Reduced Error Pruning for Decision Trees

• Split training data into a training and pruning set. Often 2/3 train and 1/3 pruning.

• Train Decision Tree.

• Bottom up (from leaves) see if leaving out a test makes accuracy better or leaves it the same. If yes, prune test (node).

• Accuracy measured how? Count of correct vs. incorrect using the pruning data.
Reduced Error Pruning

- Continue examining nodes (tests) in a bottom up fashion until nothing more can be pruned.

- Use pruned tree on test data (which is not in the training or pruning data).

- This is similar to pruning rules with Ripper.
C4.5’s method

- Error estimate for subtree is weighted sum of error estimates for all its leaves
- Error estimate for a node:

$$e = (f + \frac{z^2}{2N} + z \sqrt{\frac{f}{N} - \frac{f^2}{N^2} + \frac{z^2}{4N^2}}) / (1 + \frac{z^2}{N})$$

- If $c = 25\%$ then $z = 0.69$ (from normal distribution)
- f is the error on the training data
- N is the number of instances covered by the leaf
Example

\[f = \frac{5}{14} \]
\[e = 0.46 \]
\[e < 0.51 \]
\[\text{so prune!} \]

Combined using ratios 6:2:6 gives 0.51