
RIPPER

William Cohen, Fast Effective Rule
Induction, Proceedings of the 12th
International Conference on
Machine Learning

IREP-Based

•  Based on incremental reduced error
pruning (IREP).

•  Grow rules one at a time.
•  Have a growing set of 2/3 of the examples

for building the rule and a pruning set of
1/3.

•  Build rules for 2 class problems. Order
classes by size from smallest to largest.

•  Build rules for smallest class vs. all other
examples first.

Using a pruning set

•  For statistical validity, must evaluate measure on
data not used for training:
–  This requires a growing set and a pruning set

•  Reduced-error pruning :
build full rule set and then prune it

•  Incremental reduced-error pruning : simplify
each rule as soon as it is built
–  Can re-split data after rule has been pruned

•  Stratification advantageous

Incremental reduced-error pruning

Initialize E to the instance set
Until E is empty do
 Split E into Grow and Prune in the ratio 2:1
 For each class C for which Grow contains an instance
 Use basic covering algorithm to create best perfect rule
 for C
 Calculate w(R): worth of rule on Prune
 and w(R-): worth of rule with final condition
 omitted
 If w(R-) < w(R), prune rule and repeat previous step

 From the rules for the different classes, select the one
 that’s worth most (i.e. with largest w(R))

 Print the rule
 Remove the instances covered by rule from E
Continue

Incremental reduced-error pruning
Modified for RIPPER

•  Order classes according to increasing prevalence
 (C1,....,Ck)

find rule set to separate C1 from other classes
 IREP(Pos=C1,Neg=C2,...,Ck)

remove all instances learned by rule set
find rule set to separate C2 from C3,...,Ck
...
Ck remains as default class

Question

•  The requirement in RIPPER of a pruning
set
–  a) reflects the belief that learning on all

training data may overfit
– b) is done to minimize accuracy
– c) will work better for large training sets,

avoiding starving the learning system for data
– d) uses the idea of just pruning a test when it

does not improve performance on the test
data.

Incremental reduced-error pruning
Modified for RIPPER

Measures used in IREP
•  [p + (N – n)] / T

–  (N is total number of negatives, p (n) positive
(negative) examples covered, T total number of
examples)

–  Counterintuitive:
•  p = 2000 and n = 1000 vs. p = 1000 and n = 1

•  Success rate p / t
–  Problem: p = 1 and t = 1
 vs. p = 1000 and t = 1001

•  (p – n) / t
–  Same effect as success rate because it equals

2p/t – 1
•  Seems hard to find a simple measure of a

rule’s worth that corresponds with intuition

Improvements to get RIPPER

,)Pr,Pr,(
np
npuneNegunePosRulev

+

−
≡

Where P (N) is the total number of examples in
PrunePos (PruneNeg) and p (n) is the number of
examples in PrunePos (PruneNeg) covered by
Rule.

Improvements to get RIPPER

•  Find total description length of rule set
and examples computed.

•  Stop adding rules when this description
length is more that d bits larger than the
smallest description length found thus far.
(d=64).

• For a rule set Ri, …, Rk consider each
rule in turn in order learned. Create
replacement and revision rules.

Replacement and Revision Rules

•  Replacement for Ri, Ri’ is formed by growing
and then pruning a rule with pruning guided to
minimize error of entire rule set as measured
on the pruning set.

•  The revision is created by greedily adding
conditions to Ri, rather than the empty rule.

•  The final theory can contain only one of the
original, replacement or revision rules based on
MDL.

kii RRR ,...,,..., '

Question

•  Ripper growing a replacement rule is based
on the idea that
– a) searching too much is bad
– b) there are no good rules unless you use all

data.
– c) all train/prune splits are equal
– d) the random split into a training and pruning

set may effect the quality of the rules obtained.

Optimization

•  Can add more rules from IREP* to get
RIPPER2 and in general can get RIPPERk for k
optimizations.

•  Let a rule have k conditions of n possible
conditions, pr be known by the message
recipient (pr=k/n here) and ||k|| be the number
of bits needed to send integer k. Equation for
bits for rule is below.

S(n,k, pr) ! (k log2
1
pr
+ (n" k)log2

1
1" pr

+ || k ||)#0.5= bits

Optimization
•  Rule accuracy can be encoded by exceptions

(false positives and false negatives).
•  Let a rule cover p of P cases with fp – false

positives and fn - false negatives, the bits
required to encode exceptions are:

•  To get the MDL you must sum all rules and
exceptions for them.

)(log)(log 22 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

fn
pP

fp
p

bits

Results

•  RIPPER is much better than IREP*
(28-7-2) for won, loss and tie on 37 data
sets.

•  Faster and better than C4.5 rules
(20-15-2)

