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Abstract — We present a system to recognize under-
water plankton images from the Shadow Image Particle
Profiling Evaluation Recorder. As some images do not
have clear contours, we develop several features that do
not heavily depend on the contour information. A soft
margin support vector machine (SVM) was used as the
classifier. We developed a new way to assign probabil-
ity after multi-class SVM classification. Our approach
achieved approximately 90% accuracy on a collection
of images with minimal noise. On another image set
containing manually unidentifiable particles, it also pro-
vides promising results. Also, our approach is more ac-
curate on the two data sets than a C4.5 decision tree
and a cascade correlation neural network at the 95%
confidence level.

Keywords: plankton recognition; support vector ma-
chine; learning; feature selection; probabilistic output.

1 Introduction

Recently, the Shadow Image Particle Profiling Eval-
uation Recorder (SIPPER) was developed to continu-
ously sample plankton and suspended particles in the
ocean [17]. The SIPPER uses high-speed digital line-
scan cameras to record images of plankton and other
particles, thus avoiding the extensive post-processing
necessary with analog video particle images. The large
sampling aperture of the sensor combined with its high
imaging resolution (50 pum per pixel), means that it is
capable of collecting tens of thousands of plankton im-
ages an hour. This soon would overwhelm a scientist at-
tempting to manually classify the images into recogniz-
able plankton groups. Therefore, an automated plank-
ton recognition system is necessary to solve the problem
or at the very least to help with the classification.

Tang [19] developed a plankton recognition system
to classify plankton images from video cameras. The
moment invariants and Fourier descriptor features from
contour images were extracted. Also, granulometric fea-
tures from the gray-level images were computed. Fi-
nally, a learning vector quantization neural network was
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used to classify examples. Tang [19] achieved 92% clas-
sification accuracy on a medium-size data set.

The project ADIAC (Automatic Diatom Identifica-
tion and Classification) has been ongoing in Europe
since 1998. Different feature sets and classifiers have
been experimented with to recognize separate species of
diatom taken from photo-microscopes. Loke [12] and
Ciobanu [3] studied some new contour features. Santos
[18] extended the contour features to multi-scale Gabor
features together with texture features. Wilkinson [22]
applied morphological operators to help extract both
contour and texture information. Fischer [9] summa-
rized these features and used ensembles of decision trees
to classify the combined feature set. Greater than 90%
overall accuracy was achieved on the diatom images.

However, images from previous work are of relatively
good quality or at least with clear contours. Therefore,
complicated contour features and texture information
can be extracted easily. The SIPPER images, on the
other hand, present several difficulties:

1. Many SIPPER images do not have clear contours.
Some are partially occluded. Therefore, we cannot
depend mainly on contour information to recognize
the plankton.

2. The SIPPER image gallery includes many uniden-
tifiable particles as well as different types of plank-
ton.

3. The SIPPER images in our experiments are binary,
thus lacking enough texture information.

Not depending heavily on contour information, sev-
eral special features are developed in our system, and a
support vector machine (SVM) [20] is used to classify
the feature vectors. To reduce the computation time
and improve the classification accuracy, we applied the
wrapper approach [11] with backward elimination to se-
lect a subset of the features. We also developed a new
way to compute probabilistic outputs from a multi-class
support vector machine.

This paper is organized as follows. Section 2 intro-
duces the binary SIPPER images used in our experi-
ments. In Section 3, we discuss the preprocessing of
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the images and the extraction of the features. Section
4 describes the support vector machine and the way
we assign the probability in a multi-class support vec-
tor machine. We applied wrappers [11] with backward
elimination to select the best feature subset in Section 5
and experimental results for our system are detailed in
Section 6. Finally we summarize our work and propose
some ideas for future work in Section 7.

2 Image gallery

Domain experts build the training data as follows.
The SIPPER images are first converted to binary images
by choosing a proper threshold. A morphological closing
operation is used to analyze the connectivity and then
segment the binary images. Next, an expert manually
classifies the images into recognizable plankton groups.
The rest of the unrecognizable images are put into the
unidentifiable-particle group. Figure 1 contains typical
examples from SIPPER images.
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Figure 1: Figures from left to right, from top to bot-
tom are typical examples of copepod, diatom, doliolid,
larvacean, trichodesmium, protoctista and an manually
unidentifiable particle.

3 Feature computation

The SIPPER images have a lot of noise around or on
their bodies and some do not even have a clear contour,
thus making contour features (Fourier descriptor [23]
etc.) unstable and inaccurate. To solve this problem,
we first preprocess the images to suppress the noise. We
only use invariant moments and granulometric features,
which are relatively stable with respect to noise and do
not depend heavily on the contour image. To capture
the specific information from our SIPPER image set, do-
main knowledge is used to extract some specific features
such as size, convex ratio, transparency ratio, etc.

3.1 Noise suppression

We applied connected component analysis to elimi-
nate the noise pixels far from the plankton bodies. In
addition, a morphological closing operation is used to

separate the holes inside the plankton body from the
background [15].

3.2 Moment invariants

Moment features are widely used as general features
in shape recognition. The standard central moments are
computed as follows:

(z,7) is the center of the foreground pixels in the im-
age. The (p + g)-order central moments are computed
with every foreground pixel at (z,y):

ppg)=>.> (x—2)"(y—p)° (1)
Ty
Then central moments are normalized by size:

n(p,q) = Lqp)ﬂ (2)

1(0,0)7="

Hu [10] introduced a way to compute the seven lower
order moment invariants based on several nonlinear
combinations of the central moments. Using the nor-
malized central moments, we get the scale, rotation and
translation invariant features. We compute the same 7
moment invariants on the whole object and the contour
image after a morphological closing operation, respec-
tively.

3.3 Granulometric features

Since the Hu moments only contain low order infor-
mation from the image, we extracted several granulo-
metric features [13] to capture the high order informa-
tion. Granulometric features are computed by doing
a series of morphological openings with different sizes
of structure elements. Then we record the differences
in size between the plankton with and without open-
ings. Granulometric features are relatively robust to
noise and have the inherent information of shape dis-
tribution. Tang [19] found that granulometric features
were the most important features in his experiment.

We applied 3 x 3,5 x 5,7 x 7and 9 x 9 squares
as structure elements and did a series of morphological
openings. Then differences in size were normalized by
the original plankton size to obtain the granulometric
features. Also, we applied 3 x 3,5 x 5 and 7 x 7 squares
as structure elements, and did a series of morphological
closings. The differences in size were normalized in the
same way. We did not apply 9 x 9 squares to the closing
because the SIPPER images are so small that most of
them are diminished after the closing with 7 x 7 square
as the structure element.

3.4 Domain specific features

Moment invariants and granulometries are general
features, which can only capture some global informa-
tion. They are far from enough to classify SIPPER
images. Given advice from domain experts, we devel-
oped some domain specific features to help classification.



The domain specific features include size, convex ratio,
transparency ratio, ratio between the two eigenvalues,
and ratio between the plankton’s head and tail.

e Size: Size is the area of the plankton body, that
is, the number of foreground pixels in the plankton
image.

e Convex ratio: We implemented a fast algorithm
[1] to get the convex hull of the plankton image.
The convex ratio is the ratio between the plankton
image size and the area of the convex hull. This
feature contains information about the plankton
boundary irregularity.

e Transparency ratio: This is the ratio between the
area of the plankton image and the area of the
plankton after filling all inside holes. The trans-
parency ratio helps in recognizing the transparent
plankton.

e Ratio between the two eigenvalues: Since some
plankton are linear we first compute the two eigen-
values of the image. Then the ratio between them
is computed.

e Ratio between the head and the tail: Some plank-
ton such as larvaceans have a large head relative
to their tail. We compute the ratio between the
head and tail to differentiate them. To do this we
first rotate the image to make the axis with the
bigger eigenvalue parallel to the x-axis. Assuming
the smallest and largest x values are 0 and T re-
spectively, we accumulate the number of foreground
pixels along the x-axis from 0 to %T and from %T
to T respectively. Then we take the ratio between
them as the ratio between the head and the tail.

4 Support vector machines and
probability model

Support vector machines (SVMs) [20] are receiving
increasing attention these days and have achieved very
good accuracy in pattern recognition, text classification,
etc. [4]. In this section we describe SVMs and intro-
duce a way to assign a probability value after multi-class
SVM classification.

4.1 Support vector machines

In binary classification, SVMs try to find a hyper-
plane to separate the data into two classes. In the case
in which all the data are well separated, the margin is
defined as two times the distance between the hyper-
plane and the closest example. SVMs search for the hy-
perplane with the largest margin, which provides good
generalization ability based on Vapnik’ s VC dimension
theory [20]. To increase the classification ability, SVMs
first map the data into a higher dimension feature space

with ¢(x), then use a hyperplane in that feature space
to separate the data. In the feature mapping stage, the
kernel k(x,y) =< ¢(x) - ¢(y) > is used to avoid ex-
plicit inner product calculation in the high-dimension
feature space. C-SVM, a typical example of soft SVMs,
is described as follows. The slack variable &; is used to
handle non-separable cases.

Training set: there are m examples: 1,22, ..., T
with class label y; €{-1,1}.
C-SVM:
1 C &
inimize = < w,w > +— ; 3
minimize 5 < w,w —|—m Zg (3)

i=1
subject to: y;(< w, p(x;) > +b) > 1 —¢; (4)

where w is normal to the hyperplane, C' is a scalar
value that controls the trade off between the empiri-
cal risk and the margin length, &; is the slack variable
and C,& > 0.

The decision function is f(z) = Y, auk(x;,x) + b,
where «; and b are computed from Eq. (3) and (4).

The Karush-Kuhn-Tucker condition of the optimal so-
lution to Eq. (3) and (4) is:

ai(<w,d(x;) >+b—-1+¢&)=0 (5)

The «; is nonzero only when Eq. (6) is satisfied. In
this case the z; contributes to the decision function and
is called a support vector (SV).

yi(<w,d(zi) > +b) =1-¢; (6)

Therefore, we get a sparse solution of the decision
function, where only SVs contribute.

There are two main approaches to extending SVMs
to multi-class classification:

1. One-vs-all: A set of binary SVMs are trained to
separate one class from the rest. The drawback is
that we are handling unbalanced data when build-
ing binary SVMs. Moreover, each binary SVM is
built on a totally different training set. There might
be cases in which some binary SVMs conflict with
each other for some examples. It is difficult to as-
sign the class only by the real-valued outputs from
every binary SVM.

2. One-vs-one: All possible groups of 2 classes are
used to build binary SVMs. In the N class case,
we will build w binary SVMs. When a new
example comes, all the binary SVMs vote to classify
it. When N is small, each binary SVM only learns
on a fraction of the data which can be time efficient.
However, the training phase is very long if we have
very big IN. We use the one-vs-one approach since
there are only 5 or 6 classes in our problem.



4.2 Assigning probability values in sup-
port vector machines

A probability associated with a classifier is often very
useful and it gives some confidence about the classifi-
cation result. For instance, the classifier could reject
the example and leave it to a human to classify it when
the confidence is very low. Platt [16] introduced the sig-
moid function as the probability model to fit P(y = 1|f)
directly. The parametric model is shown in Eq. (7).

1
~ 1+exp(Af + B)

Py =11f) (7)
where A and B are scalar values. f is the decision func-
tion of the binary SVM.

The A and B are fit with maximum likelihood esti-
mation from the training set. Platt tested the model
with 3 data sets including the UCI Adult and two other
web classification data sets. The sigmoid-model SVM
had good classification accuracy and probability quality
in his experiments.

We follow his sigmoid model and extend it to the
multi-class case. In the one-vs-one multi-class SVM
model, since it is time consuming to do the parame-
ter fitting for all w binary SVMs, we developed a
practical method to compute the probability value while
avoiding parameter fitting.

1. We assume P(y =1|f =0) = P(y = —-1|f =0) =
0.5. It means that a point right on the decision
boundary will have 0.5 probability of belonging to
each class. We get rid of parameter B in this way.

2. Since each binary SVM has a different margin, a
crucial criterion in assigning the probability, it is
not fair to assign a probability without considering
the margin. Therefore, the decision function f(x) is
normalized by its margin in each binary SVM. The
probability model of SVMs is shown as following.

1
Py =11f) = W Y

Pij(y = —1{f) = 1= Py(y = 1[f) = Pji(y = 1|f)
(9)
P;;: binary SVM on class i vs. class j, classiis +1
and class j is -1

3. After we get the probability value for each binary
SVM, the final probability for class i is computed
as follows:

i#j

Pi) =] Pty =115) (10)

Normalize P(i) to make ), P(i) =1

4. output k = arg max;P(i) as the prediction.

A is determined through numeric search based on the
cost function ), logP (k) from 10-fold cross validation.
After we finish learning a SVM model and set up a re-
jection threshold ¢, we reject an example and leave it to
be classified by a person if maz; P(k) < t.

5 Feature selection

Feature selection helps reduce the feature computa-
tion time and increase the accuracy. There are mainly
two ways to do feature selection [6]. The filtering ap-
proach attempts to select a subset of features with-
out applying learning algorithms. It is fast, but seems
unlikely to result in the best accuracy. The wrapper
approach [11] selects a feature subset by applying the
learning algorithm. It has the potential to give us very
good accuracy but is computationally expensive. A fea-
ture selection method specifically for SVMs has been
proposed recently. Weston [21] tried to minimize the
generalization bound by minimizing the radius of the
sphere including all the training examples. The draw-
back of this approach is that the generalization bound
is too loose.

In our system, we applied the wrapper approach with
backward elimination. Backward elimination means
starting with all the features and keep eliminating fea-
tures. The average accuracy from a five-fold cross vali-
dation is used as an evaluation function. If there are p
continuous nodes whose average accuracy does not in-
crease we stop. We performed best first search (BFS)
to explore the feature subset space in the beginning of
the algorithm. However, BFS tends to stop with many
features. In order to explore feature subsets with less
features, greedy beam search (GBS) was employed af-
ter the stop of BFS. GBS operates by only expanding
the best ¢ (beam width) leaf-nodes without any back-
tracking. It can quickly reduce the number of features
to 1.

To reduce the effect of overfitting, we take 20 percent
of the data as a hold-out data set, and run the fea-
ture selection on the remaining data while testing the
selected feature subsets on the hold-out data.

6 Experiments

Several experiments have been done to test our sys-
tem. The Libsvm [2] support vector machine software
is modified and used in our experiments. Libsvm uses
decomposition in its optimization and a one-vs-one ap-
proach to do multi-class classification. We modified lib-
svm to produce a probabilistic output. In all experi-
ments the gaussian radial basis function (RBF) is used
as the kernel. ,

The gaussian RBF kernel: k(x,y) = emp(—%)
where o is a scalar value.



6.1 Initial experiments

The first training set has total 1285 SIPPER im-
ages (50pm resolution). There are 64 diatoms, 100
protoctista, 321 doliolids, 366 larvaceans, and 434 Tri-
chodesmium. We used C-SVM module with parameters
C = 200 and ¢ = 0.03. To evaluate the accuracy of
SVMs, we also compared it with a cascade correlation
neural network [8] and a C4.5 decision tree with the de-
fault pruning settings [14]. Figure 2 shows the average
accuracy of the three learning algorithms from 10-fold
cross validation. A paired-t test is used to compare the
results at the 95% confidence interval. The SVM is more
accurate than the other two learning algorithms at the
95% confidence level.
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Figure 2: The mean accuracy and the range of standard
deviation of the C4.5, the cascade correlation neural net-
work (ANN) and the SVM from 10-fold cross validation
on the 1285 SIPPER image set.

Table 1 shows the confusion matrix of the SVM from
a 10-fold cross validation experiment. The overall av-
erage accuracy is 90.04%. While we have greater than
84% accuracy on most plankton, we only achieve 79%
accuracy on the diatom class. The reason is that we
only have 64 diatom samples in our training set and the
SVM favors the class with more samples. For instance,
given there is an overlap in the feature space between
two classes: one with many examples, one with few ex-
amples. It is more likely that most examples within
that overlap come from the class with more examples.
To minimize the Eq. 3, the decision boundary is pushed
away from the class with more examples and thus favor-
ing that class.

Table 1: Confusion matrix from a 10-fold cross valida-
tion on 1285 SIPPER images with all 29 features. P, Di,
Do, L and T represent Protoctista, Diatom, Doliolid,
Larvacean and Trichodesmium respectively.

Classified as P as Di | as Do as L as T

P 84.4% 1.6% 9.4% 4.7% 0.0%

Di 2.0% 79.0% 11.0% 6.0% 2.0%

Do 0.8% 0.3% | 92.8% 3.1% 0.0%

L 0.8% 0.3% 4.4% | 88.0% 6.6%

T 0.0% 0.5% 0.2% 6.2% | 93.1%
6.2 Experiments with unidentifiable

particles

Encouraged by the initial experiment, we chose plank-
ton images from some other collections of sample im-
ages. We picked the five most abundant types of plank-
ton, which account for 95% of the plankton samples
from the particular area of acquisition in the Gulf of
Mexico. They are copepods, doliolids, larvaceans, pro-
toctista and Trichodesmium. The image quality in this
training set is not as good as in the initial experiment.
Some information, unknown to us, was used by ocean
experts to label the images. Also, we are forced to han-
dle unidentifiable particles in this experiment.

There are a total of 6000 images: 1000 images of each
plankton class and 1000 unidentifiable particles. We
use C-SVM with C' = 200 and ¢ = 0.032. Figure 3
shows the average accuracy of three learning algorithms
from 10-fold cross validation. A paired-t test is used
to compare the results at the 95% confidence interval.
The SVM is more accurate than the other two learning
algorithms at the 95% confidence level.

Table 2 shows the confusion matrix from a 10-
fold cross validation. The overall average accuracy is
75.12%. The average accuracy from the five types of
plankton is 78.56%.

There are a significant number of larvaceans confused
with Trichodesmium. This observation disagrees with
the first experiment where we had high classification ac-
curacy for both types of plankton. The justification is
that some larvacean and Trichodesmium are linear ob-
jects. Domain experts know that there are some ocean
areas where larvacean or Trichodesmium are less com-
mon. They labeled the linear objects as larvacean or
Trichodesmium because they know the other plankton
are less commonly found in the particular ocean areas
examined. Therefore, there are many linear particles
without significant features to differentiate between the
two types of plankton in this training set, thus drop-
ping the classification accuracy on larvaceans and Tri-
chodesmium.

6.3 Feature selection

Feature selection was tested on the bigger training set
as described in Section 6.2. Although the SVM seems
superior to the other two learning algorithm, there is
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Figure 3: The mean accuracy and the range of the stan-
dard deviation of the C4.5, the cascade correlation neu-
ral network (ANN) and the SVM from 10-fold cross val-
idation on the 6000 SIPPER image set.

Table 2: Confusion matrix from a 10-fold cross valida-
tion on 6000 SIPPER images with all 29 features. C,
D, L, P, T, and U represent Copoped, Doliolid, Lar-
vacean, Protoctista, Trichodesmium and Unidentifiable
particles respectively.

Classified as C as D as L as P as T as U
C 84.2% 0.6% 3.1% 1.0% 5.5% 5.6%
D 0.2% | 82.9% 2.4% 8.7% 0.4% 5.4%
L 3.2% 1.9% | 68.8% 1.4% | 11.1% | 13.6%
P 1.7% 5.3% 1.1% | 84.4% 3.1% 4.4%
T 3.3% 0.6% 9.4% 1.8% | 72.5% | 12.4%
U 4.3% 3.1% | 15.8% 54% | 13.5% | 57.9%

no guarantee that it is still true after feature reduc-
tion. Therefore, we experimented with feature selection
(wrapper approach) on the SVM and its direct competi-
tor: the cascade correlation neural net. We did not use
the decision tree in the comparison because it is far less
accurate than the SVM on this data set, thus unlikely
to be the best. The data set was divided into two parts:
80% as training and 20% as validation. We set stopping
criterion p to 150 and the beam width ¢ to 5 in our
experiment.

Figures 4 and 5 show the experimental results for the
average accuracy from the 5-fold cross validation on the
training data and the test accuracy on the validation
data respectively. The SVM provides better accuracy
than the neural net on both the training set and the val-
idation set. To choose the least number of features for
the SVM, McNemar’s test [7] is applied on the valida-

Table 3: Confusion matrix from a 10-fold cross valida-
tion on 6000 SIPPER images with the best 15-feature
subset. C, D, L, P, T, and U represent Copoped,
Doliolid, Larvacean, Protoctista, Trichodesmium and
Unidentifiable particles respectively.

Classified as C as D as L as P as T as U
C 84.5% 0.9% 3.1% 0.5% 5.6% 5.4%
D 0.7% | 85.2% 1.1% 9.3% 0.4% 3.3%
L 4.3% 2.1% | 67.2% 1.1% 12.5% 12.8%
P 1.8% 5.0% 0.7% | 85.8% 3.0% 3.7%
T 4.5% 0.4% | 10.0% 1.5% | 72.5% | 11.0%
U 5.1% 2.3% | 15.6% 5.4% | 13.4% | 58.2%

tion set to compute the 95% confidence interval. When
the number of features are less than 15, the accuracy
is outside the confidence interval. Therefore, we choose
the 15-feature subset as the optimal feature subset and
it provides slightly better accuracy than using all the
features on the validation data set.

To test the overall effect of feature selection, we ap-
plied 10-fold cross validation on whole 6000 image set.
The confusion matrix is shown as Table 3. The overall
average accuracy is 75.57%. The average accuracy from
the five types of plankton is 79.04%. Both indicate that
the best 15-feature subset performs slightly better than
all 29 features.
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Figure 4: Feature selection on the training set: The solid
line represents accuracy of the SVM and the dashed line
represents the accuracy of the neural net.

6.4 Probability assignment experiments

We used the same training set as in the last exper-
iment with the 15-feature subset. To determine A in
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Figure 5: Selected feature subsets on the validation set:
The solid line represents accuracy of the SVM and the
dashed line represents the accuracy of the neural net.

Eq. (7), we varied the A value in 10-fold cross valida-
tion experiments and picked the one with the lowest cost
>, logP(k). The best value for A in our experiment was
1500. We drew a rejection curve by varying the rejec-
tion threshold. Figure 6 shows that the accuracy goes
up as the rejection ratio increases, which is reasonable.

7 Conclusions and future work

This paper presents a plankton recognition system
for binary SIPPER images. General features as well
as domain specific features are extracted and a support
vector machine is used to classify examples. We also de-
veloped a new way to assign a probability value after the
multi-class SVM classification. We tested our system on
two different data sets. The recognition rate exceeded
90% in one experiment and was greater than 75% on
the more challenging data set with unidentifiable parti-
cles. SVM is more accurate than the C4.5 decision tree
and the cascade correlation neural network at the 95%
confidence level on the two data sets. The wrapper ap-
proach with backward elimination successfully reduced
the number of features from 29 to 15 with slightly better
accuracy than using all features.

The system does not do well at recognizing unidenti-
fiable particles. It is hard to develop specific features to
describe the features of the unidentifiable particles be-
cause they vary so much. More powerful descriptive and
robust general features seem needed in our future work.
Recently, an advanced SIPPER system had been devel-
oped to produce grayscale SIPPER images at 25 pm
resolution. We are in the process of developing meth-

Accuracy (%)

75
|
o

T T T T T
0 20 40 60 80

rejection ratio (%)

Figure 6: Rejection curve-Overall accuracy vs. rejection
rate.

ods and features for higher resolution (25 um resolution)
grayscale SIPPER images.
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