)

GroundTruthTumor
(1)

Percent match, shown in Equation 2, is calculated as the direct ratio of the true positives

to the number of ground truth tumor pixels. An ideal percent match is 100%, with a value

of zero indicating that there was a complete miss of any ground truth pixels for that slice.

If the number of ground truth pixels is 0, then a percent match of 100% is shown in

Table IV.

PercentMatch =
TruePositives

GroundTruthTumor
� 100% (2)
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a.

d.

b. c.

e. f.

Fig. 6. Example results for two slices from worst case (top) and best case (bottom) volumes comparing

ground truth to KB tumor segmentation. Poor performing slice from worst case volume 2 (a)-(c)

and good performing slice from best case volume 5 (d)-(f). Shown are raw data for each (a) and (d),

ground truth tumor (b) and (e), and KB tumor segmentation for slice shown (c) and (f). Slices are

shown for ease of viewing, noting that full volumes were labeled by the KB system as tumor.

Fig. 7. Volume showing the worst results.
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Fig. 8. Volume showing the best results.
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Volumes 2 and 3 represent the worst of our testing results while volume 5 represents our

best testing results. Although both volumes 2 and 3 have one slice each where no true

positives are found, and both volumes have low correspondence ratios, (0.484 for volume

2 and 0.368 for volume 3) we chose to show volume 2 in Figure 7 as our current worst case

results since volume 3 has a much higher percent match value (81.1%) than does volume 2

(53.0%). Volume 5 demonstrates our best results clearly seen by the high correspondence

ratios for all but two slices of 11 and high percent match values for all but two slices.

The overall correspondence ratio and percent match for the slice are 77.6% and 79.2%

respectively. Slice number 18 is considered a complete false positive since 23 pixels were

believed to be tumor where none existed in the ground truth image.

While these numerical values and calculations for volumes 2 and 5 fairly represent the

data, Figures 7 and 8 graphically show true positive, false positive and false negative pixel

counts for the two volumes mentioned above. Figure 7 represents some of our worst results,

as seen by the high number of false negatives in each slice. Also, in slice 20, six pixels were

believed to be tumor but none existed in the ground truth image, therefore, only false

positives and no true positives exist for that slice. This error may be attributed to the

usage of the 3D connected components algorithm which tends to connect any pixels in the

slices above and below the tumor before the 3D erosion operator is used. Although the

correspondence ratio and percent match values seem low, success of our method can also

be measured as having correctly detected tumor pixels in six of all six slices containing

tumor and correctly identifying one slice of two that contain no tumor pixels in the ground

truth image.

Figure 8 shows some of our best results. Slices 15 - 17 each have full correspondence

and percent match since, no tumor existed in these slices and none was found. In slice 18,

we again detected pixels, admittedly only 23, where none exist in the ground truth image.

This again would be due to the usage of the 3D connected components algorithm. Tumor

regions within slices 19 - 25 were all detected with correspondence ratios above 0.75 in

all but slice 25, and percent match values were above 75% in all but slice 25. The pixels

missed in slice 25 were all towards the exterior of brain, some of which were removed in

very early stages of processing during the extra-cranial removal stage and we may consider
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ways to recover such pixels in the future. The volume correspondence ratio is equally high

at 0.776 with a percent match of 79.2%.
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TABLE IV

Pixel Level Comparisons

Patient Slice True False False Ground Total Tumor Correspondence Percent

Volume Positives Positives Negatives Truth Isolated Ratio Match

1 15 52 38 349 401 90 0.082 13.0

Train 16 295 52 266 561 347 0.480 52.6

17 421 85 249 670 506 0.565 62.8

18 498 21 254 752 519 0.648 66.2

19 284 76 164 448 360 0.549 63.4

20 0 40 77 77 40 -0.260 0.0

21 0 15 0 0 15 0.000 100.0

22 0 0 0 0 0 1.000 100.0

Volume Totals: 1550 327 1359 2909 1877 0.477 53.3

Patient Slice True False False Ground Total Tumor Correspondence Percent

Volume Positives Positives Negatives Truth Isolated Ratio Match

2 14 33 16 242 275 49 0.091 12.0

Test 15 257 48 313 570 305 0.409 45.1

16 357 49 235 592 406 0.562 60.3

17 524 72 245 769 596 0.635 68.1

18 428 31 273 701 459 0.588 61.1

19 39 61 143 182 100 0.047 21.4

20 0 6 0 0 6 0.000 100.0

21 0 0 0 0 0 1.000 100.0

Volume Totals: 1638 283 1451 3089 1921 0.484 53.0

Patient Slice True False False Ground Total Tumor Correspondence Percent

Volume Positives Positives Negatives Truth Isolated Ratio Match

3 15 252 254 148 400 506 0.313 63.0

Test 16 194 686 83 277 880 -0.538 70.0

17 622 313 58 680 935 0.685 91.5

18 549 215 81 630 764 0.701 87.1

19 145 267 30 175 412 0.066 82.9

20 24 203 15 39 227 -1.987 61.5

21 0 13 0 0 13 0.000 100.0

Volume Totals: 1786 1951 415 2201 3737 0.368 81.1

Patient Slice True False False Ground Total Tumor Correspondence Percent

Volume Positives Positives Negatives Truth Isolated Ratio Match

4 16 687 319 123 810 1006 0.651 84.8

Test 17 636 861 29 665 1497 0.309 95.6

18 1053 533 137 1190 1586 0.661 88.5

19 774 481 37 811 1255 0.658 95.4

20 429 48 73 502 477 0.807 85.5

Volume Totals: 3579 2242 399 3978 5821 0.618 90.0
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Pixel Level Comparisons, continued

Patient Slice True False False Ground Total Tumor Correspondence Percent

Volume Positives Positives Negatives Truth Isolated Ratio Match

5 15 0 0 0 0 0 1.000 100.0

Test 16 0 0 0 0 0 1.000 100.0

17 0 0 0 0 0 1.000 100.0

18 0 23 0 0 23 0.000 100.0

19 470 34 87 557 504 0.813 84.4

20 890 52 137 1027 942 0.841 86.7

21 1238 43 381 1619 1281 0.751 76.5

22 1327 6 275 1602 1333 0.826 82.8

23 1019 59 210 1229 1078 0.805 82.9

24 811 18 209 1020 829 0.786 79.5

25 295 0 294 589 295 0.501 50.1

Volume Totals: 6050 235 1593 7643 6285 0.776 79.2

Patient Slice True False False Ground Total Tumor Correspondence Percent

Volume Positives Positives Negatives Truth Isolated Ratio Match

6 4 412 511 144 556 923 0.281 74.1

Train 5 1716 338 85 1801 2054 0.859 95.3

6 3125 141 185 3310 3266 0.923 94.4

7 3502 22 331 3833 3524 0.911 91.4

8 3040 137 241 3281 3177 0.906 92.7

9 2383 35 427 2810 2418 0.842 84.8

Volume Totals: 14178 1184 1413 15591 15362 0.871 90.9
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V. Conclusions

Our results show that this method has great potential for solving the di�cult problem of

segmenting, localizing and measuring volumes of non-enhancing tumors. We automatically

detected all six non-enhancing brain tumors, and located them in 35 of the 36 ground truth

slices containing tumor. We also successfully separated CSF regions merged with tumor in

nine of nine slices. The correspondence ratio calculation which negatively weights half the

number of false positives against the true positives ranged from 0.368 - 0.871 per volume

indicating that a fair level of correspondence exists between ground truth measurements

and tumor pixels isolated via our segmentation method. Generally high percent match

calculations, ranging from 53.0% to 90.9% per volume, indicate that high percentages of

ground truth pixels were identi�ed as tumor pixels by our segmentation method.

False positives and false negatives may be attributed to the complexity of de�ning the

ground truth tumor regions as well as the di�culty in determining tumor boundaries

algorithmically. Partial volume e�ects of course limit the accuracy of any method. Thinner

slices will improve results greatly in terms of partial volume restrictions and the use of

the 3D erosion operator in the tumor detection process, since the erosion operator reduces

the tumor depth by two slice thicknesses. Therefore, if a tumor does not exist in at least

three consecutive slices (regardless of the slice thickness) that tumor region will have no

chance of passing the compactness criteria due to the e�ect of the 3D erosion operation.

Additional improvements are needed to re�ne the tumor approximation method as there

is potential to miss the ventricles if a white or grey matter pixel is near the center of the

head. Eventually, we will approximate the size and shape of the lateral ventricles only in

the slices which contain them. Once the consistency of our method is established, we will

have completed the important �rst step in successful tumor volume tracking over time.
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