RIPPER

William Cohen, Fast Effective Rule
Induction, Proceedings of the 12t
International Conference on
Machine Learning

|IREP-Based

Based on incremental reduced error
pruning (IREP).

Grow rules one at a time.

Have a growing set of 2/3 of the examples
for building the rule and a pruning set of
1/3.

Build rules for 2 class problems. Order
classes by size from smallest to largest.

Build rules for smallest class vs. all other
examples first.

Using a pruning set

For statistical validity, must evaluate measure on
data not used for training:

— This requires a growing set and a pruning set

Reduced-error pruning
build full rule set and then prune it

Incremental reduced-error pruning . simplify
each rule as soon as it is built
— Can re-split data after rule has been pruned

Stratification advantageous

Incremental reduced-error pruning

Initialize E to the instance set
Until E is empty do
Split E into Grow and Prune in the ratio 2:1
For each class C for which Grow contains an instance

Use basic covering algorithm to create best perfect rule
for C

Calculate w(R): worth of rule on Prune
and w(R-) : worth of rule with final condition
omitted

If w(R) < w(R-), prune rule and repeat previous step

From the rules for the different classes, select the one
that’'s worth most (i.e. with largest w(R))

Print the rule
Remove the instances covered by rule from E

Continue

Incremental reduced-error pruning
Modified for RIPPER

- Order classes according to increasing prevalence
(Cypeeea,Cp)
find rule set to separate C, from other classes
IREP (Pos=C,,Neg=C,, ...,C,)
remove all instances learned by rule set
find rule set to separate C, fromcC,, ..., C,

C, remains as default class

Question

* The requirement in RIPPER of a pruning
set

— a) reflects the belief that learning on all
training data may overfit

— b) is done to minimize accuracy

— ¢) will work better for large training sets,
avoiding starving the learning system for data

— d) uses the idea of just pruning a test when it
does not improve performance on the test
data.

Incremental reduced-error pruning
Modified for RIPPER

procedure IREP(Pos,Neg)
begin
Ruleset =
while Pos#) do
/¥ grow and prune a new rule */
split (Pos,Neg) into (GrowPos,GrowNeg)
and (PrunePos, PruneNeg)
Rule ;= GrowRule({GrowPos,GrowNeg)
Rule := PruneRule Rule, PrunePos, PruneNeg)
1f the error rate of Rule on
| PrunePcs, PruneNeg| exceeds 50% then
return Rulesst
clse
add Rule to Ruleset
remove examples covered by Rule
from (Pos,Neg)
endaf
endwhile
return Rulesst
ond

Growing a Rule

* To grow a rule, we have a training set of
positive and negative examples.

 \We add a test to a rule of the form

— atttribute,= v for a valid nominal value or
atttribute, < x or atttribute, >= x for a
continuous attribute with x in the range of
values (usually x is an observed value)

Choosing a test to Grow a Rule
* Foil gain is used:

Foil _Gain(Test,R) =t(log, by -log, Py)
P +n Dy + 1y
* Where p, is the number of positive examples
covered by R and n, is the number of negative
examples covered by R

* p, is the number of positive examples covered by
the R+ Test and n, is the number of negative

examples covered.

* tis the number of positive bindings of R also
covered by R+ Test.

Measures used in IREP
[p+(N=n)]/T

— (N is total number of negatives, p (n) positive

(negative) examples covered, T total number of
examples)

— Counterintuitive:
« p=2000and n=1000vs. p=1000and n =1

Successrate p/t
— Problem: p=1and t=1
vs. p =1000 and t = 1001
(p—n)/t
— Same effect as success rate because it equals
2p/t — 1
Seems hard to find a simple measure of a
rule’ s worth that corresponds with intuition

Improvements to get RIPPER

v(Rule,PrunePos,PruneNeg) = p-n
p+n

5

Where P (N) is the total number of examples in
PrunePos (PruneNeg) and p (n) is the number of

examples in PrunePos (PruneNeg) covered by
Rule.

Improvements to get RIPPER

 Find total description length of rule set
and examples computed.

« Stop adding rules when this description
length is more that d bits larger than the

smallest description length found thus far.
(d=64).

‘Forarule setR, ..., R, consider each
rule in turn in order learned. Create
replacement and revision rules.

Replacement and Revision Rules

« Replacement for R, R’ is formed by growing
and then pruning a rule with pruning guided to
minimize error of entire rule set as measured
on the pruning set.

!

R...R,..R

* The revision is created by greedily adding
conditions to R, rather than the empty rule.

« The final theory can contain only one of the
original, replacement or revision rules based on
MDL.

Question

* Ripper growing a replacement rule is based
on the idea that

— a) searching too much is bad

— b) there are no good rules unless you use all
data.

—¢) all train/prune splits are equal

— d) the random split into a training and pruning
set may effect the quality of the rules obtained.

Optimization

« Can add more rules from IREP* to get
RIPPERZ2 and in general can get RIPPERK for k
optimizations.

» Let a rule have k conditions of n possible
conditions, pr be known by the message
recipient (pr=k/n here) and ||k|| be the number
of bits needed to send integer k. Equation for

bits for rule is below.

S(n,k,pr)=(klog, L +(n-k)log, I

pr 1-pr

+11k)% 0.5 = bits

Optimization

* Rule accuracy can be encoded by exceptions
(false positives and false negatives).

» Let arule cover p of P cases with fp — false
positives and fn - false negatives, the bits
required to encode exceptions are:

bits =log, ((1];)) + IOgZ([;@_ p))

* To get the MDL you must sum all rules and
exceptions for them.

Results

 RIPPER is much better than IREP*
(28-7-2) for won, loss and tie on 37 data
sets.

 Faster and better than C4.5 rules
(20-15-2)

